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Abstract: Choulakian, Lockhart & Stephens (1994) proposed Graivon Mises statistics for testing fit
to a fully specified discrete distribution. The authors give slightly modifidahiiens for these statistics
and determine their asymptotic behaviour in the case when unknown @@ran the distribution must be
estimated from the sample data. They also present two examples of &ippkca

Statistigues de Cramér—von Mises pour des lois discrétes

dont les parameétres sont inconnus

Résuné : Choulakian, Lockhart & Stephens (1994) ont prapaes statistiques de Cramvon Mises
permettant de tester I'éguation d’une loi dis@&te compbtement secifiee. Les auteurs donnent defie
nitions legerement modiées de ces statistiques et éxtefminent le comportement asymptotique dans le
cas ai certains paragtres de la loi doivengtre estinesa partir de donées. lls pesentent en outre deux
exemples d’application.

1. INTRODUCTION

In Choulakian, Lockhart & Stephens (1994), Cémvon Mises statisticE’2, U? and A% were
defined for testing a discrete distribution. Asymptoticathewas given for the case where the
distribution tested was fully specified, and the tests foisgrdte uniform distribution withk
cells were discussed in detail. In this paper we modify tHandens slightly to allow for the
same values of the statistics to be obtained if the cell dedesmpletely reversed. This does not
affect the results in Choulakian, Lockhart & Stephens (3994

More importantly, we also add the asymptotic theory for taeecwhen parameters of the
tested distribution must be estimated from the sample ddta.theory has in fact been used for
several special cases: testing the Poisson distributipim¢®i & Stephens 1997) and testing the
exponential distribution with grouped data (Spinelli 2R01

Consider a discrete distribution with cells labelledl, ..., k, and with probabilityp; of
falling into cell i. SupposeV independent observations are given;dgbe the observed num-
ber of observations anek = Np; be the expected number in céll Let S; = Zgzl o; and
T; = >!_,e;. ThenS;/N andH; = T;/N are the cumulated histograms of observed and

=1
expected values and correspond to the empirical distabdtinctionFy (z) and the cumulative
distribution functionF' () for continuous distributions. Suppoge = S; — T;,5 = 1,...,k;
the Weight_ed mea’n of thg,; i_s 7 = Z?.:l Zjt;, Wheretj_ﬂ = (p; + pj+1)/2, With pry1 = p1.
The modified Crarar—von Mises statistics are then defined as follows:

k
Wi = N\ Z3t;
j=1
k
Ui = N'Y (2 - 2)%;
j=1

k
AG N=UNCZ3 {H; (1 - Hy)}.
j=1
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Note thatZ;, = 0 in these summations, so that the last teriifi is zero. The last term il is
of the form0/0, and is set equal to zero.

The well-known Pearson chi-squared statistic is

k

X2 = Z(Ol — ei)Q/eZ-.

i=1

Statistics corresponding to the Kolmogorov—Smirnov st for continuous observations are

Dj = max(Z;)/VN,
J

D, = max(-Z;)/VN,
j

Dy = max|Z;|/VN.
j

A feature of these statistics is that the C&mvon Mises and Kolmogorov—Smirnov statistics
take into account the order of the cells in contrast to thede@aX 2 statistic. In Choulakian,
Lockhart & Stephens (1994); was used instead df; in these definitions; as stated above,
the results in that paper still hold with the change in wesglsince the concern was with the
uniform distribution where alt; = p; = 1/k. However, the new definitions ensure that in a
more general pattern of cell probabilities, if the cells @menpletely reversed in order, the values
of the statistics are unaltered. This would seem to be aat#siguality; for instance, in testing
the binomial distribution, where one statistician mighinedate the successes, and another the
failures, or in a test involving categorical data such addhes of a photograph, light to dark, or
vice versa.

The statisticU3 is intended for use with a discrete distribution around alejrthe other
statistics will change their values with different choiadrigin, butU3 is unchanged; this is
why pi.1 is defined to be;.

