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Done!

A1 Given a positive integer n, what is the largest k such that the numbers 1, 2, . . . , n can be put into k boxes so that the sum
of the numbers in each box is the same? [When n = 8, the example {1, 2, 3, 6}, {4, 8}, {5, 7} shows that the largest k is
at least 3.]

Solution:

The number k is impossible unless n(n+ 1)/2, which is the sum of the n numbers, is divisible by k. Evidently
we must also have k < n for otherwise either a box would be empty or each would have one number in it
which would not solve the problem. If n is even then we make take k = n/2 by putting 2 numbers in each
box: {1, n}, {2, n− 1}, · · · . If n = 2m+ 1 is odd then we put n in a box and use the previous solution on the
numbers from 1 to 2m = n− 1. This gives us k = (n+ 1)/2. If we try to use a larger k then the sum in each
box must be smaller than n so there is no place to put the number n! The solution is k = b(n+ 1)/2c which is
n/2 for n even and (n+ 1)/2 for n odd.

A2 Find all differentiable functions f : R→ R such that

f ′(x) =
f(x+ n)− f(x)

n

for all real numbers x and all positive integers n.

Solution:

Put x = 0 to discover that for all integers n > 0 we have

f(n) = f(0) + nf ′(0)

which puts f(n) on the line with slope f ′(0) and intercept f(0). We have

f ′(x+ 1) =
f(x+ (n+ 1))− f(x)− (f(x+ 1)− f(x))

n
=

(n+ 1)f ′(x)

n
− f ′(x)

n
= f ′(x).

So f ′ is periodic with period 1! Thus ∫ y+1

y

f ′(x)dx =

∫ 1

0

f ′(x)dx

and

f(x+ n)− f(x) = n

∫ 1

0

f ′(u)du

is free of x. Thus f ′ is constant and f is a straight line. Every straight line function satisfies the condition so
the collection of all such f is just the collection of all straight line functions y = ax+ b.

A3 Suppose that the function h : R2 → R has continuous partial derivatives and satisfies the equation

h(x, y) = a
∂h

∂x
(x, y) + b

∂h

∂y
(x, y)

for some constants a, b. Prove that if there is a constantM such that |h(x, y)| ≤M for all (x, y) ∈ R2, then h is identically
zero.

Solution:
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Put

g(u) = h(au, bu+ c)

and note that

dg

du
(u) = a

∂h

∂x
(x, y)|x=au,y=bu+c + b

∂h

∂y
(x, y)|x=au,y=bu+c = h(au, bu+ c) = g(u).

It follows that g(u) = d exp(u) which is bounded over all u if and only if d = 0. Thus if h is bounded then
h(au, bu + c) ≡ 0 for all choices of c. This evidently implies h is identically 0. If a = 0 or b = 0 use
g(u) = h(x, bu) or g(u) = h(au, b) while for a = b = 0 we have h ≡ 0 is given.

A4 Prove that for each positive integer n, the number 1010
10n

+ 1010
n

+ 10n − 1 is not prime.

Solution:

Since 10 is congruent to -1 mod 11 we find that for even n

10n ≡ 1 mod 11

while if n is odd then

10n ≡ −1 mod 11

All powers of 10 greater than 1 are even so if n is odd the sum given is congruent to 0 mod 11. Since the sum
is not 11 or 0 it is not prime. Now suppose n = p2m where m > 0 and p is odd. We compute the residue class
of the given number modulo 102

m

. The last two terms are each congruent to -1. I claim the first two terms are
congruent to 1 which would finish the problem. Each of those terms has the form 10r and it suffices to show
that the power r is divisible by 2m+1 for in that case

10r = (102
m

)2r/(2
m+1) ≡ ((−1)2)r/2

m+1

mod 102
m

+ 1.

In the case of the second term

r = 10n = 10p2
m

which is divisible by 2m+1 provided m+ 1 ≤ p2m which is true for all m ≥ 0 and all odd positive integers p.

A5 Let G be a group, with operation ∗. Suppose that

(i) G is a subset of R3 (but ∗ need not be related to addition of vectors);
(ii) For each a,b ∈ G, either a× b = a ∗ b or a× b = 0 (or both), where × is the usual cross product in R3.

