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ABSTRACT

Tests of fit based on correlation-type statistics are investigated for the exponential, extreme-value,
and logistic distributions. The statistics are shown to be asymptotically normal at the rate log’ n. The
result is used to show that such tests have 0 asymptotic relative efficiency.

RESUME

On examine le comportement des tests d’ajustement basés sur des statistiques ayant la forme d’un
coefficient de corrélation lorsque les observations sont régies tour a tour par la loi exponentielle, la
loi des valeurs extrémes et la loi logistique. On montre que ces statistiques convergent en loi vers
une normale a une vitesse de 1’ordre de log (n). Ce résultat permet de conclure que les tests
correspondants possédent une efficacité asymptotique relative qui est nulle.

1. INTRODUCTION

Suppose X, =- - - = X, are the order statistics for a sample from the distribution G. In
order to test the hypothesis, Hy, that G(x) = F{(x — )/} for some specified distribution
F with unknown location a and scale B, the order statistics are often plotted against their
expected values under F or against an approximation to these values. If W, = (X; — a)/B,
then under H, the X; follow a linear model X; = a + Bm; + €;, where m; = €(W,) and
the €; have mean O but are generally correlated. Thus formal tests of H, are based on
assessing the linearity of the plot. A natural test statistic is R(X, m), the Pearson cor-
relation coefficient. See Stephens and D’Agostino (1986) for a discussion of this and
related tests.

When F is the standard normal distribution, the resulting test is powerful; see Stephens
and D’Agostino (1986). In this case 1 — R? is the Shapiro-Francia statistic. Fotopolous,
Leslie, and Stephens (1984) have shown that this statistic is equivalent to the statistic of
De Wet and Venter (1972). Leslie et al. (1986) have shown that R*(X, m) is asymptotically
equivalent to the Shapiro-Wilk statistic.

R? and analogous statistics have been suggested by Gerlach (1976) for the extreme-value
distribution and by Smith and Bain (1976) for the exponential distribution. For the
exponential distribution Spinelli and Stephens (1983) have shown that such statistics have
much lower Monte Carlo powers than empirical distribution-function techniques. In this
note we establish that for the exponential, logistic, and extreme-value distributions the
tests have asymptotic power equal to their level against a wide variety of contiguous
alternatives. In other words, R(X,m) has 0 asymptotic efficiency relative to standard
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goodness-of-fit tests such as the usual empirical distribution-function techniques.
In Section 2 we establish that statistics of the form
n A a 2
T,(&,B,B) = EM—ZM (1.1)
| B
are asymptotically normally distributed at the rate log%n provided &, ﬁ, and B are
n2-consistent estimates. The statistic n{l — R*(X, m)} has this form with &, B the usual
least-squares estimates, and 32 = =(X; — X)?/n. The results extend to other null hy-
potheses where a or B or both are known, on replacing estimates with the known values.
The proofs show that T, is asymptotically equivalent to a statistic based only on the
spacings between the tail order statistics from an exponential sample. We end Section 2
with a brief discussion of the effect of using approximations to the m;.

In Section 3 we study the behaviour of T, on sequences of contiguous alternatives by
finding conditions under which T, is asymptotically independent of the log-likelihood
ratio. The conditions show that statistics of the form T, are unable to separate contiguous
Weibull or gamma alternatives from exponential null hypotheses, log-generalized gamma
alternatives from extreme-value null hypotheses, or log-generalized logistic alternatives
from logistic null hypotheses.

2. ASYMPTOTIC NULL DISTRIBUTIONS

We will need the following notation. By P and € we denote probability and expectation
under H,. For notational convenience we take a« = 0 and B = 1; for many estimators T
is actually location and scale invariant. For i = 1,...,n set ¥; = —log{l — F(X))},
Yo=0,andD;=(n— i+ 1)(Y;,— Y;_)).OnH,, Y,,...,Y, are order statistics from the
exponential distribution and D, ...,D, are independent standard exponentials. Let
k = [n/logn], and set

Dy_ivy — D(Dy—js1 — 1)
max (i, j)

Qn=2{ ;lsi,jsk}. .1

LetY* = —log F(X,_;+1). Note that YT, .. ., Y, have the joint distributionof Y, . . ., ¥,.
Define D and Q;F from the Y analogously to D; and Q,,, so that Q, and Q' are identically
distributed. Put p; = €(Y;) = Z,_,,,1/j. Moment calculations show

(Y, — pi)’ - Q.

On

0 in P-probability 2.2)

where 03 = 4logn. Since Q, is a function of D,_;.,,...,D, and Q,’," is a function of
Y:,...,Y, we see that Q,’,l= and Q, are independent. It follows from the work of Lockhart
(1985) that {(Q5 — w.)/0,, (Qn — pa)/0,} is asymptotically standard bivariate normal,
where p, = log n.