The above definitions can be put into matrix notation. LetesscriptT, e. g.,Z ", denote
the transpose of a vector or matrix. Lebe thek x k identity matrix, and lep " be thel x k
vector (p1,...,px). SupposeD is thek x k diagonal matrix whosgth diagonal entry ip;,

j =1,...,k and letE be the diagonal matrix with diagonal entrigs andK be the diagonal
matrix whose(j, j)th element isl/{H,;(1 — H;)}, j = 1,...,k — 1 andKy, = 0. Leto;
ande; be arranged into column vectapse (so that, for example, thith component 0b is o,
j=1,...,k). ThenZ = Ad, whered = o — e andA is thek x k partial-sum matrix

100 ...0
1 10 ...0
A=]111 ...0
111 1
The definitions become
W3 = Z'EZ/N, 1
U2 = Z'(I-E11")E(I-11'E)Z/N, )
A2 = Z'EKZ/N, 3
T
X? = d'D'd)/N=Z"A"! D'AT'Z/N. (4)

These matrix forms have been introduced for the asymptogiory, but it is convenient also
to use them to calculate the statistics.
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2. ASYMPTOTIC THEORY

2.1. All parameters known.

All four statistics above are of the general fosn= Y MY, whereY = Z/v/N andM is
symmetric. FoW? M = E, forU2, M = (I - E11")E(I - 11"E), and forA2, M = EK.
Also Y has mear. Suppose its covariance matrix3%,; thenS may be written

k—1
S=Y'™MY =) X\(w/Y)? (5)

=1
where); are thek — 1 non-zero eigenvalues &>, andw; are the corresponding eigenvectors,
normalized so thatv, ¥, w; = J,; whered;; is 1 if i = j and 0 otherwise. In (5), the term
s?2 = (w!Y)? is called theith component of the statistic. A¥ — oo, the distribution ofY
tends to the multivariate normal with meanand variance,. The distribution of a typical
s; tends to univariate normal, mean 0, variance 1 and in the tmis; are independent. The
limiting distribution of S is thus that ofS., where

k—1
1=1

and where they; are independent weighted variables.
In order to find the\; we need,. This is found as follows. Calculate tiex k& matrix

Sy=D-pp’; @)

this is the covariance matrix qo — e)/v/N. ThenX, = AX,AT, with entriesY;; =
min(H;, H;) — H;H;. This is the covariance matrix & = Z/v/N = Ad/V/N .

For the appropriatd/] for the statistic required, the eigenvalugsi = 1,. ..,k of MX, are
then used in (6) to obtain the limiting distribution of thatstic.

It was pointed out in Choulakian, Lockhart & Stephens (1984} one can work witfK =
M1'/2Y; the covariance o is thenE x = M'/2%, M'/2. It may be shown that the eigenvalues
A; of X x are the same as thoseMX; the advantage of using x is that it is symmetric, which
may be useful when using certain programmes to find eigeesalu

2.2. Parameters unknown.

In this section the above theory will be extended to the cdmr@the tested distribution contains
unknown parametei. Letd = (0y,...,6,,) be the vector ofn parameters.

In much of what follows we use results given by Bishop, Fiegh# Holland (1975). The
parameters must be estimated efficiently, for example byimiaig the multinomial likelihood
(MML) obtained from the multinomial distribution of the, i = 1, ..., k. The log-likelihood is
(omitting irrelevant constants)

k
L* = Z o;logp;,
=1

andp; contains the unknown parameters. The MML estimation ctssissolving them equa-

tions
k

oL* 0; 6pi
= —_— = O
89j ; Di 89] ’

forj=1,...,m.

Letd be the MML estimate of, let p be the estimate gf, evaluated usiné, and lete be the
estimated vector of expected values in the cells, with coreptsé; = Np,. Thenletd =o—é
andZ = Ad.
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Define ak by m matrix B with entries
BiJ‘ = 8pi/8t9j

fori = 1,...,kandj = 1,...,m. The matrixB"D~'B is the Fisher information matrix.
DefineV = (BTD~!B)~!. The asymptotic covariance 6fis thenV /N, the covariance of
&/\/ﬁ is Xy = 3o — BVBT, whereX is defined in (7), and the covariancef))’/\/ﬁ =
Ad/VN =Yis

S, =A3,AT.

