The 71st William Lowell Putnam Mathematical Competition
 Saturday, December 4, 2010

Done!

A1 Given a positive integer n, what is the largest k such that the numbers $1,2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest k is at least 3.]

Solution:

The number k is impossible unless $n(n+1) / 2$, which is the sum of the n numbers, is divisible by k. Evidently we must also have $k<n$ for otherwise either a box would be empty or each would have one number in it which would not solve the problem. If n is even then we make take $k=n / 2$ by putting 2 numbers in each box: $\{1, n\},\{2, n-1\}, \cdots$. If $n=2 m+1$ is odd then we put n in a box and use the previous solution on the numbers from 1 to $2 m=n-1$. This gives us $k=(n+1) / 2$. If we try to use a larger k then the sum in each box must be smaller than n so there is no place to put the number n ! The solution is $k=\lfloor(n+1) / 2\rfloor$ which is $n / 2$ for n even and $(n+1) / 2$ for n odd.

A2 Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for all real numbers x and all positive integers n.

Solution:

Put $x=0$ to discover that for all integers $n>0$ we have

$$
f(n)=f(0)+n f^{\prime}(0)
$$

which puts $f(n)$ on the line with slope $f^{\prime}(0)$ and intercept $f(0)$. We have

$$
f^{\prime}(x+1)=\frac{f(x+(n+1))-f(x)-(f(x+1)-f(x))}{n}=\frac{(n+1) f^{\prime}(x)}{n}-\frac{f^{\prime}(x)}{n}=f^{\prime}(x)
$$

So f^{\prime} is periodic with period 1! Thus

$$
\int_{y}^{y+1} f^{\prime}(x) d x=\int_{0}^{1} f^{\prime}(x) d x
$$

and

$$
f(x+n)-f(x)=n \int_{0}^{1} f^{\prime}(u) d u
$$

is free of x. Thus f^{\prime} is constant and f is a straight line. Every straight line function satisfies the condition so the collection of all such f is just the collection of all straight line functions $y=a x+b$.

A3 Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.
Solution:

Put

$$
g(u)=h(a u, b u+c)
$$

and note that

$$
\frac{d g}{d u}(u)=\left.a \frac{\partial h}{\partial x}(x, y)\right|_{x=a u, y=b u+c}+\left.b \frac{\partial h}{\partial y}(x, y)\right|_{x=a u, y=b u+c}=h(a u, b u+c)=g(u)
$$

It follows that $g(u)=d \exp (u)$ which is bounded over all u if and only if $d=0$. Thus if h is bounded then $h(a u, b u+c) \equiv 0$ for all choices of c. This evidently implies h is identically 0 . If $a=0$ or $b=0$ use $g(u)=h(x, b u)$ or $g(u)=h(a u, b)$ while for $a=b=0$ we have $h \equiv 0$ is given .

A4 Prove that for each positive integer n, the number $10^{10^{10^{n}}}+10^{10^{n}}+10^{n}-1$ is not prime.
Solution:
Since 10 is congruent to -1 mod 11 we find that for even n

$$
10^{n} \equiv 1 \bmod 11
$$

while if n is odd then

$$
10^{n} \equiv-1 \quad \bmod 11
$$

All powers of 10 greater than 1 are even so if n is odd the sum given is congruent to 0 mod 11 . Since the sum is not 11 or 0 it is not prime. Now suppose $n=p 2^{m}$ where $m>0$ and p is odd. We compute the residue class of the given number modulo $10^{2^{m}}$. The last two terms are each congruent to -1 . I claim the first two terms are congruent to 1 which would finish the problem. Each of those terms has the form 10^{r} and it suffices to show that the power r is divisible by 2^{m+1} for in that case

$$
10^{r}=\left(10^{2^{m}}\right)^{2 r /\left(2^{m+1}\right)} \equiv\left((-1)^{2}\right)^{r / 2^{m+1}} \bmod 10^{2^{m}}+1
$$

In the case of the second term

$$
r=10^{n}=10^{p 2^{m}}
$$

which is divisible by 2^{m+1} provided $m+1 \leq p 2^{m}$ which is true for all $m \geq 0$ and all odd positive integers p.
A5 Let G be a group, with operation $*$. Suppose that
(i) G is a subset of \mathbb{R}^{3} (but $*$ need not be related to addition of vectors);
(ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b}=0$ (or both), where \times is the usual cross product in \mathbb{R}^{3}.

