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1. INTRODUCTION

Testing the normality of random errors εi in the regression
model, yi = µi + σiεi, is needed in many applications. In situ-
ations where the mean function µi has a certain hypothesized
form (such as xiβ in the linear regression model) and the vari-
ance of the response σi is a known functional form of µi, the
usual practice (see Pierce and Kopecky 1979) is to compute the
standardized fitted residuals, ε̃i = (yi − µ̂i)/σ̂i, and test the hy-
pothesis of normal errors by examining whether the ε̃i’s are ap-
proximately normally distributed. An important class of tests
based on the empirical distribution function of the probabil-
ity integral transforms ui’s of the residuals computed using
the standard normal distribution $ exists for this case. As-
ymptotic results for the empirical distribution function of the
ui’s are available when the number of parameters p is fixed as
n grows (see Stephens 1976) or grows slightly (see Mammen
1996; Chen and Lockhart 2001).

These large-sample results can provide poor approximations
in several contexts. First, when nonlinear response functions are
estimated, the fitted residuals need not be normally distributed,
even if the random errors are. Second, when acquisition of new
data requires fitting more parameters, the fitted values µ̂i need
not be consistent; in this case, the variance of yi − µ̂i may be se-
riously underestimated by σ̂ 2

i . Third, if the assumed model for
the mean or for the mean variance relation is incorrect, the test
of normality becomes confounded with a test of model specifi-
cation.

All these problems may be addressed when the experiment
is structured with replicate observations, that is, when there are
several observations yij, j = 1, . . . ,ni, for each value xi of the
covariates. In this case, we propose to fit different means and
variances at each level of the covariate and to compute the exact
probability integral transforms, ui’s, using the true distribution
of the resulting residuals. The assumption of normality can then
be tested by examining whether the resulting transforms have
Uniform[0,1] distributions. We provide asymptotic results for
the empirical distribution function of the ui’s in this case.

Because the proposed tests allow fitting different mean func-
tions at different levels of the covariate, they possess the ad-
vantage that the data collected from several similar experiments

can be pooled to improve the power of the test. Thermolumines-
cence sedimentary dating provides a good example of such an
application. In thermoluminescence sedimentary dating, several
subsamples are prepared from a core drilled from a sedimentary
deposit such as a sand that is to be dated. One of two possible
pretreatments is applied to each subsample; the subsample is
then exposed to a dose, d, of gamma radiation. For each com-
bination of dose and pretreatment, a small number of subsam-
ples are prepared. Each subsample is heated and the amount, y,
of light given off (thermoluminescence) is measured. Differ-
ent nonlinear mean functions (or the same mean function but
with different parameter values) relating the amount of thermo-
luminescence, y, to the amount of radiation, d, to which a sub-
sample is exposed are fitted for different cores. The fitted mean
functions are usually nonlinear and depend on at least three pa-
rameters. Moreover, only 15–20 observations are available to
estimate these parameters for a given core.

With such small datasets and nonlinear mean functions the
asymptotic approximations cited previously cannot be expected
to be very good. To obtain a larger dataset to test normality, it
is necessary to collect a new core and fit new parameter values.
Thus, the number of parameters fitted will grow linearly with
the total sample size and the parameter estimates themselves
will not be consistent. In turn, it will not be the case that the
fitted residuals y − µ̂ are asymptotically close to the underly-
ing residuals σε. As a consequence, the sizes of the usual tests
of normality based on normal probability integral transforms
of the residuals may be substantially different from the corre-
sponding nominal levels.

In this article we overcome these problems by fitting, for
each combination, xi, of dose and pretreatment, separate mean
and variance estimates. We compute the true distribution of the
residuals from this model fit. We use this true distribution to
make an exact probability integral transform of the residuals to
produce a set of observations that will be Uniform[0,1] if the
null hypothesis of normal errors holds. The empirical process of
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these exact transforms has a covariance function that we com-
pute exactly. In large samples, moreover, the empirical process
in question will be approximately Gaussian. This permits us to
give tests of the hypothesis of normal errors. Furthermore, fit-
ting different means and variances for each covariate combina-
tion ensures that the tests proposed in this article will have the
correct level, as tests of the hypothesis of normal errors, even if
the original nonlinear response models are incorrect.

The rest of this article is organized as follows. In Section 2
we propose tests based on the Anderson–Darling statistic and
the Cramér–von Mises statistic computed from the exact proba-
bility integral transforms of the fitted residuals and discuss com-
putation of the test statistics. Section 3 proposes an approximate
p value for testing the assumption of normality based on each
of the proposed statistics. In Section 4 we describe the results
of a simulation study carried out to assess the performance of
the suggested tests in finite samples. Monte Carlo critical points
that can be used in cases with equal number of replicates at each
level of the covariate are also offered in Section 4. The tests
we propose are valid in the more general context of unequal
number of replicates as well. We have developed software using
S–PLUS to compute the test statistics and to produce approx-
imate p values for assessing normality in unbalanced designs.
In Section 5 we use published thermoluminescence dating test
data to illustrate the method. The weak convergence result for
the empirical process of the transformed residuals that justifies
the use of the approximate p values in large samples is outlined
in the Appendix.

2. COMPUTATION OF THE TEST STATISTICS

We now focus on the general case of fitting different means
at different levels of the covariate. We begin by introducing
the notation and presenting the true distribution of the residuals
needed in computing the test statistics.