Prove that a× b = 0 for all a,b ∈ G.

Solution:

First pick any a and b both in G and not parallel (that is with non-zero cross product). (If no such pair exists
we are done.) Then

c ≡ a× b 6= 0

so c = a ∗ b is in the group. These three vectors are linearly independent. Now consider the identity 1. We
cannot have 1 perpendicular to all three of the previous vectors unless 1 = 0. If 1 is not 0 then its cross-product
with at least one of the vectors is not 0 so suppose without loss that a× 1 6= 0. Then a× 1 = a ∗ 1 = a which
is not perpendicular to a — a contradiction. It follows that the group identity is the 0 vector. Now consider, for
any non-zero x in G,

x ∗ x−1 = 1

where the inverse is the group inverse. Note that x−1 6= 1 = 0 for otherwise we get x = 1 = 0. We then have
either

x× x−1 = x ∗ x−1 = 1 = 0
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or

x× x−1 = 0

so either way

x× x−1 = x ∗ x−1 = 0.

It follows that x−1 is parallel to x. Now consider

b = (a−1 ∗ a) ∗ b
= a−1 ∗ (a ∗ b)
= a−1 ∗ c
= a−1 × c.

We see that b is perpendicular to c and to a−1 and so also to a. Thus a, b and c are mutually perpendicular.
Now suppose x and y are two parallel non-zero vectors in G. I claim x ∗ y is parallel to x and y. If not then

y = x−1 ∗ x ∗ y = x−1 × x ∗ y

is perpendicular to x−1 which is parallel to y generating a contradiction. Now consider

x ≡ a ∗ b ∗ c

On the one hand a ∗ b is parallel to c so x is parallel to c. On the other hand b ∗ c is perpendicular to both
b and c so it is parallel to a by the mutual perpendicularity. Thus x is the product of two vectors parallel to
a and is itself parallel to a. Since a and c are perpendicular any vector parallel to both must be the 0 vector.
That is

x = 1.

But then the same argument applies for any order of the three vectors and we deduce

a ∗ b ∗ c = 1 = b ∗ a ∗ c

Cancel the c to find

c = a× b = a ∗ b = b ∗ a = b× a = −c

which is a contradiction! We are done.

A6 Let f : [0,∞) → R be a strictly decreasing continuous function such that limx→∞ f(x) = 0. Prove that∫∞
0

f(x)−f(x+1)
f(x) dx diverges.

Solution:

Define

H(x) =

∫ x+1

x

f(u)du.

Note that

H ′(x) = −(f(x)− f(x+ 1))

and that

f(x+ 1) ≤ H(x) ≤ f(x).

We are studying the integral

I =

∫ ∞
0

f(x)− f(x+ 1)

f(x)
dx =

∫ ∞
0

−H ′(x)
H(x)

H(x)

f(x)
dx.
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I claim that if the integral converges then

lim
x→∞

f(x+ 1)

f(x)
= 1.

For if not then there is a δ > 0 and a sequence xn →∞ such that

f(xn + 1)

f(xn)
< 1− δ

By passing to a subsequence we may assume xn + 2 < xn+1 for all n. Note that∫ xn+1

xn−1

f(y)− f(y + 1)

f(y)
dy =

∫ xn

xn−1

f(y)− f(y + 1)

f(y)
dy +

∫ xn+1

xn

f(y)− f(y + 1)

f(y)
dy

=

∫ xn

xn−1

f(y)− f(y + 1)

f(y)
dy +

∫ xn

xn−1

f(y + 1)− f(y + 2)

f(y + 1)
dy

≥
∫ xn

xn−1

f(y)− f(y + 1)

f(y)
dy +

∫ xn

xn−1

f(y + 1)− f(y + 2)

f(y)
dy

=

∫ xn

xn−1

f(y)− f(y + 2)

f(y)
dy

= 1−
∫ xn

xn−1

f(y + 2)

f(y)
dy

≥ 1−
∫ xn

xn−1

f(xn + 1)

f(xn)
dy

≥ 1− (1− δ)
= δ.

