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Al Given a positive integer n, what is the largest & such that the numbers 1,2, ..., n can be put into k boxes so that the sum
of the numbers in each box is the same? [When n = 8, the example {1, 2, 3,6}, {4, 8}, {5, 7} shows that the largest & is
at least 3.]

Solution:

The number k is impossible unless n(n + 1) /2, which is the sum of the n numbers, is divisible by k. Evidently
we must also have k < n for otherwise either a box would be empty or each would have one number in it
which would not solve the problem. If n is even then we make take k = n/2 by putting 2 numbers in each
box: {1,n},{2,n —1},---. If n = 2m + 1 is odd then we put n in a box and use the previous solution on the
numbers from 1 to 2m = n — 1. This gives us k = (n + 1)/2. If we try to use a larger k then the sum in each
box must be smaller than n so there is no place to put the number n! The solution is k = | (n + 1)/2| which is
n/2 for n even and (n + 1) /2 for n odd.

A2 Find all differentiable functions f : R — R such that

for all real numbers x and all positive integers n.

Solution:
Put © = 0 to discover that for all integers n > 0 we have
f(n) = f(0) +nf'(0)
which puts f(n) on the line with slope f'(0) and intercept f(0). We have

Flaot1) = fe+(n+1) = fle) = (fla+D) = f@)  m+Df(@)  [flz) (@),

n n n

So ' is periodic with period 1! Thus

/yy+1 f(x)dx = /01 f(z)dx

and
f(z+n) - f(z) =n / £ (u)du

is free of x. Thus f' is constant and | is a straight line. Every straight line function satisfies the condition so
the collection of all such f is just the collection of all straight line functions y = ax + b.

A3 Suppose that the function h : R? — R has continuous partial derivatives and satisfies the equation

oh oh

for some constants a, b. Prove that if there is a constant M such that |h(z,y)| < M forall (x,y) € R?, then h is identically
zero.

Solution:



Put
g(u) = h(au,bu + ¢)

and note that

dg oh oh
du u) = a%(x, y)|w:au,y:bu+c + b@(x, y)|w:au,y:bu+c = h(au, bu + C) = g(u)

—~

It follows that g(u) = dexp(u) which is bounded over all w if and only if d = 0. Thus if h is bounded then
h(au,bu + ¢) = 0 for all choices of c. This evidently implies h is identically 0. If a = 0 or b = 0 use
g(u) = h(z,bu) or g(u) = h(au,b) while for a = b = 0 we have h = 0 is given.

A4 Prove that for each positive integer n, the number 1010"" £ 101" 410" — 1 is not prime.

Solution:
Since 10 is congruent to -1 mod 11 we find that for even n
10" =1 mod 11
while if n is odd then
10" = -1 mod 11

All powers of 10 greater than I are even so if n is odd the sum given is congruent to 0 mod 11. Since the sum
is not 11 or 0 it is not prime. Now suppose n = p2™ where m > 0 and p is odd. We compute the residue class
of the given number modulo 102” . The last two terms are each congruent to -1. I claim the first two terms are
congruent to 1 which would finish the problem. Each of those terms has the form 10" and it suffices to show
that the power r is divisible by 2™t for in that case

10" = (102")27/™ = ((=1)?)/2""" mod 102" + 1.
In the case of the second term
r=10" = 107"
which is divisible by 2™t provided m + 1 < p2™ which is true for all m > 0 and all odd positive integers p.

A5 Let G be a group, with operation *. Suppose that

(i) G is a subset of R3 (but * need not be related to addition of vectors);

(ii) For each a,b € G, eithera x b = a* b ora x b = 0 (or both), where x is the usual cross product in R3.
Prove thata x b =0 forall a,b € G.
Solution:

First pick any a and b both in G and not parallel (that is with non-zero cross product). (If no such pair exists
we are done.) Then

c=axb#0

so ¢ = a x b is in the group. These three vectors are linearly independent. Now consider the identity 1. We
cannot have 1 perpendicular to all three of the previous vectors unless 1 = 0. If 1 is not O then its cross-product
with at least one of the vectors is not 0 so suppose without loss thata x 1 # 0. Thena x 1 = ax 1 = a which
is not perpendicular to a — a contradiction. It follows that the group identity is the 0 vector. Now consider, for
any non-zero X in G,

xxx =1

where the inverse is the group inverse. Note that x~ ! # 1 = 0 for otherwise we get x = 1 = 0. We then have
either



or
-1 _
xxx =0

so either way

xxx t=xxx"1=0.