Consider the model yij = µi +σiεij, where we let i = 1, . . . , k
denote the level of the covariate and j denote the replicate.
Suppose ni observations are available at the ith level of the
covariate. We assume that each ni ≥ 3; because there are two
parameters to fit for each i, levels i with ni = 1 or ni = 2
do not provide information about the normal assumption. Let
µ̂i = ∑ni

j=1 Yij/ni be the least squares estimate for µi and
ε̂′

ij = Yij − µ̂i. We study the standardized fitted residuals ε̂ij =
(Yij − µ̂i)/σ̂i, where σ̂ 2

i = ∑ni
j=1(Yij − µ̂i)

2/ni. Let Gni(·) be
the true distribution of ε̂ij when the random errors are nor-
mally distributed; Gni(·) depends on ni but not on µi, σi, or j.
Let νi = ni − 1 and τ̂ij = ε̂ij

√
(νi − 1)/(νi − ε̂2

ij). According to
Beckman and Trussell (1974), when the εij follow a standard
normal distribution, the variates τ̂ij follow a univariate Student-t
distribution with degrees of freedom νi −1. The exact probabil-
ity integral transforms of the ε̂ij are, therefore, given by

uij = Gni(ε̂ij) = tνi−1

(
ε̂ij

√
νi − 1

νi − ε̂2
ij

)
.

We now outline the procedure for computing the test statis-
tics.

1. For each level i of the covariate, estimate µi and σ 2
i using

µ̂i = ∑ni
j=1 Yij/ni and σ̂ 2

i = ∑ni
j=1(Yij − µ̂i)

2/ni. Retain
only levels i with ni ≥ 3.

2. Compute the standardized fitted residuals ε̂ij = (Yij −
µ̂i)/σ̂i.

3. Compute the exact probability integral transforms uij =
Gni(ε̂ij) = tνi−1(ε̂ij

√
(νi − 1)/(νi − ε̂2

ij)), where tν denotes
the Student-t distribution function on ν degrees of free-
dom.

4. Let z1 < · · · < zn be the probability integral transforms,
uij, sorted into increasing order, where n = ∑

ni is the
total number of observations.

5. Compute the Cramér–von Mises statistic

W2
n =

n∑

l=1

{
zl −

2l − 1
2n

}2

+ 1
12n

or the Anderson–Darling statistic

A2
n = −n − 1

n

n∑

l=1

{(2l − 1) ln zl + (2n + 1 − 2l) ln(1 − zl)}.

3. COMPUTATION OF AN APPROXIMATE p VALUE

In this section we describe the computation of approximate
p values for the test statistics by two methods. The first method
is Monte Carlo based; the second is a large-sample approxima-
tion.

3.1 Monte Carlo p Values

In each cell, we are fitting a location–scale model. As a re-
sult, the distribution of our test statistics does not depend on the
unknown values of µi or σi. We may then compute a p value by
a simple (though perhaps somewhat time consuming) Monte
Carlo method. Pick some large number of replicates M. Gen-
erate for each m from 1 to M a set of independent N(0,1)

variables, ε∗
ij , for j = 1, . . . ,ni and i = 1, . . . , k. From the ε∗

ij ,
compute the values w∗

m or a∗
m of the Cramér–von Mises or

Anderson–Darling statistics, respectively. The desired approxi-
mate p value is simply the fraction of values of w∗

m or a∗
m that

exceed the observed value of the corresponding statistic for the
data at hand. The limit, as M → ∞, of the p value obtained is
an exact p value; that is, it has exactly a Uniform[0,1] distribu-
tion on the null. For fixed M, the p value obtained is uniformly
distributed on the numbers 0/M,1/M, . . . ,M/M if the null hy-
pothesis is correct.

Use of a small value of M produces an approximation to
the exact p value obtained in the limit M → ∞. For a correct
p value of .05, the Monte Carlo standard error is around .007
when M = 1,000; this figure might usefully be compared with
the approximation error in the large-sample approximation sug-
gested in the next section.

3.2 Large-Sample Approximate p Values

An alternative to the Monte Carlo method is provided by
large-sample approximation. The approximation is based on the
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representation of the statistics as

W2 =
∫ 1

0
W2

n (t)dt,

A2 =
∫ 1

0

W2
n (t)

t(1 − t)
dt,

where Wn is the empirical process Wn(s) = n−1/2 ∑n
l=1{I[zi ≤

s] − s}. Large-sample distribution theory, presented in the Ap-
pendix, shows that these statistics may be treated, in large sam-
ples, as if they had the same law as

∞∑

i=1

λiχ
2
i ,

where the χ2
i ’s denote a set of independent chi-squared random

variables each on 1 degree of freedom and the λi’s are eigen-
values of an integral equation

∫ 1
0 αn(s, t)f (t)dt = λf (s). For the

statistic W2, the kernel αn(s, t) is the covariance function of the
process Wn, namely,

αn(s, t) = min(s, t) − st

+ 1
n

∑

i

ni(ni − 1)
{
G2,ni

(
G−1

ni
(s),G−1

ni
(t)

)
− st

}
,

where G−1
r is the inverse function of the true distribution of a

standardized residual in a cell with r observations and G2,r is
the joint distribution of two such standardized residuals. That
is,

G2,ni(x, y) = P(ε̂ij ≤ x, ε̂ij′ ≤ y)

for any two distinct observations j )= j′ in cell i.
An approximate p value for testing the assumption of nor-

mality using W2 can, thus, be computed as P(
∑m

i=1 λiχ
2
i ≥ w),

where w denotes the value of the test statistic and the λi’s are
numerical estimates for the largest m eigenvalues of the covari-
ance kernel αn(s, t) for a suitable value of m (we usually use
m = 100). Once the λi’s have been calculated, this probabil-
ity can be computed by following Imhof’s (1961) method of
numerical Fourier inversion of the characteristic function of a
linear combination of chi-squares.