We are now able to give the asymptotic behaviour of T, when F is exponential,
extreme-value, or logistic.

PROPOSI'HO!I 1. Suppose that, under P, n¥é and n%(é — 1) are bounded in probability and
that (log n)i( — 1) = 0 in probability.

@ IfF(x)=1— e forx>0orF(x) = exp{—e ™"}, then
) (T, — Q.)/c, — 0 in P-probability, and
) (T, — w,)/o, is asymptotically standard normal.
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(b)y IfF(x) =1/ + e7™), then
) (T, — Q, — QF)/o,— 0 in P-probability and
?) (T, — 2;1,,,)/(2%0,,) is asymptotically standard normal.

The proposition is proved for the extreme-value and logistic distributions in the
Appendix.

Exact values of the m; are not always used in plots or in the statistics used for formal
testing. In particular, F~'{i/(n + 1)} or F"*{(i — 1/2)/n} or Blom-type formulas are often
used in place of the m;. Let h; denote some approximation to the m;. For most approxi-
mations m; — h; = O(1/n) for i/n bounded away from 0O or 1. The approximation is
generally much worse for i near n or 1. For the distributions considered here the present
theory shows that is is precisely these i which are important. However, the techniques used
in proving the proposition can be used to show that the conclusions of the proposition
remain valid for a variety of standard approximations.

Consider, for example, the exponential distribution, and take h;, = F~ '{i/(n + D1)}.
Let S, be defined by (1.1) with m; replaced by h;. The inequality »; = m; < h;,, and
direct variance calculations can be used to show that {7,(0,1,1) — §,(0, 1, 1)}/o, tends
to 0 in probability. Arguments similar to those given in the appendix establish that
Proposition 1 is valid with S, replacing T,.

3. CONTIGUOUS ALTERNATIVES

Now suppose that F, is a sequence of alternative distributions contiguous to F. Let
f» and f be the corresponding densities, and let A ,,(x) = log f,(x) — log f(x) with the usual
conventions concerning ©. By P, and €, we denote probability and expectation under F,
for samples of size n. Contiguity means that statement (1) of (a) or (b) of Proposition 1
is valid under P,. The log-likelihood ratio is A, = Z \,(X)).

We need the following property of contiguity. Let T, be a sequence of statistics
converging in distribution to G under P. Suppose there is a sequence of random variables
L, such that A, — L, tends to O in P-probability and such that L, and 7, are independent
under P. Then T, converges in distribution to G under P,.

Consider first the exponential and extreme-value distributions; in this case the
statistic T, of this paper is asymptotically equivalent to Q,, which is determined by
D, +,...,D,. To apply the proposition it suffices to prove that A, is asymptotically
equivalent to a function of D,,...,D,_; or equivalently to a function of X,, ..., X, ..
In the logistic case we would need to show that A, is asymptotically equivalent to a
function of Dy, ,...,D,_,or D{,,,...,D¥ ,. We illustrate with several examples.

EXAMPLE 1. Let F be Ithe exponential distribution, and F, be the Gamma distribution
with shape 1 + +vy/n2. Then A\, (x) = (1(logx)/n2 - logl'(l + 'y/n) Under P,
logX,,...,logX, are extreme-value order statistics. Take
2
1/’

_ 3 *log<X) YEn e,
- nlogF(l +
nl

1
n2 n?

where the m; are those of the extreme-value distribution, and use Lemma 1(c) of the
appendix to see that (T, — w,)/o, is asymptotically standard normal under this sequence
of alternatives. Since vy is arbitrary, the asymptotic relative efficiency of T, is 0.

EXAMPLE 2. Let F be the extreme-value distribution, and let F be the log- generahzed
gamma distribution whose density is f,(x) = exp{—(1 — 6)/n > — e} /T — B/n ).
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Then A\ ,(x) = Sx/n% - log{l'(1 — S/n%)}. Take

82'1'_kxi O3, kv
= + :

- nlogr(l - -8—1)

1
nf nf n?

Again the m; are those of extreme-value distribution and Lemma 1(c) establishes that

T, has 0 asymptotic relative efficiency.

ExaMPLE 3. Let F be the logistic distribution, and let F, be the generalized logistic

distribution whose density is f,(x) = (1 — 8/nd)e™ /(1 + e¥)*~ 5/”2 Then A\, (x) =
log(1 — 6/n2) + dlog(l + e"")/nz and

5 r!
A,, = nlog(l - _1> + 82 -
nz nz
Take
3=, iDf
n = “l' + nlog(l - %) + 28—lk
n? n? n?