It follows that x 1 is parallel to x. Now consider

b=(a!'xa)xb

-1 (axb)
-1

a
a * C
a

Iye.

We see that b is perpendicular to c and to a~" and so also to a. Thus a, b and ¢ are mutually perpendicular.
Now suppose x and 'y are two parallel non-zero vectors in G. I claim x xy is parallel to x and y. If not then

y=x‘1>c<Xﬂ|<y:x_1 XX*xy
is perpendicular to x~ ' which is parallel to y generating a contradiction. Now consider
x=ax*xbxc

On the one hand a x b is parallel to c so x is parallel to c. On the other hand b x c is perpendicular to both
b and c so it is parallel to a by the mutual perpendicularity. Thus X is the product of two vectors parallel to

a and is itself parallel to a. Since a and c are perpendicular any vector parallel to both must be the 0 vector.
That is

x =1
But then the same argument applies for any order of the three vectors and we deduce
asbxc=1=bx*xax*c
Cancel the c to find
c=axb=axb=bxa=bxa=-c

which is a contradiction! We are done.

A6 Let f : [0,00) — R be a strictly decreasing continuous function such that lim, .., f(z) = 0. Prove that
I % dz diverges.
Solution:
Define

Note that

and that
flz+1) <H(z) < f().
We are studying the integral

_ [T @)= fetrl) (7 -H(2) H(z)
I_/o f(x) “= ) T @) )




I claim that if the integral converges then

fim L&D
z—00 f(;c)
For if not then there is a § > 0 and a sequence x.,, — oo such that
nt+1

By passing to a subsequence we may assume x,, + 2 < x,1 for all n. Note that

/I"Hf(y)—f(y“)dy:/x” f(y)—fwdw/““f(y)—fwdy

o1 f(y) el f(y) . f(y)

T fly) = fly+1) o fly+ 1) = fly+2)
‘/ 7(v) d“/mnl D
o fly) - fly+1) o fly+ 1) - fly+2)
Z/ ) dy*/w ) W

(" fy) - fly+2)
‘/%_1 o ¥

[T fy+2)
=1 /.%—1 fy) i’
21 [0 TRy
>1—(1-94)

= .

Summing over an infinite number of n shows I = co. So we now assume that

lim 7f(1: +1)
2@

Then there is a T such that for all x > T we have

fle+1)/f(x) =1/2.

=1

Then for all x > T we have

flx+1)

i < H@

and so

< fw) -yl [T @) HE)
I>/; 7(s) dy‘/T Hw) fla) "
1 [* —H'(2) H(z)

2 )r H(z) f(x)
1

= 5 {~log(H())} [ = oo.

A couple of notes on this. First, I used continuity in asserting the formula for the derivative of H. I don’t seem
to have used the fact that f is strictly decreasing anywhere I can see.

B1 Is there an infinite sequence of real numbers a1, as, as, ... such that
al’ + a3 +a3' +---=m

for every positive integer m?

Solution:



No. The Cauchy-Schwarz inequality shows

o0

>
1

for all integers 1 <1 <m —1. Form =4 andl =1 we get

4<4/2(8-2)=V12

m =

- - 2(m—1
< Za?lZaj( ) = \/21(2m — 20)
1 1

which is false. So no such sequence exists.

B2 Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and
BC are integers, what is the smallest possible value of AB?

Solution:

The 3, 4, 5 triangle shows that 3 is possible. I claim 1 and 2 are not possible so the answer is 3. If 1 were
possible there would be an example with A = (0,0) and B = (1,0). Put C = (n,m + 1). Without loss n > 0
and m > 0 (by reflecting any triangle about the x axis if n < 0 and then about x = 1/2 if m < 0). We find
that AC? = n? + (m + 1)% while BC? =n? + m?. Let BC =1. Thenl = BC < AC < AB+ BC =1+1
which contradicts the assertion that AC' is an integer. For AB = 2 we put, with no loss, B = (2,0) and
C = (n,1+m) withn,m > 0. Let BC = I. For m = 0 we also have AC = | and I> = n? + 1 which
requires two perfect squares to differ by 1. This gives n = 0 making the points collinear. For m > 1 we must
have BC < AC < BC + 2. Soif BC =lthen AC =1+ 1and

n*4+m?+2m+1=(1+1)>
while
n?4+m?—2m+1=10%
Subtracting gives 21l + 1 = 4m. But 2l + 1 is odd while 4m is even. So the smallest possible value is 3.