Approximations for the required eigenvalues can be com-
puted as (see Lockhart, O’Reilly, and Stephens 1986) eigen-
values λ1, . . . ,λm of the matrix Q whose elements are Q(i, j) =
αn(si, sj)/m, where si = (i − .5)/m for i = 1, . . . ,m.

For the Anderson–Darling statistic, the covariance αn(s, t) in
the foregoing must be replaced by

αA,n(s, t) = αn(s, t)√
s(1 − s)t(1 − t)

.

It remains to show how to compute the joint distribution
function G2,n. This is presented in the next section.

3.3 Joint Distribution Function of Two Fitted Residuals

In this section we show how to compute G2,n, the joint cu-
mulative distribution function of two residuals ε̂i and ε̂j, for an

iid sample of size n. Our calculations use results of Ellenberg
(1973), who provided the joint density of the standardized
residuals for the linear regression model Y = Xβ + ε, where
β is a p-dimensional vector of unknown parameters and X is
fixed and of full rank. Let M = In −X(XTX)−1XT , where In de-
notes the n × n identity matrix. Let ûi = yi − xiβ̂ , where xi is
the ith row of X and β̂ is the least squares estimate for β . Let
mii be the ith diagonal element of M and ζi = ûi/

√
mii

∑n
i=1 û2

i .
Let ρ = mij/

√miimjj and γ = (n − p − 2)/2. For n > p + 2,
Ellenberg (1973) gave the joint density of ζi and ζj as

g(u, v;ρ,γ ) = γ

π

1
√

1 − ρ2

{
1 − u2 − 2ρuv + v2

1 − ρ2

}γ−1

,

over the region u2 − 2ρuv + v2 ≤ 1 − ρ2.
We now follow closely the work of Dunnett and Sobel (1954)

to derive a computing formula for the joint cumulative distribu-
tion function G(·, ·;ρ,γ ) corresponding to g(·, ·;ρ,γ ), that is,
for

G(·, ·;ρ,γ ) =
∫ h

−∞

∫ k

−∞
g(u, v;ρ,γ )du dv.

Note that g is a density for all −1 < ρ < 1 and γ > 0. Here, as
in Ellenberg (1973), however, we need formulas only for γ an
integer multiple of 1/2. Our goodness-of-fit application needs
only the special case where X is a column of n ones, p = 1,
ρ = −1/(n − 1), γ = (n − 3)/2, and ε̂i = ζi

√
n − 1, whence

G2,n(u, v) = G
(

u√
n − 1

,
v√

n − 1
;− 1

n − 1
,

n − 3
2

)
. (1)

Our formula is a recursion in γ . For γ an integer multiple
of 1/2, we give an explicit form for the starting value for the
recursion but not for general γ . Note that if n = p + 2 the joint
distribution of ζi and ζj is singular; we provide a separate eval-
uation of G(·, ·;ρ,0) at the end of this section, which is needed
for the case n = 3.

First, note that for nonpositive values of h and k, the joint
cumulative distribution function G(·, ·;ρ,γ ) can be obtained
from integrals for positive values of h and k as follows:

G(h, k;ρ,γ ) =






G(h,1;ρ,γ ) − G(h, |k|;−ρ,γ ),

h ≥ 0 and k < 0

G(1, k;ρ,γ ) − G(|h|, k;−ρ,γ ),

h < 0 and k ≥ 0

1 − G(1, |k|;−ρ,γ )

− G(|h|,1;−ρ,γ ) + G(|h|, |k|;ρ,γ ),

h < 0 and k < 0
1
4

+ 1
2π

arctan
(

ρ
√

1 − ρ2

)
,

h = 0 and k = 0.

Thus, it suffices to compute the joint distribution function for
positive values of h and k.

If U1,U2 have joint density g, then

G(h, k;ρ,γ )

= 1 − P(U1 > h,U1 > hU2/k) − P(U2 > k,U2 > kU1/h).
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If we put Hγ (h, k,ρ) = P(U1 > h,U1 > hU2/k), then, by sym-
metry,

G(h, k;ρ,γ ) = 1 − Hγ (h, k,ρ) − Hγ (k,h,ρ).

Define new variables R and . by U1 = R cos. and (U2 −
ρU1)/

√
1 − ρ2 = R sin., where 0 ≤ R ≤ 1 and −π < . ≤ π .

It is then elementary algebra to check that

Hγ (h, k,ρ) = P{R cos. ≥ h, θ0(h) ≤ tan. ≤ θu(h, k,ρ)},
where

θ0(h) = −arccos(h)

and

θu(h, k,ρ)

= max
[

min
{

arccos(h), arctan
[

k − ρh

h
√

1 − ρ2

]}
, θ0(h)

]
.