Prove that $\mathbf{a} \times \mathbf{b}=0$ for all $\mathbf{a}, \mathbf{b} \in G$.

Solution:

First pick any \mathbf{a} and \mathbf{b} both in G and not parallel (that is with non-zero cross product). (If no such pair exists we are done.) Then

$$
\mathbf{c} \equiv \mathbf{a} \times \mathbf{b} \neq 0
$$

so $\mathbf{c}=\mathbf{a} * \mathbf{b}$ is in the group. These three vectors are linearly independent. Now consider the identity 1 . We cannot have 1 perpendicular to all three of the previous vectors unless $1=0$. If 1 is not 0 then its cross-product with at least one of the vectors is not 0 so suppose without loss that $\mathbf{a} \times 1 \neq 0$. Then $\mathbf{a} \times 1=\mathbf{a} * 1=\mathbf{a}$ which is not perpendicular to \mathbf{a} - a contradiction. It follows that the group identity is the 0 vector. Now consider, for any non-zero \mathbf{x} in G,

$$
\mathbf{x} * \mathbf{x}^{-1}=1
$$

where the inverse is the group inverse. Note that $\mathbf{x}^{-1} \neq 1=0$ for otherwise we get $\mathbf{x}=1=0$. We then have either

$$
\mathbf{x} \times \mathbf{x}^{-1}=\mathbf{x} * \mathbf{x}^{-1}=1=0
$$

or

$$
\mathbf{x} \times \mathbf{x}^{-1}=0
$$

so either way

$$
\mathbf{x} \times \mathbf{x}^{-1}=\mathbf{x} * \mathbf{x}^{-1}=0
$$

It follows that \mathbf{x}^{-1} is parallel to \mathbf{x}. Now consider

$$
\begin{aligned}
\mathbf{b} & =\left(\mathbf{a}^{-1} * \mathbf{a}\right) * \mathbf{b} \\
& =\mathbf{a}^{-1} *(\mathbf{a} * \mathbf{b}) \\
& =\mathbf{a}^{-1} * \mathbf{c} \\
& =\mathbf{a}^{-1} \times \mathbf{c} .
\end{aligned}
$$

We see that \mathbf{b} is perpendicular to \mathbf{c} and to \mathbf{a}^{-1} and so also to \mathbf{a}. Thus \mathbf{a}, \mathbf{b} and \mathbf{c} are mutually perpendicular. Now suppose \mathbf{x} and \mathbf{y} are two parallel non-zero vectors in G. I claim $\mathbf{x} * \mathbf{y}$ is parallel to \mathbf{x} and \mathbf{y}. If not then

$$
\mathbf{y}=\mathbf{x}^{-1} * \mathbf{x} * \mathbf{y}=\mathbf{x}^{-1} \times \mathbf{x} * \mathbf{y}
$$

is perpendicular to \mathbf{x}^{-1} which is parallel to \mathbf{y} generating a contradiction. Now consider

$$
\mathbf{x} \equiv \mathbf{a} * \mathbf{b} * \mathbf{c}
$$

On the one hand $\mathbf{a} * \mathbf{b}$ is parallel to \mathbf{c} so \mathbf{x} is parallel to \mathbf{c}. On the other hand $\mathbf{b} * \mathbf{c}$ is perpendicular to both \mathbf{b} and \mathbf{c} so it is parallel to \mathbf{a} by the mutual perpendicularity. Thus \mathbf{x} is the product of two vectors parallel to \mathbf{a} and is itself parallel to \mathbf{a}. Since \mathbf{a} and \mathbf{c} are perpendicular any vector parallel to both must be the 0 vector. That is

$$
\mathbf{x}=1
$$

But then the same argument applies for any order of the three vectors and we deduce

$$
\mathbf{a} * \mathbf{b} * \mathbf{c}=1=\mathbf{b} * \mathbf{a} * \mathbf{c}
$$

Cancel the \mathbf{c} to find

$$
\mathbf{c}=\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}=\mathbf{b} * \mathbf{a}=\mathbf{b} \times \mathbf{a}=-\mathbf{c}
$$

which is a contradiction! We are done.
A6 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing continuous function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x$ diverges.