Then, as in the previous section, where parameters wererknte weights\; in the as-
ymptotic distribution (6) are thé eigenvalues oM, for the appropriatéV for the statistic
required. Again the transformatid@ = M'/2Y may be made and the eigenvalues will be those
of the symmetric matridI'/23,M'/2,

In practice, in order to calculate the statistics, using(4), the various vectors and matrices
must be replaced by their estimates where necessary. Fopéxalet matrixD be D with p
replaced byp and similarly obtairB, E, V, K andX using estimates in an obvious way. The
eigenvalues will also be found using the estimated mattfc‘,@andl\A/I. Consistent estimates of
the \; will be obtained and (6) used to find the estimated asymptiisicibution.

Thus the steps are:

1. CalculateV = (BTD!B)~!.
2. Calculates; = 3, — BVBT andZ, = AS, AT,

3. For the statistic required, I&Lf be the estimate of the appropridté. Find thek eigen-
values ofMX,,, or those of the symmetric matrixI'/23,M'/2 and use them in (6) to
obtain the asymptotic distribution.

2.3. Percentage points.

Percentage points df,, using exact or estimateldls, can be found to high accuracy by the
method of Imhof (1961). However, for practical purposesytban be well approximated in the
upper tail by the percentage points®f, whereS1 has the distributiom + bxf,, and thea, b, p
are chosen so that the first three cumulants bimatch those of the asymptotic distribution of
S'in (6). The cumulants of the distribution in (6) ate = 2/-*(j — 1)! Zf;ll M. In particular,
the meark; is Zf:_f i, the variances, is Zf:_f 2)\? andk3 is 8 Zf:_ll A3. Then for theS1
approximationp = r3/(4k2), p = 8k3 /K3, anda = k1 — bp. We have found this approximation
to be accurate in the upper tail, at levelsc 0.15, but the accuracy falls off at the 0.25 and 0.50
levels. More accurate approximations have been given bynSmh & Stephens (1977).

2.4. Long-tailed distributions.

Some distributions may have long tails with an infinite satedfs; for example, a long tail to the
right, with probabilities diminishing as the cell indéincreases. Of course, in practice, there is
a finite set of cells with data. Suppose= k* is the largest cell index with data in the cell. A
practical procedure is then to do the above analysis with fs& k* 4 20 cells, and repeat with,
say,k = k* + 50 cells; these numbers should be increased until the pegepiints agree to
the desired accuracy. For such a distribution one would bkalynto accumulate from the right,
and a statistician may prefer the original definitions (skeuWlakian, Lockhart & Stephens 1994)
with p; replacingt;. The asymptotic theory goes through as above wijtreplacingt; in all the
definitions. See, for example, Spinelli & Stephens (1997).
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3. NUMERICAL CALCULATIONS

3.1. Checks on th& calculations.

For the X? statistic, when parameters are known, the eigenvaluddfS, should bek — 1
values equal to one, and one zero. This will give the wellvkmaesult that the asymptotic
distribution isy? _,. When parameters are estimated by maximizing the multiridikédihood,
the asymptotic distribution ig? ., so there should b — m — 1 ones andn + 1 zeros as
eigenvalues 0D ~13,.

For the Crardr-von Mises statistics, the sum of the eigenvalues in (8)bithe limiting
expected value of the appropriate statistic. When parameter known the expected values
of the statistics can be calculated exactly using the martial distribution ofo. They are as
follows:

k
EW7) = > t;H;(1-Hj),
j=1
k k
E(UZ) = BOW7) =Y > tit;{min(H;, H;) — H;H,},
i=1 j—1
E(A2) = 1—t.

These provide a good check on the eigenvalues. When paranietes to be estimated, the
limiting expected values are given by these formulas mihagrace o MBVB . This quantity
depends on the distribution tested and cannot usually bia pusimple form.

4. EXAMPLES

We illustrate the difference in the calculations for the weses (parameters known or unknown)
by a simple example. Suppose there lare 10 cells, and it is desired to tedt, : the (linear)
probabilities are; = 0.1 + b(i — 5.5), —1/45 < b < 1/45. This form ensures that the sumis 1
for all b.