Here the arccosine takes values in [0,π/2] and the arctangent
in (−π/2,π/2). Notice that if

x(h, k,ρ) ≡ k − ρh
√

(1 − h2)(1 − ρ2)
< −1,

then

Hγ (h, k,ρ) = 0.

For the remainder of this calculation, we assume x(h, k,
ρ) ≥ −1.

The joint density of R and . may be seen to be f (r, θ) =
γ r(1 − r2)γ−1/π over r2 ≤ 1 and −π < θ ≤ π . Thus,

Hγ (h, k,ρ) = γ

π

∫ θu(h,k,ρ)

θ0(h)

∫ 1

h sec θ
r(1 − r2)γ−1 dr dθ

= 1
2π

∫ θu(h,k,ρ)

θ0(h)
(1 − h2 sec2 θ)γ dθ .

It can be shown, by writing (1 − h2 sec2 θ)γ = (1 −
h2 sec2 θ)γ−1(1 − h2 sec2 θ) and using the identity sec2 θ =
1 + tan2 θ and the fact d tan θ/dθ = sec2 θ , that Hγ (h, k,ρ) sat-
isfies the recurrence formula

Hγ (h, k,ρ) = Hγ−1(h, k,ρ) − h(1 − h2)γ−1/21(γ )

4
√

π1(γ + 1/2)

×
{

1 + sgn(k − ρh)Iz(h,k,ρ)

(
1
2
,γ

)}
, (2)

where z(h, k,ρ) = min{1, (k − ρh)2/{(1 − h2)(1 − ρ2)}} =
min{1, x2(h, k,ρ)} and Iy(p,q) is the beta(p,q) distribution
function given by

Iy(p,q) = 1(p + q)

1(p)1(q)

∫ y

0
tp−1(1 − t)q−1 dt. (3)

The recurrence formula (2) leads immediately to a recursion
formula for G(h, k;ρ,γ ). When γ = (n − 3)/2 and n is odd,
γ is an integer and our recursion becomes

G(h, k;ρ,γ )

= G(h, k;ρ,0) −
γ∑

j=1

{Hj(h, k,ρ) − Hj−1(h, k,ρ)

+ Hj(k,h,ρ) − Hj−1(k,h,ρ)},

where, letting γ → 0 in the definition of Hγ , we find

G(h, k;ρ,0) = 1 − θu(h, k,ρ) − θ0(h) + θu(k,h,ρ) − θ0(k)
2π

.

For n even, we get

G(h, k;ρ,γ ) = G(h, k;ρ,1/2)

−
γ−1/2∑

j=1

{
Hj+1/2(h, k,ρ) − Hj−1/2(h, k,ρ)

+ Hj+1/2(k,h,ρ) − Hj−1/2(k,h,ρ)
}
.

The recursion starts with

G(h, k;ρ,1/2) = 1 − H1/2(h, k,ρ) − H1/2(k,h,ρ).

Adopting the shorthand

y(h, k,ρ) = z(h, k,ρ)(1 + h2) − h2

2
√

z(h, k,ρ)(1 − z(h, k,ρ))h
,

we find by direct integration that

H1/2(h, k,ρ)

=






1 − h
2

, x(h, k,ρ) > 1

3(1 − h)

8

+ arctan{y(h, k,ρ)} − h arcsin(2z(h, k,ρ) − 1)

4π
,

0 ≤ x(h, k,ρ) ≤ 1

1 − h
8

− arctan{y(h, k,ρ)} − h arcsin(2z(h, k,ρ) − 1)

4π
,

−1 < x(h, k,ρ) ≤ 0

0, x(h, k,ρ) ≤ −1.

For x(h, k,ρ) = 0, this reduces to (1 − h)/4.
Formulas given in Dunnett and Sobel (1954) can be used to

evaluate the incomplete beta functions:

Ix

(
1
2
, j + 1

2

)

= 2
π

arctan
√

x
1 − x

+ 2
π

√
x(1 − x)

j−1∑

i=0

4i(i!)2

(2i + 1)! (1 − x)i

and

Ix

(
1
2
, j

)
= √

x
j−1∑

i=0

(2i)!
4i(i!)2 (1 − x)i.

Note that some care is needed to avoid numerical difficulties
near h = 0 or k = 0. As h → 0 with k > 0, we find θ(h, k) →
π/2 and θ(k,h) → min{arccos(k), arctan(−ρ/

√
1 − ρ2 )}. Val-

ues of x(h, k,ρ) and z(h, k,ρ) behave well for small h or k,
but when h → 0 with k > 0 the function y(h, k,ρ) converges
to +∞. When h is very close to 0, these limits should be used
in calculations.
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4. MONTE CARLO STUDY

In this section we describe the results of a Monte Carlo study
that justifies the use of asymptotic critical points in obtaining
a p value as described in the previous section. Moreover, we
offer some comparisons of the suggested tests (based on the ex-
act probability integral transforms) with those based on normal
probability integral transforms that are valid in the case of a
single population. The results presented in this section are all
based on 10,000 simulations.

Table 1 presents Monte Carlo critical points together with
corresponding asymptotic critical points for various values of k,
the number of levels of the factor, and m, the number of obser-
vations at each level of the factor, where we assume n1 = · · · =
nk = m.

The results presented in Table 1 clearly show that the Monte
Carlo critical points are well approximated by the asymptotic
critical points even in samples of size as small as 5. Even with
three replicates, the asymptotic critical points appear to provide
reasonably good approximations.