Solution:

Define

$$
H(x)=\int_{x}^{x+1} f(u) d u
$$

Note that

$$
H^{\prime}(x)=-(f(x)-f(x+1))
$$

and that

$$
f(x+1) \leq H(x) \leq f(x)
$$

We are studying the integral

$$
I=\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x=\int_{0}^{\infty} \frac{-H^{\prime}(x)}{H(x)} \frac{H(x)}{f(x)} d x
$$

I claim that if the integral converges then

$$
\lim _{x \rightarrow \infty} \frac{f(x+1)}{f(x)}=1
$$

For if not then there is a $\delta>0$ and a sequence $x_{n} \rightarrow \infty$ such that

$$
\frac{f\left(x_{n}+1\right)}{f\left(x_{n}\right)}<1-\delta
$$

By passing to a subsequence we may assume $x_{n}+2<x_{n+1}$ for all n. Note that

$$
\begin{aligned}
\int_{x_{n}-1}^{x_{n}+1} \frac{f(y)-f(y+1)}{f(y)} d y & =\int_{x_{n}-1}^{x_{n}} \frac{f(y)-f(y+1)}{f(y)} d y+\int_{x_{n}}^{x_{n}+1} \frac{f(y)-f(y+1)}{f(y)} d y \\
& =\int_{x_{n}-1}^{x_{n}} \frac{f(y)-f(y+1)}{f(y)} d y+\int_{x_{n}-1}^{x_{n}} \frac{f(y+1)-f(y+2)}{f(y+1)} d y \\
& \geq \int_{x_{n}-1}^{x_{n}} \frac{f(y)-f(y+1)}{f(y)} d y+\int_{x_{n}-1}^{x_{n}} \frac{f(y+1)-f(y+2)}{f(y)} d y \\
& =\int_{x_{n}-1}^{x_{n}} \frac{f(y)-f(y+2)}{f(y)} d y \\
& =1-\int_{x_{n}-1}^{x_{n}} \frac{f(y+2)}{f(y)} d y \\
& \geq 1-\int_{x_{n}-1}^{x_{n}} \frac{f\left(x_{n}+1\right)}{f\left(x_{n}\right)} d y \\
& \geq 1-(1-\delta) \\
& =\delta .
\end{aligned}
$$

Summing over an infinite number of n shows $I=\infty$. So we now assume that

$$
\lim _{x \rightarrow \infty} \frac{f(x+1)}{f(x)}=1
$$

Then there is a T such that for all $x \geq T$ we have

$$
f(x+1) / f(x) \geq 1 / 2
$$

Then for all $x \geq T$ we have

$$
\frac{f(x+1)}{f(x)} \leq H(x)
$$

and so

$$
\begin{aligned}
I \geq \int_{T}^{\infty} \frac{f(y)-f(y+1)}{f(y)} d y & =\int_{T}^{\infty} \frac{-H^{\prime}(x)}{H(x)} \frac{H(x)}{f(x)} d x \\
& \geq \frac{1}{2} \int_{T}^{\infty} \frac{-H^{\prime}(x)}{H(x)} \frac{H(x)}{f(x)} d x \\
& =\left.\frac{1}{2}\{-\log (H(x))\}\right|_{T} ^{\infty}=\infty
\end{aligned}
$$

A couple of notes on this. First, I used continuity in asserting the formula for the derivative of H. I don't seem to have used the fact that f is strictly decreasing anywhere I can see.

B1 Is there an infinite sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ such that

$$
a_{1}^{m}+a_{2}^{m}+a_{3}^{m}+\cdots=m
$$

for every positive integer m ?

Solution:

No. The Cauchy-Schwarz inequality shows

$$
m=\left|\sum_{1}^{\infty} a_{j}^{m}\right| \leq \sqrt{\sum_{1}^{\infty} a_{j}^{2 l} \sum_{1}^{\infty} a_{j}^{2(m-l)}}=\sqrt{2 l(2 m-2 l)}
$$

for all integers $1 \leq l \leq m-1$. For $m=4$ and $l=1$ we get

$$
4 \leq \sqrt{2(8-2)}=\sqrt{12}
$$

which is false. So no such sequence exists.
B2 Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances $A B$, $A C$, and $B C$ are integers, what is the smallest possible value of $A B$?