Summing over an infinite number of n shows I =∞. So we now assume that

lim
x→∞

f(x+ 1)

f(x)
= 1.

Then there is a T such that for all x ≥ T we have

f(x+ 1)/f(x) ≥ 1/2.

Then for all x ≥ T we have

f(x+ 1)

f(x)
≤ H(x)

and so

I ≥
∫ ∞
T

f(y)− f(y + 1)

f(y)
dy =

∫ ∞
T

−H ′(x)
H(x)

H(x)

f(x)
dx

≥ 1

2

∫ ∞
T

−H ′(x)
H(x)

H(x)

f(x)
dx

=
1

2
{− log(H(x))} |∞T =∞.

A couple of notes on this. First, I used continuity in asserting the formula for the derivative of H . I don’t seem
to have used the fact that f is strictly decreasing anywhere I can see.

B1 Is there an infinite sequence of real numbers a1, a2, a3, . . . such that

am1 + am2 + am3 + · · · = m

for every positive integer m?

Solution:
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No. The Cauchy-Schwarz inequality shows

m =

∣∣∣∣∣
∞∑
1

amj

∣∣∣∣∣ ≤
√√√√ ∞∑

1

a2lj

∞∑
1

a
2(m−l)
j =

√
2l(2m− 2l)

for all integers 1 ≤ l ≤ m− 1. For m = 4 and l = 1 we get

4 ≤
√

2(8− 2) =
√
12

which is false. So no such sequence exists.

B2 Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and
BC are integers, what is the smallest possible value of AB?
Solution:

The 3, 4, 5 triangle shows that 3 is possible. I claim 1 and 2 are not possible so the answer is 3. If 1 were
possible there would be an example with A = (0, 0) and B = (1, 0). Put C = (n,m+ 1). WIthout loss n > 0
and m ≥ 0 (by reflecting any triangle about the x axis if n < 0 and then about x = 1/2 if m < 0). We find
that AC2 = n2 + (m+ 1)2 while BC2 = n2 +m2. Let BC = l. Then l = BC < AC < AB +BC = l+ 1
which contradicts the assertion that AC is an integer. For AB = 2 we put, with no loss, B = (2, 0) and
C = (n, 1 + m) with n,m ≥ 0. Let BC = l. For m = 0 we also have AC = l and l2 = n2 + 1 which
requires two perfect squares to differ by 1. This gives n = 0 making the points collinear. For m ≥ 1 we must
have BC < AC < BC + 2. So if BC = l then AC = l + 1 and

n2 +m2 + 2m+ 1 = (l + 1)2

while

n2 +m2 − 2m+ 1 = l2.

Subtracting gives 2l + 1 = 4m. But 2l + 1 is odd while 4m is even. So the smallest possible value is 3.

B3 There are 2010 boxes labeled B1, B2, . . . , B2010, and 2010n balls have been distributed among them, for some positive
integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving
exactly i balls from box Bi into any one other box. For which values of n is it possible to reach the distribution with
exactly n balls in each box, regardless of the initial distribution of balls?
Solution:

If we start with fewer than i balls in box i for each i then no moves are possible. If we have fewer than∑2010
1 (i− 1) = 2009 · 2010/2 ≡ m balls then we can put 0 balls in box 1, 1 in box 2 and so on an use up all

the balls while ensuring that there are fewer than i balls in box i for every i. This means that n does not work
unless

2010n ≥ 2009 · 2010/2

or n ≥ 1005. Now suppose that n ≥ 1005. I claim that it is possible to put all the balls into box 1. If so then
they can clearly be redistributed 1 at a time to put exactly n in each box. Since the number of balls exceeds m
there is a box i > 1 with at least i balls in it. For each such box move batches of i balls to box 1 until there are
fewer than i balls in each box for i > 1. There are now at least 2 balls in box 1. Put balls one at a time from
box 1 into box 2 until there are an even number of balls in box 2. Then move them all, 2 at a time, to box 1;
this leaves box 2 empty. Either box 3 is empty or there are enough balls in box 1 to fill box 3 to a multiple of 3.
Move them all, 3 at a time, to box 1. Now boxes 2 and 3 are empty. Counting up the balls in boxes with i ≥ 4
shows that there are at least 3 balls in box 1 so we can move them to box 4 one at a time to get a multiple of 4
balls in box 4. Empty box 4 into box 1. Now suppose you have emptied boxes 2 through j − 1. The number of
balls in boxes j through 2010 is at most