For the case of fitting a mean to a sample from a single
population, one can expect the residuals to be approximately
normally distributed provided the random errors are normally
distributed. Thus, for this case, we compared the performance
of the tests based on the true distribution (labeled G) with those
based on normal probability integral transforms (labeled $).
Table 2 presents the powers of the two tests using Monte Carlo
critical points for a variety of alternatives.

The results presented in Table 2 clearly show that both kinds
of tests perform fairly well for skewed alternatives. For sym-

Table 2. Power Comparisons: Single Population

Power of the test

Using Φ Using G

Distribution n k W 2 A2 W 2 A2

χ2
1 10 1 .6544 .6878 .6519 .6680

20 1 .9503 .9681 .9496 .9658
Exponential 10 1 .3729 .4013 .3736 .3980

20 1 .7206 .7775 .7180 .7790
Lognormal 10 1 .5371 .5632 .5382 .5641

20 1 .8776 .9041 .8763 .9055
Uniform 20 1 .1358 .1683 .1263 .1392
Cauchy 10 1 .6048 .6042 .6145 .6259

20 1 .8852 .8864 .8876 .8959
Laplace 10 1 .1500 .1520 .1563 .1739

20 1 .2603 .2732 .2682 .2952
Beta(2, 2) 20 1 .0521 .0563 .0488 .0441
t2 10 1 .2980 .3772 .2983 .3252

20 1 .5099 .5305 .5165 .5532
t3 10 1 .1762 .1835 .1813 .2071

20 1 .3016 .3275 .3072 .3496
Gamma(1, 2) 10 1 .1988 .2150 .1996 .2223

20 1 .4107 .4636 .4087 .4685

NOTE: Powers are based on 10,000 iid samples of size n from the distributions listed. All
tests are at level α = .05. For the Uniform and Beta(2, 2) distributions and n = 10, the powers
are negligibly different from α.

metric alternatives, the tests based on the true distribution ap-
pear to work well for heavy-tailed alternatives, whereas the tests
based on the normal distribution function appear to be more
sensitive to light-tailed alternatives.

We also examined the powers of the proposed tests obtained
by pooling several populations with small numbers of replicates
for each. For this case, the tests based on the normal probability

Table 1. Monte Carlo Critical Points for Finite n With Exact Asymptotic Points

Percentage points for

W 2 A2

Upper tail probability (percent)

m k 15 10 5 2.5 1.0 .5 15 10 5 2.5 1.0 .5

3 10 .093 .114 .151 .185 .232 .274 .741 .880 1.142 1.424 1.780 2.031
20 .094 .115 .151 .191 .240 .273 .747 .882 1.151 1.425 1.810 2.075
∞ .095 .116 .154 .194 .248 .290 .745 .894 1.161 1.442 1.825 2.122

4 10 .085 .101 .132 .159 .196 .234 .648 .769 .995 1.216 1.544 1.783
20 .086 .102 .130 .158 .197 .229 .652 .765 .991 1.208 1.491 1.761
∞ .085 .101 .129 .157 .197 .228 .648 .763 .970 1.188 1.485 1.715

5 10 .085 .100 .127 .152 .190 .219 .620 .725 .915 1.125 1.434 1.632
20 .087 .100 .127 .156 .185 .215 .622 .726 .911 1.125 1.370 1.594
∞ .085 .099 .123 .148 .182 .209 .614 .712 .886 1.066 1.314 1.505

7 10 .085 .099 .124 .148 .176 .196 .584 .668 .822 .975 1.166 1.306
20 .087 .101 .124 .145 .180 .199 .587 .674 .826 .968 1.194 1.386
∞ .087 .100 .123 .146 .177 .201 .587 .671 .818 .968 1.172 1.329

10 1 .087 .099 .120 .140 .173 .190 .569 .651 .778 .920 1.129 1.270
5 .088 .101 .125 .149 .183 .207 .582 .658 .782 .939 1.139 1.291

10 .088 .101 .126 .151 .181 .201 .573 .655 .797 .949 1.122 1.280
20 .088 .100 .123 .144 .173 .194 .568 .646 .783 .910 1.100 1.238
∞ .088 .101 .124 .146 .177 .201 .575 .653 .787 .923 1.106 1.247

20 1 .090 .103 .125 .145 .176 .203 .569 .643 .763 .887 1.073 1.172
5 .092 .105 .129 .150 .178 .201 .578 .647 .780 .902 1.041 1.194

10 .090 .102 .125 .145 .176 .204 .564 .636 .753 .870 1.048 1.207
∞ .089 .102 .125 .148 .178 .201 .566 .639 .765 .892 1.061 1.191

30 1 .090 .102 .125 .149 .180 .204 .563 .631 .758 .898 1.074 1.200
5 .090 .104 .128 .152 .184 .203 .564 .646 .769 .904 1.082 1.200

10 .090 .103 .126 .148 .175 .198 .566 .639 .760 .879 1.042 1.172
∞ .090 .103 .125 .148 .178 .201 .564 .636 .760 .885 1.051 1.179

∞ .091 .105 .127 .150 .181 .204 .556 .627 .749 .872 1.035 1.159

NOTE: There are m observations at each of k levels of some factor.
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Table 3. Power Comparisons: Multiple Populations

