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Abstract: Choulakian, Lockhart & Stephens (1994) proposed Cramér–von Mises statistics for testing fit
to a fully specified discrete distribution. The authors give slightly modified definitions for these statistics
and determine their asymptotic behaviour in the case when unknown parameters in the distribution must be
estimated from the sample data. They also present two examples of applications.

Statistiques de Cramér–von Mises pour des lois discrètes
dont les paramètres sont inconnus
Résuḿe : Choulakian, Lockhart & Stephens (1994) ont proposé des statistiques de Cramér–von Mises
permettant de tester l’adéquation d’une loi discrète compl̀etement sṕecifiée. Les auteurs donnent des défi-
nitions ĺeg̀erement modifíees de ces statistiques et en déterminent le comportement asymptotique dans le
cas òu certains param̀etres de la loi doivent̂etre estiḿesà partir de donńees. Ils pŕesentent en outre deux
exemples d’application.

1. INTRODUCTION

In Choulakian, Lockhart & Stephens (1994), Cramér–von Mises statisticsW 2, U2 andA2 were
defined for testing a discrete distribution. Asymptotic theory was given for the case where the
distribution tested was fully specified, and the tests for a discrete uniform distribution withk
cells were discussed in detail. In this paper we modify the definitions slightly to allow for the
same values of the statistics to be obtained if the cell orderis completely reversed. This does not
affect the results in Choulakian, Lockhart & Stephens (1994).

More importantly, we also add the asymptotic theory for the case when parameters of the
tested distribution must be estimated from the sample data.The theory has in fact been used for
several special cases: testing the Poisson distribution (Spinelli & Stephens 1997) and testing the
exponential distribution with grouped data (Spinelli 2001).

Consider a discrete distribution withk cells labelled1, . . . , k, and with probabilitypi of
falling into cell i. SupposeN independent observations are given; letoi be the observed num-
ber of observations andei = Npi be the expected number in celli. Let Sj =

∑j
i=1

oi and
Tj =

∑j
i=1

ei. ThenSj/N andHj = Tj/N are the cumulated histograms of observed and
expected values and correspond to the empirical distribution functionFN (x) and the cumulative
distribution functionF (x) for continuous distributions. SupposeZj = Sj − Tj , j = 1, . . . , k;
the weighted mean of theZi is Z̄ =

∑k
j=1

Zjtj , wheretj = (pj + pj+1)/2, with pk+1 = p1.
The modified Craḿer–von Mises statistics are then defined as follows:

W 2
d = N−1

k∑

j=1

Z2
j tj ;

U2
d = N−1

k∑

j=1

(Zj − Z̄)2tj ;

A2
d = N−1

k∑

j=1

Z2
j tj/{Hj(1 − Hj)}.
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Note thatZk = 0 in these summations, so that the last term inW 2
d is zero. The last term inA2

d is
of the form0/0, and is set equal to zero.

The well-known Pearson chi-squared statistic is

X2 =
k∑

i=1

(oi − ei)
2/ei.

Statistics corresponding to the Kolmogorov–Smirnov statistics for continuous observations are

D+

d = max
j

(Zj)/
√

N ,

D−

d = max
j

(−Zj)/
√

N ,

Dd = max
j

|Zj |/
√

N .

A feature of these statistics is that the Cramér–von Mises and Kolmogorov–Smirnov statistics
take into account the order of the cells in contrast to the PearsonX2 statistic. In Choulakian,
Lockhart & Stephens (1994),pj was used instead oftj in these definitions; as stated above,
the results in that paper still hold with the change in weights, since the concern was with the
uniform distribution where alltj = pj = 1/k. However, the new definitions ensure that in a
more general pattern of cell probabilities, if the cells arecompletely reversed in order, the values
of the statistics are unaltered. This would seem to be a desirable quality; for instance, in testing
the binomial distribution, where one statistician might cumulate the successes, and another the
failures, or in a test involving categorical data such as thetones of a photograph, light to dark, or
vice versa.