Solution:

The 3, 4, 5 triangle shows that 3 is possible. I claim 1 and 2 are not possible so the answer is 3. If 1 were possible there would be an example with $A=(0,0)$ and $B=(1,0)$. Put $C=(n, m+1)$. WIthout loss $n>0$ and $m \geq 0$ (by reflecting any triangle about the x axis if $n<0$ and then about $x=1 / 2$ if $m<0$). We find that $A C^{2}=n^{2}+(m+1)^{2}$ while $B C^{2}=n^{2}+m^{2}$. Let $B C=l$. Then $l=B C<A C<A B+B C=l+1$ which contradicts the assertion that $A C$ is an integer. For $A B=2$ we put, with no loss, $B=(2,0)$ and $C=(n, 1+m)$ with $n, m \geq 0$. Let $B C=l$. For $m=0$ we also have $A C=l$ and $l^{2}=n^{2}+1$ which requires two perfect squares to differ by 1. This gives $n=0$ making the points collinear. For $m \geq 1$ we must have $B C<A C<B C+2$. So if $B C=l$ then $A C=l+1$ and

$$
n^{2}+m^{2}+2 m+1=(l+1)^{2}
$$

while

$$
n^{2}+m^{2}-2 m+1=l^{2}
$$

Subtracting gives $2 l+1=4 m$. But $2 l+1$ is odd while $4 m$ is even. So the smallest possible value is 3 .
B3 There are 2010 boxes labeled $B_{1}, B_{2}, \ldots, B_{2010}$, and $2010 n$ balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from box B_{i} into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?

Solution:

If we start with fewer than i balls in box i for each i then no moves are possible. If we have fewer than $\sum_{1}^{2010}(i-1)=2009 \cdot 2010 / 2 \equiv m$ balls then we can put 0 balls in box 1,1 in box 2 and so on an use up all the balls while ensuring that there are fewer than i balls in box i for every i. This means that n does not work unless

$$
2010 n \geq 2009 \cdot 2010 / 2
$$

or $n \geq 1005$. Now suppose that $n \geq 1005$. I claim that it is possible to put all the balls into box 1 . If so then they can clearly be redistributed 1 at a time to put exactly n in each box. Since the number of balls exceeds m there is a box $i>1$ with at least i balls in it. For each such box move batches of i balls to box 1 until there are fewer than i balls in each box for $i>1$. There are now at least 2 balls in box 1. Put balls one at a time from box 1 into box 2 until there are an even number of balls in box 2. Then move them all, 2 at a time, to box 1; this leaves box 2 empty. Either box 3 is empty or there are enough balls in box 1 to fill box 3 to a multiple of 3 . Move them all, 3 at a time, to box 1. Now boxes 2 and 3 are empty. Counting up the balls in boxes with $i \geq 4$ shows that there are at least 3 balls in box 1 so we can move them to box 4 one at a time to get a multiple of 4 balls in box 4. Empty box 4 into box 1 . Now suppose you have emptied boxes 2 through $j-1$. The number of balls in boxes j through 2010 is at most

$$
\sum_{j}^{2010}(i-1)=m-j(j-1) / 2
$$

so there are at least $j(j-1) / 2>j$ balls in box 1 . We can then move balls to box j from box 1 to make a multiple of j balls and then empty box j. This shows inductively that we may put all the balls into box 1 . Conclusion: we can reach the desired distribution for all $n \geq 1005$.

B4 Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which

$$
p(x) q(x+1)-p(x+1) q(x)=1
$$

Solution:

The solution is that p and q must both be linear and, if $p(x)=a+b x$ and $q(x)=c+d x$ then

$$
a d-b c=1
$$

So we will prove this.
If p, q is any pair solving the problem then so are $p, q+a p$ and $p+a q, q$ for any constant a. Thus we may assume that if there is any solution in which either polynomial has degree larger than 1 there is a solution in which both have degree $d>1$. Then write

$$
p(x)=\sum_{0}^{d} a_{j} x^{j}
$$

and

$$
q(x)=\sum_{0}^{d} b_{j} x^{j}
$$

with neither of a_{d} or b_{d} equal to 0 . Then

$$
\begin{aligned}
p(x) q(x+1)-q(x) p(x+1) & =\sum_{0}^{d} \sum_{0}^{d}\left(a_{j} b_{k}-a_{k} b_{j}\right) x^{j}(x+1)^{k} \\
& =\sum_{0}^{d} \sum_{0}^{d}\left(a_{j} b_{k}-a_{k} b_{j}\right) \sum_{l=0}^{k}\binom{k}{l} x^{j+l} \\
& =\sum_{r=0}^{2 d} x^{r} \sum_{0}^{d} \sum_{0}^{d} \sum_{l=0}^{k}\left(a_{j} b_{k}-a_{k} b_{j}\right)\binom{k}{l} 1(j+l=r) \\
& \equiv \sum_{r=0}^{2 d} c_{r} x^{r}
\end{aligned}
$$