Power of the test

k = 10 k = 20 k = 30

Distribution n W 2 A2 W 2 A2 W 2 A2

χ2
1 3 .5000 .5481 .7834 .8158 .9222 .9402

5 .9757 .9793 .9998 1.0000 1.0000 1.0000
Exponential 3 .2590 .2737 .4603 .4718 .6185 .6325

5 .7785 .7907 .9713 .9763 .9983 .9987
Lognormal 3 .3545 .3780 .5965 .6198 .7711 .7860

5 .9030 .9136 .9962 .9964 1.0000 1.0000
Uniform 3 .0590 .0632 .0622 .0670 .0659 .0700

5 .0713 .0573 .1085 .0846 .1645 .1273
10 .3839 .3988 .7444 .7762 .9173 .9315

Cauchy 3 .0889 .1236 .0975 .1406 .1167 .1733
5 .3792 .6211 .6079 .8545 .8000 .9512

Laplace 3 .0534 .0558 .0538 .0554 .0592 .0599
5 .0974 .1136 .1092 .1336 .1384 .1746

Beta(2, 2) 3 .0512 .0538 .0519 .0515 .0556 .0573
5 .0425 .0347 .0526 .0435 .0643 .0562

10 .1034 .1014 .2106 .2239 .3390 .3560
Gamma(2) 3 .1384 .1422 .2397 .2400 .3368 .3369

5 .4623 .4775 .7605 .7803 .9193 .9315
10 .8889 .8689 .9964 .9967 1.0000 1.0000

t2 3 .0607 .0682 .0649 .0700 .0632 .0680
5 .1473 .2027 .1854 .2778 .2487 .3871

10 .7420 .8012 .9496 .9676 .9916 .9953

NOTE: Powers are based on 10,000 replications of selecting k samples of size n from the distributions listed. All tests are at level α = .05.

transforms do not have the correct size so we only report the re-
sults obtained using the true distribution G. Table 3 presents the
results where we have let k denote the number of populations
and n denote the number of observations for each population.

The results presented in Table 3 indicate that by pooling data
belonging to several populations the powers of the tests can
be improved substantially. With skewed alternatives, even with
three replicates, one can expect satisfactory power provided the
number of populations exceeds 10. In many applications, the
number of replicates does not exceed 5. Thus, we expect that
the tests proposed in this article to be quite useful in areas where
data are available from a number of similar experiments as is

the case with thermoluminescence sedimentary dating. The re-
sults also confirm the usual comparisons between W2 and A2,
namely, that A2 tends to have better power for long-tailed sym-
metric alternatives and slightly better power for skewed alter-
natives so that overall A2 would be the recommended test.

5. EXAMPLE

Berger and Huntley (1989) presented datasets from ex-
periments to date sediments using thermoluminescence; the
datasets are reproduced in Tables 4 and 5. In Table 4 we give

Table 4. Photon Counts per Degree Celsius Temperature Increase in a Thermoluminescence Dating Experiment
for a Glaciolacustrine Silt

Unbleached samples Bleached samples

Photon Exact Photon Exact
Level Dose count ε̂ij PIT Level Dose count ε̂ij PIT

1 0 38,671 .175 .558 5 0 20,766 −.898 .217
1 0 40,646 1.173 .891 5 0 21,393 −.180 .450
1 0 38,149 −.089 .470 5 0 22,493 1.078 .883
1 0 35,836 −1.259 .080 NA 120 31,290 — —
2 120 65,931 −.669 .303 NA 120 33,779 — —
2 120 67,887 1.150 .970 6 240 43,221 .471 .634
2 120 66,133 −.481 .363 6 240 43,450 .678 .700
3 240 82,496 −1.154 .009 6 240 41,427 −1.149 .033
3 240 86,708 .604 .675 7 480 51,804 −.831 .244
3 240 86,580 .550 .658 7 480 59,555 1.110 .911
4 480 110,978 −.536 .321 7 480 54,013 −.278 .423
4 480 113,807 .750 .750 NA 960 75,748 — —
4 480 114,192 .925 .808 NA 960 76,613 — —
4 480 109,652 −1.138 .121
NA 960 130,373 — —
NA 960 137,789 — —

NOTE: Samples were irradiated with doses of gamma radiation from a 60Co source. See the text for details of the units for dose. The first column,
Level, is the index i running from 1 to k = 17 labeling the sets of replicates for our tests. We also report standardized residuals from ε̂ij and the values
of the exact probability integral transforms uij = Gni (ε̂ij ) for each data point.
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Table 5. Photon Counts per Degree Celsius Temperature Increase in a Thermoluminescence Dating Experiment
for a Lake Silt

Unbleached samples Bleached samples

Photon Exact Photon Exact
Level Dose count ε̂ij PIT Level Dose count ε̂ij PIT

8 0 20,522.2 1.075 .858 14 0 11,814.6 .978 .821
8 0 19,373.6 −.491 .336 14 0 11,587.8 −1.021 .155
8 0 20,14.6 .555 .685 14 0 11,708.6 .043 .512
8 0 18,899.1 −1.138 .121 15 1 26,645.2 1.112 .914
9 1 50,382.5 .980 .823 15 1 26,445.2 −.288 .420
9 1 48,57.2 −1.019 .156 15 1 26,368.6 −.824 .247
9 1 49,529.5 .039 .511 16 2 41,487.1 .914 .791