In general, for the exponential and extreme-value distributions, the statistics T, will
have 0 asymptotic relative efficiency against any sequence of contiguous alternatives for
which the extreme order statistics X, _;+1, . . . , X, do not contribute asymptotically to the
variance of A,. (The situation for the logistic distribution is more complicated, and we will
not consider that case here.) We have not been able to find good general conditions under
which this holds; we present one approach which may help.

Suppose that X, . . ., X, are the order statistics for the sample U, ..., U,; that is, the
U, are independent and identically distributed according to F. We will try to approximate
2 A (Xn i+ I) b)’

A, = 2 M(UNnF(U) > n — k}
1

and then use the central limit theorem to control the variability of the latter sum. Define
M(M) = sup{|\,(0)]:[nF (x) = (n — k)| =< MKk},

PROPOSITION 2. Let F, be a sequence of contiguous alternatives. Assume that nin L(UD
is uniformly square integrable under P and that &, B and B satisfy the hypotheses
of Proposition 1. Assume that v,(M) is 0[{(logn)/n}2] Then the conclusions of
Proposition 1 remain valid under F,.

EXAMPLE 4. Take F to be the exponential distribution and F, to be the Weibull distribution
with shape parameter 1 + S/n%. Proposition 2 can be applied.

APPENDIX. PROOFS OF THE PROPOSITIONS

Proof of Proposition 1. F(x) = exp(—e™).
Letj n — i + 1 define j in terms of i. Define Z; = Y; — X,. Let ¢, = €(Z;). Write
-0,=3¢ o Ri, where
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> (Yi—p) = Qn

R, =
n—k+1
n k
Ri= 2 (Z-q)l=2Z—q)
n—k+1 1
n k
Ry=-2 2 (Yi—p)Z —q)=-22—p)Z - q),

n—k+1 1

n—k
Ry = 2 X - mi)z,

k+1
k

R, = 2 X — mi)29
1

Ry = T.(&,B,1) — T,0,1,1),
Rs = T,(&,B,B) — T B, 1.
LEMMA 1. Fori,l=1,...,n,
(@ 0<¥(Z)=q<EXY)/2=p/2=C,_+1/D/2,

(b) Var(Z,) < Var(Y) = 2::—i+|1/12,
) 0< Cov(Z,,Z)) < Cov(Y;,Y,) = Var(Y)) fori =< L.

LEMMA 2. There are constants ¢ > 0, a > 0, and 0 < s < 1 such that for all n > 0 and
all i < ns we have

(a) —logp; < m; < —logp; + Var(Y;) + cexp(—an%),
(b) E(X?) < log?p; + ce™, .
©) Var(X)) < 210gp,Var(Y,~)/pf + clog p,exp(—an?).

Direct moment calculations show Ry/a, — 0 in probability. Use Lemma 1(b) to check
that €(R,) = o(1) and hence R, tends to 0 in probability. Moreover,
1
2

k k
R <2(S (% - p2 = @ - a7)
1 1

Since

%{EZ—IH»I(): - Pj)z}
Un

is bounded and R, tends to 0 in probability, we see that R,/o, tends to 0 in probability.
Use Lemma 1(b) and the inequality (x + y)* < 2(x* + y?) to check

n—k n—k

€(R;) <2 2 {Var(Y) + Var(Z)} < 4 X Var(Y),

k+1 k+1
which is of the order loglogn by an integral comparison. Hence R;/a, tends to O in
probability. Use Lemma 2(c) and integral comparison to check that €(R,)/a, tends to 0.
Use 2m;/n = y = [ xF(dx) to write
2

n

Rs=né? + n(p — 1y +2yna@ — 1) — 2n&(X — y) — 2B — DEm(X: — m)).

It suffices to show that R; is bounded in probability; this will follow from the hypotheses
of the theorem if we check =m’/n = O(1) and Em,(X;, — m)) = Op(n%). First,
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Sml/n < Z€X?)/n = [x*F(dx). Finally,
Var{Em (X, — m)} < 4[(Var{Zp.(Y; - p)} + Var{Zq,(Y; — p:)}
+ Var{2pd(Z; — q))} + Var{2q;(Z; - g)}],
which, using Lemma 1(a), (c), is bounded by
8[Var{Zp.(Y; — p)} + Var{Zp;(Y: — p)}.

The latter quantity is O(n) by direct calculation.
Having established that R;/d, — 0 in probability for i = 0,...,5, we see that
{T,(&, B, 1)-p,}/0, is bounded in probability. Then
& _ (Tn(&’é9 l) - p‘n +_(I£)l - éz
o, o, 4) @
which tends to 0 in probability by the hypothesis on 8. Q.E.D.
Proof of Proposition 1. F(x) = 1/(1 + 7).