where

$$
c_{r}=\sum_{0}^{d} \sum_{0}^{d} \sum_{l=0}^{k}\left(a_{j} b_{k}-a_{k} b_{j}\right)\binom{k}{r-j}
$$

and the binomial coefficient is 0 if either $r-j<0$ or $r-j>k$. We note terms with $j=k$ automatically vanish and write

$$
c_{r}=\sum_{0 \leq j<k \leq d}\left(a_{j} b_{k}-a_{k} b_{j}\right)\left\{\binom{k}{r-j}-\binom{j}{r-k}\right\} .
$$

Any solution must have $c_{2 d}=\cdots=c_{1}=0$. Putting $r=2 d$ we see both binomial coefficients vanish unless

$$
2 d-k \leq j \text { and } 2 d-j \leq k .
$$

These just reduce to $j+k \geq 2 d$ which, for $j<k \leq d$ is impossible so $c_{2 d}=0$. For $r=2 d-1$ we find $j=d-1$ and $k=d$ and the two binomial coefficients reduce to 1 so $c_{2 d-1}=0$ is automatic. For $r=2 d-2$ we have the term $j=d-2, k=d$ for which

$$
\binom{k}{r-j}=\binom{d}{d}=1 \text { while }\binom{j}{r-k}=\binom{d-2}{d-2}=1
$$

giving a 0 and the term $j=d-1, k=d$ for which

$$
\binom{k}{r-j}=\binom{d}{d-1}=d \text { while }\binom{j}{r-k}=\binom{d-1}{d-2}=d-1
$$

giving the requirement

$$
\left(a_{d-1} b_{d}-a_{d} b_{d-1}\right)(d-(d-1))=0
$$

This simplifies to

$$
a_{d-1} b_{d}-a_{d} b_{d-1}=0
$$

Notice that for $d=1$ the binomial coefficient $\binom{d-1}{d-2}$ is actually 0 and we do not deduce this last equation. We now argue that $a_{j} b_{k}-a_{k} b_{j}=0$ for all $0 \leq j<k \leq d$. If so then we have shown

$$
p(x) q(x+1)-q(x) p(x+1) \equiv 0
$$

and this is not a solution of our problem. In fact since $b_{d} \neq 0$ and $a_{d} \neq 0$ it is enough to do the case $k=d$. Now we do induction on j starting at $j=d-1$ which we have just done. Suppose we have established $a_{j} b_{d}-a_{d} b_{j}=0$ for all $j_{0}<j \leq d-1$. Then for any pair $j_{0}<j<k \leq d-1$ we have

$$
a_{j}=b_{j} a_{d} / b_{d} \text { and } b_{k}=a_{k} b_{d} / a_{d}
$$

which multiply together to show

$$
a_{j} b_{k}-a_{k} b_{j}=0
$$

for all $j_{0}<j<k \leq d-1$. The formula for c_{r} now simplifies to

$$
c_{r}=\sum_{0 \leq j \leq j_{0} ; j<k \leq d}\left(a_{j} b_{k}-a_{k} b_{j}\right)\left\{\binom{k}{r-j}-\binom{j}{r-k}\right\} .
$$

Take $r=d+j_{0}$. The coefficient $\binom{k}{d+j_{0}-j}$ will be 0 unless

$$
0 \leq d+j_{0}-j \leq k \leq d
$$

giving $j+k \geq d+j_{0}$. The coefficient $\binom{j}{d+j_{0}-k}$ will be 0 except in the same circumstances. But the restriction in the sum defining c_{r} now shows $j+k \leq d+j_{0}$ so we must have $j=j_{0}$ and $k=d$. The corresponding binomial coefficient difference becomes

$$
\binom{k}{r-j}-\binom{j}{r-k}=\binom{d}{d}-\binom{j_{0}}{j_{0}}=0
$$

So $c_{d+j_{o}}=0$ is automatic.
Then take $r=d-1+j_{0}$. The coefficient $\binom{k}{d-1+j_{0}-j}$ will be 0 unless

$$
0 \leq d-1+j_{0}-j \leq k \leq d
$$

giving $j+k \geq d+j_{0}-1$. The coefficient $\binom{j}{d-1+j_{0}-k}$ will be 0 except in the same circumstances. But the restriction in the sum defining c_{r} now shows $j+k \leq d+j_{0}$ so there are the following terms to consider: $j=j_{0}, k=d, j=j_{0}-1, k=d$ and $j=j_{0}, k=d-1$. In the latter two cases the binomial coefficients both simplify to 1 . We are thus left with

