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SUMMARY
Normalized spacings provide useful tests of fit for many suitably regular continuous
distributions; attractive features of the tests are that they can be used with unknown
parameters and also with samples which are censored (Type 2) on the left and /or right. A
transformation of the spacings leads, under the null hypothesis, to a set of z-values in (0, 1);
however, these are not uniformly distributed except for spacings from the exponential or
uniform distributions. Statistics based on the mean or the median of the z-values have
already been suggested for tests for the Weibull (or equivalently the extreme-value)
distribution; we now add the Anderson-Darling statistic. Asymptotic theory of the test
statistics is given in general, and specialized to the normal, logistic and extreme-value
distributions. Monte Carlo results show the asymptotic points can be used for relatively
small samples. Also, a Monte Carlo study on power of the normal tests is given, which shows
the Anderson-Darling statistic to be powerful against a wide range of alternatives; the mean
and median can be non-consistent or even biased.
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1. INTRODUCTION: NORMALIZED SPACINGS

Normalized spacings
Suppose F(w) is a completely specified continuous distribution function, and let x have a
distribution function G(x), where x = o + fw; thus o« and f are location and scale parameters
in G(x). If x;) < x(3) < ... < X, are the order statistics of a random sample from G(x), the x;
can be represented as x; = o + fiw; where w; is a random sample from F(w). Suppose
m; = E(w;) where E denotes expectation; since F(w) is completely specified, m; can be
calculated. The spacings between the x; are defined by s; = x; — x;-1),i=2,3,....,nand
the normalized spacings are s;/(m; — m;_,), i = 2, 3, ..., n. Normalised spacings can be used to
test whether the sample does indeed come from G(x). This can be done for samples censored at
either or both ends, as well as for complete samples, so we will describe the censored case.
Suppose then the available observations are Xy, Xg+i1y ---» Xg+1+r> and define the
normalized spacings

Vi ={Xgrn = Xari-p}/ (Myp; —Myeyiy), i=1,...,r+1 ey

A further transformation J gives ordered values z; as follows.

Define T, = Zy;,i =1, ..., j, so that T, is the sum of all the y;. Then let

2oy =T/Ty, i=1,...,r 2)
The values z; are clearly between 0 and 1.

Example: The exponential distribution

When the x-sample is from an exponential distribution Gg(x) = 1 — exp(—x/B), x > 0, the
quantity my,; — m,,;_, in the denominator of y;, becomes 1/(n —k —i+ 1), and it is

+ Address for correspondence: Professor M. A. Stephens, Department of Mathematics and Statistics, Simon Fraser
University, Burnaby, B.C., V5A IS6, Canada.

© 1986 Royal Statistical Society 0035-9246/86/48344 $2.00



1986] Goodness of Fit 345

well-known that the y; are themselves a random sample from G(-) above. Furthermore, for y;
from Gg(-), the J transformation gives z;, i=1, ..., r (note that Z,+1) = 1), which are
distributed like ordered uniforms, that is, like the ordered values of a random sample of size r
from the uniform distribution between 0 and 1, written U(0, 1). (If the exponential sample is
not censored on the left there is an extra normalized spacing derived from X(1) alone. This is
Y1 = Xu)/m; = nx,; the other normalized spacings are obtained by allowing y,,, to be
the right hand side of (1), with k = 1, x4, = 0, giving values y,, y,, ..., ¥,.,; T and (2) are
modified in an obvious way, to give one extra z,.) In reliability theory, if the original X Were
lifetimes of tested parts all of which were put on test at the same moment x = 0, the quantity T;
is often called the total time on test to failure i, since it may be shown to be T, = Xy X2 +
..o+ X + (n — i)x), that is, T; is the sum of the times to failure of the first i items to fail, plus
the time so far on test of the parts still working. Many test procedures are based on the values
T;. They can be shown to be related to the z;, and the test for exponentiality of the x-sample
has been converted to a test for uniformity of the z-sample. Tests of this type are discussed in
Stephens (1986).