2010∑
j

(i− 1) = m− j(j − 1)/2

so there are at least j(j − 1)/2 > j balls in box 1. We can then move balls to box j from box 1 to make
a multiple of j balls and then empty box j. This shows inductively that we may put all the balls into box 1.
Conclusion: we can reach the desired distribution for all n ≥ 1005.
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B4 Find all pairs of polynomials p(x) and q(x) with real coefficients for which

p(x)q(x+ 1)− p(x+ 1)q(x) = 1.

Solution:

The solution is that p and q must both be linear and, if p(x) = a+ bx and q(x) = c+ dx then

ad− bc = 1.

So we will prove this.
If p, q is any pair solving the problem then so are p, q + ap and p + aq, q for any constant a. Thus we may
assume that if there is any solution in which either polynomial has degree larger than 1 there is a solution in
which both have degree d > 1. Then write

p(x) =

d∑
0

ajx
j

and

q(x) =

d∑
0

bjx
j

with neither of ad or bd equal to 0. Then

p(x)q(x+ 1)− q(x)p(x+ 1) =

d∑
0

d∑
0

(ajbk − akbj)xj(x+ 1)k

=

d∑
0

d∑
0

(ajbk − akbj)
k∑

l=0

(
k

l

)
xj+l

=

2d∑
r=0

xr
d∑
0

d∑
0

k∑
l=0

(ajbk − akbj)
(
k

l

)
1(j + l = r)

≡
2d∑
r=0

crx
r

where

cr =

d∑
0

d∑
0

k∑
l=0

(ajbk − akbj)
(

k

r − j

)
and the binomial coefficient is 0 if either r − j < 0 or r − j > k. We note terms with j = k automatically
vanish and write

cr =
∑

0≤j<k≤d

(ajbk − akbj)
{(

k

r − j

)
−
(

j

r − k

)}
.

Any solution must have c2d = · · · = c1 = 0. Putting r = 2d we see both binomial coefficients vanish unless

2d− k ≤ j and 2d− j ≤ k.

These just reduce to j + k ≥ 2d which, for j < k ≤ d is impossible so c2d = 0. For r = 2d − 1 we find
j = d− 1 and k = d and the two binomial coefficients reduce to 1 so c2d−1 = 0 is automatic. For r = 2d− 2
we have the term j = d− 2, k = d for which(

k

r − j

)
=

(
d

d

)
= 1 while

(
j

r − k

)
=

(
d− 2

d− 2

)
= 1
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giving a 0 and the term j = d− 1, k = d for which(
k

r − j

)
=

(
d

d− 1

)
= d while

(
j

r − k

)
=

(
d− 1

d− 2

)
= d− 1

giving the requirement

(ad−1bd − adbd−1)(d− (d− 1)) = 0

This simplifies to

ad−1bd − adbd−1 = 0.

Notice that for d = 1 the binomial coefficient
(
d−1
d−2
)

is actually 0 and we do not deduce this last equation.
We now argue that ajbk − akbj = 0 for all 0 ≤ j < k ≤ d. If so then we have shown

p(x)q(x+ 1)− q(x)p(x+ 1) ≡ 0

and this is not a solution of our problem. In fact since bd 6= 0 and ad 6= 0 it is enough to do the case k = d.
Now we do induction on j starting at j = d − 1 which we have just done. Suppose we have established
ajbd − adbj = 0 for all j0 < j ≤ d− 1. Then for any pair j0 < j < k ≤ d− 1 we have

aj = bjad/bd and bk = akbd/ad

which multiply together to show

ajbk − akbj = 0

for all j0 < j < k ≤ d− 1. The formula for cr now simplifies to

cr =
∑

0≤j≤j0;j<k≤d

(ajbk − akbj)
{(

k

r − j

)
−
(

j

r − k

)}
.