The statisticU2
d is intended for use with a discrete distribution around a circle; the other

statistics will change their values with different choicesof origin, butU2
d is unchanged; this is

why pk+1 is defined to bep1.
The above definitions can be put into matrix notation. Let a superscript⊤, e. g.,Z⊤, denote

the transpose of a vector or matrix. LetI be thek × k identity matrix, and letp⊤ be the1 × k
vector (p1, . . . , pk). SupposeD is thek × k diagonal matrix whosejth diagonal entry ispj ,
j = 1, . . . , k and letE be the diagonal matrix with diagonal entriestj , andK be the diagonal
matrix whose(j, j)th element is1/{Hj(1 − Hj)}, j = 1, . . . , k − 1 andKkk = 0. Let oi

andei be arranged into column vectorso, e (so that, for example, thejth component ofo is oj ,
j = 1, . . . , k). ThenZ = Ad, whered = o − e andA is thek × k partial-sum matrix

A =




1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1




.

The definitions become

W 2
d = Z⊤EZ/N, (1)

U2
d = Z⊤(I − E11⊤)E(I − 11′E)Z/N, (2)

A2
d = Z⊤EKZ/N, (3)

X2 = (d⊤D−1d)/N = Z⊤A−1
⊤

D−1A−1Z/N. (4)

These matrix forms have been introduced for the asymptotic theory, but it is convenient also
to use them to calculate the statistics.
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2. ASYMPTOTIC THEORY

2.1. All parameters known.

All four statistics above are of the general formS = Y⊤MY, whereY = Z/
√

N andM is
symmetric. ForW 2

d , M = E, for U2
d , M = (I − E11⊤)E(I − 11⊤E), and forA2

d, M = EK.
Also Y has mean0. Suppose its covariance matrix isΣy; thenS may be written

S = Y⊤MY =

k−1∑

i=1

λi(w
⊤

i Y)2, (5)

whereλi are thek−1 non-zero eigenvalues ofMΣy andwi are the corresponding eigenvectors,
normalized so thatw⊤

i Σywj = δij whereδij is 1 if i = j and 0 otherwise. In (5), the term
s2

i = (w′

iY)2 is called theith component of the statistic. AsN → ∞, the distribution ofY
tends to the multivariate normal with mean0 and varianceΣy. The distribution of a typical
si tends to univariate normal, mean 0, variance 1 and in the limit the si are independent. The
limiting distribution ofS is thus that ofS∞ where

S∞ =

k−1∑

i=1

λiu
2
i , (6)

and where theui are independent weightedχ2
1 variables.

In order to find theλi we needΣy. This is found as follows. Calculate thek × k matrix

Σ0 = D − pp⊤; (7)

this is the covariance matrix of(o − e)/
√

N . ThenΣy = AΣ0A
⊤, with entriesΣij =

min(Hi,Hj) − HiHj . This is the covariance matrix ofY = Z/
√

N = Ad/
√

N .
For the appropriateM for the statistic required, the eigenvaluesλi, i = 1, . . . , k of MΣy are

then used in (6) to obtain the limiting distribution of the statistic.
It was pointed out in Choulakian, Lockhart & Stephens (1994)that one can work withX =

M1/2Y; the covariance ofX is thenΣX = M1/2ΣyM
1/2. It may be shown that the eigenvalues

λi of ΣX are the same as those ofMΣy; the advantage of usingΣX is that it is symmetric, which
may be useful when using certain programmes to find eigenvalues.

2.2. Parameters unknown.

In this section the above theory will be extended to the case where the tested distribution contains
unknown parametersθi. Let θ = (θ1, . . . , θm)⊤ be the vector ofm parameters.

In much of what follows we use results given by Bishop, Fienberg & Holland (1975). The
parameters must be estimated efficiently, for example by maximizing the multinomial likelihood
(MML) obtained from the multinomial distribution of theoi, i = 1, . . . , k. The log-likelihood is
(omitting irrelevant constants)

L∗ =

k∑

i=1

oi log pi,

andpi contains the unknown parameters. The MML estimation consists of solving them equa-
tions

∂L∗

∂θj
=

k∑

i=1

oi

pi

∂pi

∂θj
= 0,

for j = 1, . . . ,m.
Let θ̂ be the MML estimate ofθ, let p̂ be the estimate ofp, evaluated usinĝθ, and let̂e be the

estimated vector of expected values in the cells, with componentsêj = Np̂j . Then letd̂ = o− ê

andẐ = Ad̂.
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Define ak by m matrixB with entries

Bi,j = ∂pi/∂θj

for i = 1, . . . , k and j = 1, . . . ,m. The matrixB⊤D−1B is the Fisher information matrix.
DefineV = (B⊤D−1B)−1. The asymptotic covariance of̂θ is thenV/N , the covariance of
d̂/

√
N is Σd = Σ0 − BVB⊤, whereΣ0 is defined in (7), and the covariance ofẐ/

√
N =

Ad̂/
√

N = Ŷ is
Σu = AΣdA

⊤.