Example 1(Parameter known): Suppose first thais known to be0.02, giving cell proba-
bilities p; = 0.01, 0.03, 0.05, ..., 0.19, and suppose the observed 50 values give cell counts
1,3,6,2,9,3,4,6,7,9. The Kolmogorov—Smirnov statistics aié:{ = 1.202, D; = 0.000,

D, = 1.202. The Crangér-von Mises statistics al&'? = 0.344, U7 = 0.138, A2 = 2.071, and
Pearson'sY? = 14.732.

Since the tested probabilities are known, we need the eseew discussed in Section 2.1,
for the appropriate statistic. Fo¥2, U? and A2, the eigenvalues are given in Table 1 and upper
tail percentage points of (6) are in Table 2.

The P-value for statistidV7 is 0.11, forU? is 0.16, and ford? is 0.07; for Pearson’s(?,
the P-value is0.10.

Example 2(Parameter estimated): Now suppose the given data (olosealges in the cells) are
the same as above, but the linear probabilities model wifittel, with the value ob estimated
by MML. This value isb = 0.0128444 and the corresponding probabilities are

0.0422,0.0550, 0.0679, 0.0807, 0.0936,

0.1064,0.1193,0.1321, 0.1450, 0.1578.

Then Pearson’s(? = 9.499, to be compared with thg2 distribution; theP-value is greater
than 0.5. The Cra@r-von Mises statistics ai&’? = 0.052, U7 = 0.050 and A% = 0.284, and
the Kolmogorov—Smirnov statistics af&] = 0.570, D; = 0.157 and Dy = 0.570.



130 LOCKHART, SPINELLI & STEPHENS Vol. 35, No. 1

TABLE 1: Eigenvalues for Craér-von Mises statistics.

Example 177 0.1030 0.0271 0.0132 0.0083 0.0056
0.0035 0.0019 0.0008 0.0001 0.0000
sum 0.1634

Example 1:U7 0.0280 0.0262 0.0093 0.0076 0.0049
0.0031 0.0017 0.0007 0.0001 0.0000
sum 0.0817

Example 1:4%2  0.5000 0.1667 0.0833 0.0500 0.0333
0.0238 0.0179 0.0139 0.0111 0.0000
sum 0.9000

Example 2W; 0.0456 0.0173 0.0092 0.0062 0.0045
0.0032 0.0020 0.0011 0.0000 0.0000
Example 22U7 0.0271 0.0169 0.0080 0.0061 0.0043
0.0030 0.0019 0.0010 0.0000 0.0000

Example 2242  0.2403 0.0959 0.0531 0.0342 0.0240
0.0179 0.0139 0.0111 0.0000 0.0000

Then we follow the steps in Section 2.2. A6i7, U3 and A2 the eigenvalues are given in
Table 1 and percentage points in Table 2.

The significance levels of all four statisti¢&?, UZ, A%, andX? are now greater than 0.5.
These higheiP-values demonstrate the common phenomenon in testing dit edtimation of
the parameters generally gives a better fit when a model withl fparameters is marginal as in
Example 1.

TABLE 2: Asymptotic percentage points for Examples 1 and 2.

o
0.500 0.250 0.100 0.050 0.025 0.010

Example 1.7 0.1155 0.2083 0.3483 0.4642 0.5853 0.7514
Example 1.U7 0.0671 0.1063 0.1564 0.1941 0.2317 0.2815
Example 1:A% 0.6737 1.1473 1.8325 2.3919 29771 3.7778

Example 277 0.0689 0.1139 0.1770 0.2279 0.2811 0.3538
Example 22U 0.0562 0.0883 0.1299 0.1617 0.1940 0.2375
Example 2243 0.3850 0.6267 0.9614 1.2301 1.5101 1.8933

5. CONVERGENCE TO ASYMPTOTIC POINTS

In Section 2 we have given the calculations to obtain asytiggioints for the Crarer—von Mises
statisticsiV?, U3 and A%. It is known that in the continuous case the points for fimiteon-
verge rapidly to the asymptotic, so that these may be used #® low as 20. However, the
Kolmogorov—SmirnovD, does not converge so quickly. For the discrete analoguedawve
examined the convergence by taking 10000 Monte Carlo (M@)pézs from variougp vectors
and for sample sizes 25, 50, 100, 200, and 500. Tables shdtésg studies based on proba-
bilities in Examples 1 and 2 are included in a research repbtainable from the first author.
Comments on these studies are as follows.
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TABLE 3: Eigenvalues and percentage points for Ggarion Mises statistics: Uniform case.