$$
0=c_{d+j_{0}-1}=\left(a_{j_{0}} b_{d}-a_{d} b_{j_{0}}\right)\left\{\binom{d}{d+j_{0}-1-j_{0}}-\binom{j_{0}}{d+j+0-1-d}\right\}
$$

which simplifies to

$$
0=c_{d+j_{0}-1}=\left(a_{j_{0}} b_{d}-a_{d} b_{j_{0}}\right)\left(d-j_{0}\right)
$$

It follows that $a_{j_{0}} b_{d}=a_{d} b_{j_{0}}$ completing the induction.

B5 Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?

Solution:

No. Since f is strictly increasing f^{\prime} must be non-negative and strictly increasing. Thus $f^{\prime}(0)>0$. If $f(0) \leq 0$ then, since f is strictly increasing, we have $f^{\prime}(0)=f(f(0)) \leq f(0) \leq 0$ a contradiction. Thus $f(0)>0$. Next for $x \geq 0$ we have

$$
\begin{aligned}
f(x+1) & =f(x)+\int_{x}^{x+1} f^{\prime}(u) d u \\
& =f(x)+\int_{x}^{x+1} f(f(u)) d u \\
& \geq \int_{x}^{x+1} f(f(x)) d u \\
& =f(f(x))
\end{aligned}
$$

Since f is strictly increasing we deduce that for all $x \geq 0$

$$
f(x) \leq x+1
$$

On the other hand $\lim _{x \rightarrow \infty} f(x)=\infty$ because

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(u) d u \geq x f^{\prime}(0)
$$

But then $\lim _{x \rightarrow \infty} f^{\prime}(x)=\infty$ and so $f^{\prime}(x)>2$ for all large enough x say $x \geq x_{0}$. For $x>x_{0}$ we must have

$$
f(x) \geq f\left(x_{0}\right)+2\left(x-x_{0}\right)
$$

implying the contradiction

$$
f\left(x_{0}\right)+2\left(x-x_{0}\right) \leq x+1
$$

for all large x.
B6 Let A be an $n \times n$ matrix of real numbers for some $n \geq 1$. For each positive integer k, let $A^{[k]}$ be the matrix obtained by raising each entry to the $k^{\text {th }}$ power. Show that if $A^{k}=A^{[k]}$ for $k=1,2, \ldots, n+1$, then $A^{k}=A^{[k]}$ for all $k \geq 1$.
Solution:
Let

$$
p(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+\sum_{0}^{n-1} c_{j} \lambda_{j}
$$

be the characteristic polynomial of A. The Cayley-Hamilton theorem shows

$$
0=A^{n}+\sum_{0}^{n-1} c_{j} A^{j}
$$

Multiply by A to see

$$
0=A^{n+1}+\sum_{0}^{n-1} c_{j} A^{j+1}=A^{[n+1]}+\sum_{0}^{n-1} c_{j} A^{[j+1]}
$$

and for each pair i, l we therefore have

$$
0=A_{i l}^{n+1}+\sum_{0}^{n-1} c_{j} A_{i l}^{j+1}
$$

We now prove

$$
A^{n+r}=A^{[n+r]}
$$

by induction on r. It is given for $r=1$. Assume it is established for all $r<r_{0}$. Then multiplying the identity above by $A^{r_{0}-1}$ gives

$$
0=A^{n+r_{0}}+\sum_{0}^{n-1} c_{j} A^{j+r_{0}}=A^{n+r_{0}}+\sum_{0}^{n-1} c_{j} A^{\left[j+r_{0}\right]}
$$

On the other hand if we multiply the i, l identity by $A_{i l}^{r_{0}-1}$ gives

$$
0=A_{i l}^{n+r_{0}}+\sum_{0}^{n-1} c_{j} A_{i l}^{j+r_{0}}
$$

which means

$$
0=A^{\left[n+r_{0}\right]}+\sum_{0}^{n-1} c_{j} A^{\left[j+r_{0}\right]}
$$

Comparison the two identities shows

$$
A^{n+r_{0}}=A^{\left[n+r_{0}\right]}
$$

finishing the induction. Notice that we needed $n+1$ not n because of the intercept terms.