Then, as in the previous section, where parameters were known, the weightsλi in the as-
ymptotic distribution (6) are thek eigenvalues ofMΣu for the appropriateM for the statistic
required. Again the transformationX = M1/2Y may be made and the eigenvalues will be those
of the symmetric matrixM1/2ΣuM

1/2.
In practice, in order to calculate the statistics, using (1)–(4), the various vectors and matrices

must be replaced by their estimates where necessary. For example, let matrixD̂ beD with p

replaced bŷp and similarly obtain̂B, Ê, V̂, K̂ andΣ̂0 using estimates in an obvious way. The
eigenvalues will also be found using the estimated matricesΣ̂u andM̂. Consistent estimates of
theλi will be obtained and (6) used to find the estimated asymptoticdistribution.

Thus the steps are:

1. CalculateV̂ = (B̂⊤D̂−1B̂)−1.

2. CalculatêΣd = Σ̂0 − B̂V̂B̂⊤ andΣ̂u = AΣ̂dA
⊤.

3. For the statistic required, let̂M be the estimate of the appropriateM. Find thek eigen-
values ofM̂Σ̂u, or those of the symmetric matrix̂M1/2Σ̂uM̂

1/2 and use them in (6) to
obtain the asymptotic distribution.

2.3. Percentage points.

Percentage points ofS∞, using exact or estimatedλs, can be found to high accuracy by the
method of Imhof (1961). However, for practical purposes, they can be well approximated in the
upper tail by the percentage points ofS1, whereS1 has the distributiona + bχ2

p, and thea, b, p
are chosen so that the first three cumulants ofS1 match those of the asymptotic distribution of
S in (6). The cumulants of the distribution in (6) areκj = 2j−1(j − 1)!

∑k−1

i=1
λj

i . In particular,
the meanκ1 is

∑k−1

i=1
λi, the varianceκ2 is

∑k−1

i=1
2λ2

i andκ3 is 8
∑k−1

i=1
λ3

i . Then for theS1
approximation,b = κ3/(4κ2), p = 8κ3

2/κ2
3, anda = κ1−bp. We have found this approximation

to be accurate in the upper tail, at levelsα < 0.15, but the accuracy falls off at the 0.25 and 0.50
levels. More accurate approximations have been given by Solomon & Stephens (1977).

2.4. Long-tailed distributions.

Some distributions may have long tails with an infinite set ofcells; for example, a long tail to the
right, with probabilities diminishing as the cell indexi increases. Of course, in practice, there is
a finite set of cells with data. Supposei = k∗ is the largest cell index with data in the cell. A
practical procedure is then to do the above analysis with, say, k = k∗ +20 cells, and repeat with,
say,k = k∗ + 50 cells; these numbers should be increased until the percentage points agree to
the desired accuracy. For such a distribution one would be unlikely to accumulate from the right,
and a statistician may prefer the original definitions (see Choulakian, Lockhart & Stephens 1994)
with pj replacingtj . The asymptotic theory goes through as above withpj replacingtj in all the
definitions. See, for example, Spinelli & Stephens (1997).
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3. NUMERICAL CALCULATIONS

3.1. Checks on theλ calculations.

For theX2 statistic, when parameters are known, the eigenvalues ofD−1Σ0 should bek − 1
values equal to one, and one zero. This will give the well-known result that the asymptotic
distribution isχ2

k−1
. When parameters are estimated by maximizing the multinomial likelihood,

the asymptotic distribution isχ2
k−m−1

so there should bek − m − 1 ones andm + 1 zeros as

eigenvalues of̂D−1Σ̂d.
For the Craḿer–von Mises statistics, the sum of the eigenvalues in (6) will be the limiting

expected value of the appropriate statistic. When parameters are known the expected values
of the statistics can be calculated exactly using the multinomial distribution ofo. They are as
follows:

E(W 2
d ) =

k∑

j=1

tjHj(1 − Hj),

E(U2
d ) = E(W 2

d ) −
k∑

i=1

k∑

j=1

titj{min(Hi,Hj) − HiHj},

E(A2
d) = 1 − tk.