Eigenvalues

Wf 0.1022 0.0262 0.0121 0.0072 0.0050
0.0038 0.0031 0.0027 0.0026 0.0000
sum 0.1650

U2 0.0262 0.0262 0.0072 0.0072 0.0038
0.0038 0.0028 0.0028 0.0025 0.0000
sum 0.0825

A2 05000 0.1667 0.0833 0.0500 0.0333
0.0238 0.0179 0.0139 0.0111 0.0000
sum 0.9000

Percentage Points
[0
0.250 0.100 0.050 0.025 0.010

W3 0.2090 0.3480 0.4629 0.5830 0.7484
U2 0.1060 0.1542 0.1905 0.2268 0.2748
A3 11473 1.8325 2.3919 29771 3.7778

The percentage points for the Cramvon Mises again converge to the asymptotic points
very quickly and the asymptotic points can certainly be usét good accuracy for sample
sizes greater than 25.

The statisticD, was studied by Pettitt & Stephens (1977) for the case whendh@roba-
bilities are completely specified as in Example 1. Our Morael@studies confirm thab, then
has a very discrete distribution with few distinct valuethe upper tail. This is because for large
values ofD,, many configurations af; can give the same statistic. Thus it is difficult to achieve
a test of exact size. When parameters must be estimated, there will be many patép; and
so the distribution takes many more values. However, §itafi%; is known not to have as good
power as the Craér-von Mises statistics, so we shall not consider this &irth

Finally, although for small sample sizes such as 25 and 8&xpected numbers in the cells
do not conform to the generally assumed rules (e.g., ¢hahould be nearly always greater
than 5) necessary to obtain convergence of Pearsoh® the? distribution, statistic? also
converges very well.

6. POWER
In this section we give a small power study. The null hypathesthat the distribution is the
discrete uniform with 10 cells so that = 0.1, ¢« = 1,...,10. On the alternative, the cell

probabilities are; = 0.1 + b(: — 5.5) as in Example 1. The test sizeds= 0.10.

For the power study, the asymptotic percentage points uttiform distribution with 10
cells are given in Table 3. The eigenvalugsare also given, for completeness. An interesting
result from Choulakian, Lockhart & Stephens (1994) is that, 42, thek — 1 eigenvalues are
exactly the firs& — 1 values in the continuous case.

Figure 1 shows the power &F7, U3, A2, andX? for sample size 25, asmoves from 0.00
to 0.02. Figure 2 gives similar plots for sample size 100.

The figures demonstrate that the Cmvon Mises statistics are more powerful th¥s
when the probabilities in the cells are in a steadily indreapattern. The results are similar
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for b < 0 when the probabilities decrease. These patterns of pritgabbompared with the
null, are quite common so that the Cramvon Mises statistics, especially? and A2, can be
recommended for testing fit.

1.0

Power

04

0.2

0.000 0.005 0.010 0.015 0.020
b

FIGURE 1: Power results fol?, U2, A2, andX?: test size 0.1, sample size 25.
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FIGURE 2: Power results fol?, U2, A2, and X ?: test size 0.1, sample size 100.
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7. SUMMARY

In this article we have defined statistics of the Cearvon Mises type for testing fit to a discrete
distribution. It is shown how to obtain asymptotic percget@oints for the statistics, both when
the distribution is completely specified, or when unknowrapzeters must be estimated from the
data. An example is discussed, for both cases. Monte Carttiest suggest that the asymptotic
distributions may be used in practice for finite samples aomable size. A small power study
(testing the discrete uniform distribution) is included.
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