We may write X; = Y, — Y}". Write T, — QF — 0, = ESRi, where Ry, R5, Rs, and R,
are the same as in the extreme-value case and

R,

k
> (YF - py,
1

k
R, = =22 (Y} — p)(¥} - p),
1

and
k
R,=2 (X;— m) — QF.
1

Arguments similar to, but simpler than, those given for the extreme-value distribution
show that R;,/o, — 0 in probability for i # 4. By symmetry R,/c, has the same as
(Ry + R, + Ry)/0,; Ry/0, then tends to O in probability. Q.E.D.

Proof of Lemma 1. Let &(y) = log{y/(1 — e™)}. Then Z, = &(Y}"). Statement (a) follows
from the inequality 0 < &(y) < y/2. To prove (b) and (c) write, for i </,

Cov(YF,Y]) = Cov(YF, Y] — Z) + Cov(Y} — Z,,Z)) + Cov(Z,,Z).

Each term on the right-hand side of this equation is positive; we prove this only for the
first. Let

ny) =€y + Y - ¥ — oy + Y - Y}
Condition on Y;* to see that
Cov (Y, Y} — Z)) = Cov{Y} , n(Y}")}

This is positive, since n(y) is an increasing function of y. Similar arguments work for the
other terms. Q.E.D.

Proof of Lemma 2. The first inequality in (a) is just Jensen’s inequality applied to the
relation X; = —log Yj". Statement (c) is an immediate consequence of (a) and (b). The
density of Y} is

gy) =1 —e?)" e™B(i,n—i+ 1),
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where B(x,y) = I'(x + y)/{T'(x)['(y)}. Temporarily letting p = p;, define {(y) =
logp + (y — p)/p — (y — p)*/p*. Note that {(y) < logy for y = p/2 and {(y) < logp
for y < p/2. Thus

-m; = f mé(y)g(y)dy + f {logy — L(y)}g(y)dy
0 0

Var(Y})
> logp — —— — I, — log(p)L,
14
where
p/2
I = fo {~(logy)g(y)}dy
and

p/2

I, = g(y)dy.

0

Now {—(logy)(1 — e™)} is positive only on (0, 1), where it is bounded by 1. A change
of variables then shows that

1
I, =

W' —w) " 'B(i,n— i+ 1)du
1/e
1
=< (1 —w)" "'B(i,n—i+ du
1/e

(=Y B(i,n—i+1)
= — )

The latter is a monotone increasing function of i for i < n/2. Hence for each s < 3
I, < exp{—cn(l — s)}B(ns,n — ns + 1),

where ¢ = —log(1 — e"). Use Stirling’s formula to show that for some s this decreases
geometrically fast.

An integral comparison shows that

i
<p; <l i
T P ogt(i,n)

—log

where t(i,n) = (i — %)/(n + %). A change of variables shows that
L <{l = 8@,n)}" " 'Bi,n — i+ 1).
Let 8(x) = {1 — £i(x,n)}" **'B(x,n — x + 1). Choose s so small that
(1 — w)log(l — u?) — ulogu — (1 — u)log(l — u) < 0
forall 0 <u <s. Fix 0 <a <27 Use Stirling’s formula to show that

log d(x,
og(x)<

1
n2

for any sequence x, such that 1 < x, < ns. Statement (a) follows.
The function log?(v) is concave on (e, ®); by Jensen’s inequality

lim sup

€(X7) < log*(p — I,) + I,
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where

= Leyg(y)dy

and

= [og e a.

Arguments similar to that given for I, show that both /; and /, decrease uniformly
geometrically fast. Q.E.D.

Proof of Proposition 2.

LEMMA 3. Suppose 1,(M) = o[{(logn)/(n + 1)}%]for each M. Then |2, _,, A, (X)) —
A,| = 0 in P-probability.

Since the sequence n%)\,,(U,) is uniformly square integrable under P, a variance
calculation shows A, — €(A,) tends to 0 in P-probability, establishing the proposi-
tion. Q.E.D.

Proof of Lemma 3. The number of U; such that nF(U;) > n — k + M is bmomlally
distributed with mean asymptotic to k and standard deviation asymptotic to k*. Hence if
M(n) is any sequence tending to o, then with probability approaching 1 we have

> M(X)| < B.M), 3.1)

n—k+1

where B (M) = S|INJUD|H|nF(U) — (n — k)| < Mk2} For any fixed M, é{B,(M)}
=n,M )Mk2 This tends to O for each fixed M by assumption. There is thus a sequence
M (n) tending to o for which this conclusion continues to hold. Markov’s inequality and
(3.1) establish the lemma. Q.E.D.
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