Take r = d+ j0. The coefficient
(

k
d+j0−j

)
will be 0 unless

0 ≤ d+ j0 − j ≤ k ≤ d

giving j + k ≥ d+ j0. The coefficient
(

j
d+j0−k

)
will be 0 except in the same circumstances. But the restriction

in the sum defining cr now shows j + k ≤ d + j0 so we must have j = j0 and k = d. The corresponding
binomial coefficient difference becomes(

k

r − j

)
−
(

j

r − k

)
=

(
d

d

)
−
(
j0
j0

)
= 0.

So cd+jo = 0 is automatic.

Then take r = d− 1 + j0. The coefficient
(

k
d−1+j0−j

)
will be 0 unless

0 ≤ d− 1 + j0 − j ≤ k ≤ d

giving j + k ≥ d + j0 − 1. The coefficient
(

j
d−1+j0−k

)
will be 0 except in the same circumstances. But the

restriction in the sum defining cr now shows j + k ≤ d + j0 so there are the following terms to consider:
j = j0, k = d, j = j0 − 1, k = d and j = j0, k = d− 1. In the latter two cases the binomial coefficients both
simplify to 1. We are thus left with

0 = cd+j0−1 = (aj0bd − adbj0)
{(

d

d+ j0 − 1− j0

)
−
(

j0
d+ j + 0− 1− d

)}
which simplifies to

0 = cd+j0−1 = (aj0bd − adbj0)(d− j0)

It follows that aj0bd = adbj0 completing the induction.
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B5 Is there a strictly increasing function f : R→ R such that f ′(x) = f(f(x)) for all x?

Solution:

No. Since f is strictly increasing f ′ must be non-negative and strictly increasing. Thus f ′(0) > 0. If f(0) ≤ 0
then, since f is strictly increasing, we have f ′(0) = f(f(0)) ≤ f(0) ≤ 0 a contradiction. Thus f(0) > 0.
Next for x ≥ 0 we have

f(x+ 1) = f(x) +

∫ x+1

x

f ′(u)du

= f(x) +

∫ x+1

x

f(f(u))du

≥
∫ x+1

x

f(f(x))du

= f(f(x))

Since f is strictly increasing we deduce that for all x ≥ 0

f(x) ≤ x+ 1.

On the other hand limx→∞ f(x) =∞ because

f(x) = f(0) +

∫ x

0

f ′(u)du ≥ xf ′(0).

But then limx→∞ f ′(x) =∞ and so f ′(x) > 2 for all large enough x say x ≥ x0. For x > x0 we must have

f(x) ≥ f(x0) + 2(x− x0)

implying the contradiction

f(x0) + 2(x− x0) ≤ x+ 1

for all large x.

B6 Let A be an n× n matrix of real numbers for some n ≥ 1. For each positive integer k, let A[k] be the matrix obtained by
raising each entry to the kth power. Show that if Ak = A[k] for k = 1, 2, . . . , n+ 1, then Ak = A[k] for all k ≥ 1.

Solution:

Let

p(λ) = det(λI −A) = λn +

n−1∑
0

cjλj

be the characteristic polynomial of A. The Cayley-Hamilton theorem shows

0 = An +

n−1∑
0

cjA
j

Multiply by A to see

0 = An+1 +

n−1∑
0

cjA
j+1 = A[n+1] +

n−1∑
0

cjA
[j+1].

and for each pair i, l we therefore have

0 = An+1
il +

n−1∑
0

cjA
j+1
il .



9

We now prove

An+r = A[n+r]

by induction on r. It is given for r = 1. Assume it is established for all r < r0. Then multiplying the identity
above by Ar0−1 gives

0 = An+r0 +

n−1∑
0

cjA
j+r0 = An+r0 +

n−1∑
0

cjA
[j+r0].

On the other hand if we multiply the i, l identity by Ar0−1
il gives

0 = An+r0
il +

n−1∑
0

cjA
j+r0
il

which means

0 = A[n+r0] +

n−1∑
0

cjA
[j+r0].

Comparison the two identities shows

An+r0 = A[n+r0]

finishing the induction. Notice that we needed n+ 1 not n because of the intercept terms.