These provide a good check on the eigenvalues. When parameters have to be estimated, the
limiting expected values are given by these formulas minus the trace ofMBVB⊤. This quantity
depends on the distribution tested and cannot usually be putin a simple form.

4. EXAMPLES

We illustrate the difference in the calculations for the twocases (parameters known or unknown)
by a simple example. Suppose there arek = 10 cells, and it is desired to testH0 : the (linear)
probabilities arepi = 0.1 + b(i − 5.5), −1/45 < b < 1/45. This form ensures that the sum is 1
for all b.

Example 1(Parameter known): Suppose first thatb is known to be0.02, giving cell proba-
bilities pi = 0.01, 0.03, 0.05, . . ., 0.19, and suppose the observed 50 values give cell counts
1, 3, 6, 2, 9, 3, 4, 6, 7, 9. The Kolmogorov–Smirnov statistics areD+

d = 1.202, D−

d = 0.000,
Dd = 1.202. The Craḿer–von Mises statistics areW 2

d = 0.344, U2
d = 0.138, A2

d = 2.071, and
Pearson’sX2 = 14.732.

Since the tested probabilities are known, we need the eigenvalues discussed in Section 2.1,
for the appropriate statistic. ForW 2, U2 andA2, the eigenvalues are given in Table 1 and upper
tail percentage points of (6) are in Table 2.

TheP -value for statisticW 2
d is 0.11, forU2

d is 0.16, and forA2
d is 0.07; for Pearson’sX2,

theP -value is0.10.

Example 2(Parameter estimated): Now suppose the given data (observed values in the cells) are
the same as above, but the linear probabilities model will befitted, with the value ofb estimated
by MML. This value iŝb = 0.0128444 and the corresponding probabilities are

0.0422, 0.0550, 0.0679, 0.0807, 0.0936,

0.1064, 0.1193, 0.1321, 0.1450, 0.1578.

Then Pearson’sX2 = 9.499, to be compared with theχ2
8 distribution; theP -value is greater

than 0.5. The Craḿer–von Mises statistics areW 2
d = 0.052, U2

d = 0.050 andA2
d = 0.284, and

the Kolmogorov–Smirnov statistics areD+

d = 0.570, D−

d = 0.157 andDd = 0.570.
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TABLE 1: Eigenvalues for Craḿer–von Mises statistics.

Example 1:W 2

d 0.1030 0.0271 0.0132 0.0083 0.0056

0.0035 0.0019 0.0008 0.0001 0.0000

sum 0.1634

Example 1:U2

d 0.0280 0.0262 0.0093 0.0076 0.0049

0.0031 0.0017 0.0007 0.0001 0.0000

sum 0.0817

Example 1:A2

d 0.5000 0.1667 0.0833 0.0500 0.0333

0.0238 0.0179 0.0139 0.0111 0.0000

sum 0.9000

Example 2:W 2

d 0.0456 0.0173 0.0092 0.0062 0.0045

0.0032 0.0020 0.0011 0.0000 0.0000

Example 2:U2

d 0.0271 0.0169 0.0080 0.0061 0.0043

0.0030 0.0019 0.0010 0.0000 0.0000

Example 2:A2

d 0.2403 0.0959 0.0531 0.0342 0.0240

0.0179 0.0139 0.0111 0.0000 0.0000

Then we follow the steps in Section 2.2. ForW 2
d , U2

d andA2
d the eigenvalues are given in

Table 1 and percentage points in Table 2.
The significance levels of all four statisticsW 2

d , U2
d , A2

d, andX2 are now greater than 0.5.
These higherP -values demonstrate the common phenomenon in testing fit, that estimation of
the parameters generally gives a better fit when a model with fixed parameters is marginal as in
Example 1.

TABLE 2: Asymptotic percentage points for Examples 1 and 2.