10 2 77,706.6 1.126 .929 16 2 39,125.1 −1.068 .124
10 2 75,291.3 −.342 .404 16 2 40,582.5 .155 .543
10 2 74,563.8 −.784 .262 NA 4 61,532.1 — —
11 4 111,547.5 −.040 .489 NA 4 57,023.6 — —
11 4 113,899.1 1.019 .844 17 8 93,015.8 1.154 .987
11 4 109,461.1 −.979 .178 17 8 87,907.7 −.535 .347
12 8 164,564.9 .366 .603 17 8 87,655.2 −.619 .320
12 8 151,504.2 −1.132 .064 NA 16 107,618.3 — —
12 8 168,042.1 .765 .731 NA 16 110,394.2 — —
13 16 204,726.5 .796 .742
13 16 201,964.3 .326 .591
13 16 193,457.6 −1.122 .076

NOTE: Samples were irradiated with doses of beta radiation from a 90Sr source. See the text for details of the units for dose. The first column, Level,
is the index i running from 1 to k = 17 labeling the sets of replicates for our tests. We also report standardized residuals from ε̂ij and the values of the
exact probability integral transforms uij = Gni (ε̂ij ) for each data point.

dataset 1, labeled QNL84-2 by Berger and Huntley; the sedi-
ment is glaciolacustrine silt. A total of 29 samples were pre-
pared. Of these, 13 were pretreated by optical bleaching. The
samples were exposed to gamma radiation at doses (in minutes
of 60Co gamma radiation at 1.6 Gy/min) listed in the table. The
samples were then heated and the thermoluminescence mea-
sured as recorded in the table. (Units are photon counts per de-
gree Celsius as the temperature is raised smoothly.) Dataset 2,
shown in Table 5, is for a lake sediment. For this dataset, there
were 35 data points, 16 of which corresponded to pretreatment
by optical bleaching. The gamma radiation is measured in kilo-
seconds of 90Sr beta radiation at 90 Gy/ks for this dataset.

For these datasets, interest centers on fitting heteroscedas-
tic, nonlinear models relating photon count to dose; see Berger,
Lockhart, and Kuo (1987) for details of these model fits. Gen-
erally, the models have the form

yij = g(dij, θ)(1 + σεij),

where it is assumed that the εij are independent standard normal
variates. A common example is

g(d, θ) = α
{
1 − exp(−β(d + γ ))

}
,

where the values of α and β , at least, depend on whether the
observation is bleached or not. For each of our two datasets,
there are then six parameters (or seven if, as is fairly commonly
done, we allow σ to be different for bleached and unbleached
data).

It is useful to test the assumption of normal errors because
the behavior of some of the fitting methods used depends on
the quality of this normal approximation and because diagnostic
statistics have behaviors that depend on the assumption of nor-
mality. This assumption could be tested by fitting the nonlinear
regression model in question, extracting standardized residuals,

and hoping these would be approximately normal. No exact dis-
tribution theory for the residuals is available; it would be nec-
essary to assess the extent to which they were approximately
normal. Moreover, the hypothesis of normal errors might be re-
jected even if it were correct because the model itself might
be wrong. Consequently, we will apply the tests proposed here
fitting separate means and variances at each level of the covari-
ates.

Altogether, there are 22 different combinations of covariate
levels (two treatments times five dose levels for dataset 1 and
two treatments times six dose levels for dataset 2). It will be
seen in Tables 4 and 5 that for 5 of these 22 combinations there
were only 2 replicates; these 10 observations do not provide in-
formation for testing fit to the normal distribution. Eliminating
them leaves k = 17 combinations. Of these, 14 have ni = 3 and
3 have ni = 4. We use these 54 data points to assess the normal-
ity of the residuals using our proposed tests.

The values of ε̂ij and uij = Gni(ε̂ij) from steps 1 to 3 of Sec-
tion 2.1 are recorded in the tables. We sort the probability in-
tegral transforms and then compute the statistics to get W2

obs =
.008875 and A2

obs = .07979. Finally, we compute asymptotic
P values corresponding to these values using the method of Sec-
tion 3, taking m = 100 to discretize the integral equation.

We find that the P value corresponding to the statistic W2 is
.998, whereas that corresponding to A2 is .992. Both of these
P values indicate that the data are, if anything, surprisingly too
normal looking. A small Monte Carlo study confirmed that the
asymptotic P values are quite accurate in this case. Thus, these
large P values are not easily explained by the quality of the
asymptotic approximation.

The datasets used here were published for use in testing soft-
ware; we speculate that the process of selecting suitable data
for such a purpose might have tended to eliminate less normal
looking datasets though we do not actually think the normality
of the data was directly assessed in selecting the sets.
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6. DISCUSSION

In testing the normality of random errors in regression mod-
els, the usual practice is to compute the probability integral
transforms, ui, of the fitted residuals using the normal distri-
bution and to test whether the resulting ui’s follow a uniform
distribution. When the fitted models are nonlinear with many
parameters, there is no guarantee that the fitted residuals are
normally distributed even if the random errors are. Thus, the
actual sizes of the tests that use normal probability integral
transforms can deviate substantially from the nominal levels.
We propose basing the tests on the empirical distribution of the
exact probability integral transforms of residuals.