B3 There are 2010 boxes labeled B, Bo, ..., Bag1g, and 2010n balls have been distributed among them, for some positive
integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an ¢ and moving
exactly 1 balls from box B; into any one other box. For which values of n is it possible to reach the distribution with
exactly n balls in each box, regardless of the initial distribution of balls?

Solution:

If we start with fewer than i balls in box 1 for each i then no moves are possible. If we have fewer than
?Olo(i — 1) = 2009 - 2010/2 = m balls then we can put 0 balls in box 1, 1 in box 2 and so on an use up all
the balls while ensuring that there are fewer than i balls in box i for every i. This means that n does not work

unless
2010n > 2009 - 2010/2

orn > 1005. Now suppose that n > 1005. I claim that it is possible to put all the balls into box 1. If so then
they can clearly be redistributed 1 at a time to put exactly n in each box. Since the number of balls exceeds m
there is a box © > 1 with at least i balls in it. For each such box move batches of i balls to box I until there are
fewer than i balls in each box for i > 1. There are now at least 2 balls in box 1. Put balls one at a time from
box 1 into box 2 until there are an even number of balls in box 2. Then move them all, 2 at a time, to box I;
this leaves box 2 empty. Either box 3 is empty or there are enough balls in box 1 to fill box 3 to a multiple of 3.
Move them all, 3 at a time, to box 1. Now boxes 2 and 3 are empty. Counting up the balls in boxes with i > 4
shows that there are at least 3 balls in box 1 so we can move them to box 4 one at a time to get a multiple of 4
balls in box 4. Empty box 4 into box 1. Now suppose you have emptied boxes 2 through j — 1. The number of
balls in boxes j through 2010 is at most

2010
dli-1)=m—j@-1)/2
J
so there are at least j(j — 1)/2 > j balls in box 1. We can then move balls to box j from box 1 to make

a multiple of j balls and then empty box j. This shows inductively that we may put all the balls into box 1.
Conclusion: we can reach the desired distribution for all n > 1005.



B4 Find all pairs of polynomials p(z) and g(x) with real coefficients for which
p(@)q(z +1) — p(z + 1)g(z) = 1.
Solution:
The solution is that p and q must both be linear and, if p(x) = a + bx and q(x) = ¢ + dx then
ad — bc = 1.
So we will prove this.
If p, q is any pair solving the problem then so are p,q + ap and p + aq, q for any constant a. Thus we may

assume that if there is any solution in which either polynomial has degree larger than I there is a solution in
which both have degree d > 1. Then write

d
x) = Z a;x’
0

and

d
x) = Z bz
0

with neither of aq or by equal to 0. Then

d
p(x)g(z +1) = q(z)p(z + 1) > (ajbe — agbj)a? (@ + 1)*
0

d ko k
Zank agb;) lz(;(l)aﬂ“

0
d d k
= xrzzz a;by — arb;) (l) (G+l=r)
r=0 0 0 I=0
2d
= crx”
r=0

where

cr_z::zzzzaj by — axbj) ( fj)

and the binomial coefficient is 0 if either r — 5 < 0 or v — j > k. We note terms with j = k automatically

vanish and write
k J
e o) ()
0<j<k<d

Any solution must have coq = - - - = ¢1 = 0. Putting r = 2d we see both binomial coefficients vanish unless
2d —k<jand2d —j < k.

These just reduce to j + k > 2d which, for j < k < d is impossible so coq = 0. Forr = 2d — 1 we find
j =d—1andk = d and the two binomial coefficients reduce to 1 so coq_1 = 0 is automatic. For r = 2d — 2
we have the term j = d — 2, k = d for which

(5= (0) = (7,) = (373) =



giving a 0 and the term j = d — 1, k = d for which
k d j d—1
— — / = == —1
(55) = (a2 o 2) = (aa) =

(ad_lbd — adbd_l)(d - (d - 1)) =0

giving the requirement

This simplifies to
ag—1bg — agbg—1 = 0.