α

0.500 0.250 0.100 0.050 0.025 0.010

Example 1:W 2

d 0.1155 0.2083 0.3483 0.4642 0.5853 0.7514

Example 1:U2

d 0.0671 0.1063 0.1564 0.1941 0.2317 0.2815

Example 1:A2

d 0.6737 1.1473 1.8325 2.3919 2.9771 3.7778

Example 2:W 2

d 0.0689 0.1139 0.1770 0.2279 0.2811 0.3538

Example 2:U2

d 0.0562 0.0883 0.1299 0.1617 0.1940 0.2375

Example 2:A2

d 0.3850 0.6267 0.9614 1.2301 1.5101 1.8933

5. CONVERGENCE TO ASYMPTOTIC POINTS

In Section 2 we have given the calculations to obtain asymptotic points for the Craḿer–von Mises
statisticsW 2

d , U2
d andA2

d. It is known that in the continuous case the points for finiten con-
verge rapidly to the asymptotic, so that these may be used forn as low as 20. However, the
Kolmogorov–SmirnovDd does not converge so quickly. For the discrete analogues, wehave
examined the convergence by taking 10000 Monte Carlo (MC) samples from variousp vectors
and for sample sizes 25, 50, 100, 200, and 500. Tables showingthese studies based on proba-
bilities in Examples 1 and 2 are included in a research report, obtainable from the first author.
Comments on these studies are as follows.
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TABLE 3: Eigenvalues and percentage points for Cramér–von Mises statistics: Uniform case.

Eigenvalues

W 2

d 0.1022 0.0262 0.0121 0.0072 0.0050

0.0038 0.0031 0.0027 0.0026 0.0000

sum 0.1650

U2

d 0.0262 0.0262 0.0072 0.0072 0.0038

0.0038 0.0028 0.0028 0.0025 0.0000

sum 0.0825

A2

d 0.5000 0.1667 0.0833 0.0500 0.0333

0.0238 0.0179 0.0139 0.0111 0.0000

sum 0.9000

Percentage Points

α

0.250 0.100 0.050 0.025 0.010

W 2

d 0.2090 0.3480 0.4629 0.5830 0.7484

U2

d 0.1060 0.1542 0.1905 0.2268 0.2748

A2

d 1.1473 1.8325 2.3919 2.9771 3.7778

The percentage points for the Cramér–von Mises again converge to the asymptotic points
very quickly and the asymptotic points can certainly be usedwith good accuracy for sample
sizes greater than 25.

The statisticDd was studied by Pettitt & Stephens (1977) for the case when thecell proba-
bilities are completely specified as in Example 1. Our Monte Carlo studies confirm thatDd then
has a very discrete distribution with few distinct values inthe upper tail. This is because for large
values ofDd, many configurations ofoi can give the same statistic. Thus it is difficult to achieve
a test of exact sizeα. When parameters must be estimated, there will be many patterns ofpi and
so the distribution takes many more values. However, statistic Dd is known not to have as good
power as the Craḿer–von Mises statistics, so we shall not consider this further.

Finally, although for small sample sizes such as 25 and 50, the expected numbers in the cells
do not conform to the generally assumed rules (e.g., thatei should be nearly always greater
than 5) necessary to obtain convergence of Pearson’sX2 to theχ2 distribution, statisticX2 also
converges very well.

6. POWER

In this section we give a small power study. The null hypothesis is that the distribution is the
discrete uniform with 10 cells so thatpi = 0.1, i = 1, . . . , 10. On the alternative, the cell
probabilities arepi = 0.1 + b(i − 5.5) as in Example 1. The test size isα = 0.10.

For the power study, the asymptotic percentage points for the uniform distribution with 10
cells are given in Table 3. The eigenvaluesλi are also given, for completeness. An interesting
result from Choulakian, Lockhart & Stephens (1994) is that,for A2, thek − 1 eigenvalues are
exactly the firstk − 1 values in the continuous case.

Figure 1 shows the power ofW 2
d , U2

d , A2
d, andX2 for sample size 25, asb moves from 0.00

to 0.02. Figure 2 gives similar plots for sample size 100.
The figures demonstrate that the Cramér–von Mises statistics are more powerful thanX2

when the probabilities in the cells are in a steadily increasing pattern. The results are similar



132 LOCKHART, SPINELLI & STEPHENS Vol. 35, No. 1

for b < 0 when the probabilities decrease. These patterns of probability, compared with the
null, are quite common so that the Cramér–von Mises statistics, especiallyW 2

d andA2
d, can be

recommended for testing fit.
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7. SUMMARY

In this article we have defined statistics of the Cramér–von Mises type for testing fit to a discrete
distribution. It is shown how to obtain asymptotic percentage points for the statistics, both when
the distribution is completely specified, or when unknown parameters must be estimated from the
data. An example is discussed, for both cases. Monte Carlo studies suggest that the asymptotic
distributions may be used in practice for finite samples of reasonable size. A small power study
(testing the discrete uniform distribution) is included.
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