The performance of the proposed tests in finite samples is
examined by Monte Carlo simulations. The study shows that
Monte Carlo critical points are well approximated by the as-
ymptotic critical points when the number of replicates at each
level is as small as 5, thus justifying their use in realistic sam-
ples. The approximation is not so poor, even with three repli-
cates at each level. When the number of replicates exceeds 10,
the critical points of the proposed tests approach the asymptotic
points of the tests based on normal probability integral trans-
forms.

The powers of the proposed tests were compared with those
based on the normal probability integral transforms for the case
of fitting a single response mean. The proposed tests are found
to be more sensitive to alternatives with heavy tails, whereas
the latter was found to be more sensitive to alternatives with
light tails. Both tests show considerable power against skewed
alternatives. The proposed tests have the advantage that the data
collected from several similar experiments can be used to im-
prove the power of the test. Furthermore, they are robust to a
possible misspecification of the model.

APPENDIX: LARGE–SAMPLE
DISTRIBUTION THEORY

We begin by showing that the process Wn is approximately
Gaussian with mean 0 and covariance function as given in Sec-
tion 3. To be precise, we have the following theorem.

Theorem 1. Let n = ∑k
i=1 ni be the total number of observa-

tions and let z1, . . . , zn be the ordered probability integral trans-
forms. Assume there is an integer N with ni ≤ N ∀ i, n. Let
ζr,n = #{i : ni = r}/k. Furthermore, assume that ζr,n → ζr . Then
the process Wn(t) converges weakly in D[0,1] to a Gaussian
process W with mean 0 and covariance function α(s, t) given
by

α(s, t) = min(s, t) − st

+
N∑

r=3

ζrr(r − 1)
[
G2,r{G−1

r (s),G−1
r (t)} − st

]
.

Let k denote the number of distinct levels of the covariate
and let ni denote the number of replicates at each level. Let
n = ∑k

i=1 ni be the total number of observations. We prove the
weak convergence of the process

Wn(t) = 1√
n

k∑

i=1

ni∑

j=1

[
I
{
Gni(ε̂ij) ≤ t

}
− t

]

for the case of an equal number of replicates at each level of the
covariate (i.e., ni = m for all i). We fix m and let k → ∞. In this
case, the process Wn can be rewritten as

Wn(t) = 1√
m

m∑

j=1

Wnj(t),

where each Wnj(t) = k−1/2 ∑k
i=1[I(uij ≤ t) − t] and uij =

Gm(ε̂ij). For each fixed j, the variables u1j, . . . ,ukj are, un-
der the null hypothesis, iid Uniform[0,1] variables and so
each Wnj converges weakly in D[0,1] to a Brownian bridge,
that is, a Gaussian process Wj with mean 0 and covariance
min(s, t) − st. Therefore, Wnj is tight in D[0,1]. This, in turn,
implies that, for each j, there is a compact Kj ⊂ D[0,1] such
that P(Wnj ∈ Kj) ≥ 1 − ε/m for any ε > 0. Because Kj is com-
pact in D[0,1],K = K1 × · · · × Km is compact in (D[0,1])m

and P((Wn1, . . . ,Wnm) ∈ K) ≥ 1 − ε. Because ε is arbitrary, it
follows that the process (Wn1, . . . ,Wnm) is tight in (D[0,1])m.

Now consider 0 ≤ t1 < · · · < tr ≤ 1. The matrix Mk whose
ljth entry is Wnj(tl) can be written as

∑k
i=1 Qi/

√
k, where the

matrices Qi’s are iid and Qi has ljth entry I(uij ≤ tl)− tl. Each Qi
has mean 0 and so Mk converges in distribution by the usual
central limit theorem to a Gaussian matrix M with E(M) = 0
and

cov(Mlj,Ml′j′) = cov{I(uij ≤ tl), I(uij′ ≤ tl′)}
= G

{
G−1(tl),G−1(tl′),ρjj′ , (m − 3)/2

}
− tltl′ ,

where ρjj′ = 1 if j = j′ and −1/(m − 1) if j )= j′.
Thus, (Wn1, . . . ,Wnm) converges weakly in (D[0,1])m to a

Gaussian process (W1, . . . ,Wm) with mean 0 and cov{Wj(tl),
Wj′(tl′)} = G{G−1(tl),G−1(tl′),ρjj′ , (m − 3)/2} − tltl′ .

Because each Wj is in C[0,1] (each is a Brownian bridge), it
follows that Wn = m−1/2 ∑m

j=1 Wnj converges weakly in D[0,1]
to W = m−1/2 ∑m

j=1 Wj, which is a mean-zero Gaussian process
with covariance

α(s, t) = cov(W(s),W(t))

= 1
m

m∑

j=1

m∑

j′=1

cov{Wj(s),Wj′(t)}

= min(s, t) − st + 1
m

∑

j )=j′

[
G2,m{G−1(s),G−1(t)} − st

]
.

This proves the theorem.
It is well known (see, for instance, Stephens 1986) that if

W is a mean-zero Gaussian process with covariance αn, then∫ 1
0 W2(t)dt has the same law as

∞∑

i=1

λiχ
2
i ,

where the χ2
i ’s denote a set of independent chi-squared random

variables each on 1 degree of freedom and the λi’s are eigenval-
ues of the integral equation

∫ 1
0 αn(s, t)f (t)dt = λf (s). With the

theorem, this shows that under the null hypothesis the p values
computed in Section 3 are asymptotically uniformly distributed
under the null hypothesis.

[Received August 2002. Revised September 2004.]
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