Notice that for d = 1 the binomial coefficient (j:;) is actually 0 and we do not deduce this last equation.

We now argue that a;by, — arb; = 0 for all 0 < j < k < d. If so then we have shown
p(x)g(z +1) —g(x)p(z +1) =0

and this is not a solution of our problem. In fact since by # 0 and aq # 0 it is enough to do the case k = d.
Now we do induction on j starting at j = d — 1 which we have just done. Suppose we have established
ajbqg — aqgb; = 0 for all jo < j < d — 1. Then for any pair jo < j < k < d — 1 we have

a; = bjad/bd and bk = akbd/ad
which multiply together to show
ajbk — akbj =0

forall jo < j < k < d— 1. The formula for c, now simplifies to

k J
o= 3 e {( )= ( 7))
0<j<jo;j<k<d

Take r = d + jo. The coefficient (dﬂ]‘z 7j) will be 0 unless
0<d+jo—j<k<d

giving 7 + k > d + jo. The coefficient ( 4 +j];>— k) will be 0 except in the same circumstances. But the restriction
in the sum defining c, now shows j + k < d + jo so we must have j = jo and k = d. The corresponding
binomial coefficient difference becomes

BN (7 N (4 _ () _g
r—j r—k d Jo '
So cq4j, = 0 is automatic.

Then take r = d — 1 + jo. The coefficient ( will be 0 unless

k
d71+j07j)
0<d—-1+jo—j<k<d

giving j + k > d+ jo — 1. The coefficient (d_l_gjo_k) will be 0 except in the same circumstances. But the
restriction in the sum defining c, now shows j + k < d + jo so there are the following terms to consider:
j=Jok=d j=jo—1,k=dandj = jo,k = d— 1. In the latter two cases the binomial coefficients both
simplify to 1. We are thus left with

d Jo
0= Cdrjo—1 = (aa‘obd_“dbjo){(d+j01jo> - (d+j+01d>}

which simplifies to
0 = catjo—1 = (ajoba — aabj,)(d — jo)

It follows that a;,bq = aqbj;, completing the induction.



B5 Is there a strictly increasing function f : R — R such that f/(z) = f(f(«)) for all z?
Solution:

No. Since f is strictly increasing f’ must be non-negative and strictly increasing. Thus f'(0) > 0. If £(0)

then, since f is strictly increasing, we have f'(0) = f(f(0)) < f(0) < 0 a contradiction. Thus f(0)
Next for x > 0 we have

<0
> 0.

= f(f(z))
Since f is strictly increasing we deduce that for all © > 0
flxz) <z +1

On the other hand lim,_,, f(x) = oo because

f@) = 10)+ [ i > 20).
But then lim,_, o f'(x) = oo and so f'(x) > 2 for all large enough x say x > xo. For © > o we must have
f(@) = f(x0) + 2(x — o)
implying the contradiction
flxo)+2(x —z) <z +1
for all large x.

B6 Let A be an n x n matrix of real numbers for some n > 1. For each positive integer k, let A¥! be the matrix obtained by
raising each entry to the k" power. Show that if A* = A fork =1,2,...,n + 1, then A* = A forall k > 1.

Solution:

Let

n—1

p(A) =det(AI — A) = A"+ " ¢;
0

be the characteristic polynomial of A. The Cayley-Hamilton theorem shows

n—1

0=A" +'§£:ijw
0

Multiply by A to see
n—1 n—1
0= A" 3" At = Al 5 ¢ AU
0 0

and for each pair i, we therefore have

n—1
_ pAn+l AJ+L
0=Ap 4> Al
0



We now prove

An+r _ A[n+r]
by induction on r. It is given for r = 1. Assume it is established for all r < ro. Then multiplying the identity
above by A7~ gives

n—1 n—1

0= A"tro 4 Z CjAjJrro — AntTo 4 Z CjA[j+TO].
0 0

On the other hand if we multiply the i, identity by A:lrl gives
n—1

_ An+ro AJtTO
0= A7+ e A
0

which means

n—1

0= Alvtrol 3" ¢, Aol
0

Comparison the two identities shows

Antro — glntro]

finishing the induction. Notice that we needed n + 1 not n because of the intercept terms.