For a more general G(x), the normalized spacings are not a random exponential sample,
even asymptotically. An important theorem exists concerning the asymptotic properties of
normalized spacings. This is that, as n — oo, for any regular parent population G(x) for x, and
for “sufficiently separate” indices k and [, y, and y, converge to independent exponentials, as k,
I, n - 00, and k/n —p and In— g, with both p and q in (0, 1) and p # q; see Pyke (1965, p. 407)
for more rigour and details.

This result might suggest that, as n — o, the z(; can be regarded as ordered uniforms, but
this is not so; the condition that p cannot be 0 and g cannot be 1 and that they must be different
prevents this result. Thus distribution theory of tests based on the Z(; must not be derived on
this assumption. In this article we give the correct asymptotic theory of three such tests, in
some generality, and then particularise it to the normal, the logistic, and the extreme-value
distributions. Finally the normal tests are compared with other tests for power. Two of the three
statistics, which have already been proposed in the literature, are found to be not always
consistent and sometimes biased; the third statistic (42 below) gives good results and is the
recommended statistic in this class. Percentage points and power results for tests for the
extreme-value distribution (or equivalently, for the two-parameter Weibull distribution) are
given elsewhere (Lockhart, O’Reilly and Stephens, 1986).

2. TEST STATISTICS AND ASYMPTOTIC THEORY

We investigate tests based on three statistics. The first one is the Anderson-Darling statistic
A?, calculated from the r values z; given by (2) by

A= —r— (1/r) (Z (2i — D[log Zg + 108{1 - Z(r+1—i)}]>§ 3)
i=1

here log x refers to natural logarithms. The other test statistics are Z, and Z, given by
Z, = "1/2[2((” 13/2) — 31,r odd 4
=r'"2[24 422 — r + 2)/{2(r + 1)}], 7 even

r
Z,=r"*(Z—Pwherez= Y z,/r. 6)
i=1
Z, is derived from the median of the z; when r is odd and, when r is even, from the order
statistic z, . )/5), Which is close to the median. Statistic Z, is derived from the mean Z of the Z(y-

These statistics are investigated because they are closely related to statistic S, introduced by
Mann, Scheuer and Fertig (1973) and statistic S*, introduced by Tiku and Singh (1981), for
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tests for the extreme-value and Weibull distributions. When the x set is from an extreme-value
distribution the statistic S is the same as 1 — z,,, where t = (r + 1)/2 when r is odd and
t = (r + 2)/2 when r is even; hence Z; = r'/%(0.5 — S) for r odd and Z, = r*/2[r/{2(r + 1)} —
S] for r even. Statistic S* is 2z.

In order to calculate the statistics, values of m, (or, more precisely, values of the difference
k; = m; — m;_,) are needed. For the normal distribution extensive tables can be found in
Harter (1961), and are reproduced in Biometrika Tables for Statisticians, Vol. 2; also computer
routines exist (for example in the IMS library of subroutines) to calculate the m; very
accurately. For the extreme-value distribution, tables of k; are given for 3 < n < 25 by Mann,
Scheuer and Fertig (1973). For the logistic distribution k; = n/{(i — )(n —i + 1)},i=2,....,
n.

The statistics A%, Z, and Z, are functionals of the quantlle process Q,(t) of the z;, and of the
empirical process R,(t), where

0,0 =r'"?(z,,—1), 0<t<1,
(here v is the greatest integer in (r + 1)t, and 2z, = 0 and z,,,,, = 1 by definition), and

R, (1) = r”z[r‘1 Y Iz < t) — t] ot 1.
1

Here I(B) is the indicator function; I(B) =1 if event B occurs, and I(B) = 0 otherwise.
Specifically, it may be shown that

Z, =0,(3) + o, (1);

Z,= fl Q,(t) dt + 0,(1); and
0

A? = flRf(s)ds/{s(l — )}
0

Suppose distribution F has density f with derivative £ and let F ~!(-) be the inverse of F, that
is F~1(x) = inf(¢: F(t) > x}.
Define c(x) = —(1 + (1 — x)f(F~}(x))/f*(F~'(x))), and set

t

I,(s) = r (A + ucw))/(1 — u)du, 1,(s) = j c(w) (w)du, and I5(s,t) = J c(x)dx.
0 0

Set po(t, 8) = po(s, t) = s + 2I,(s) + I, (s)I5(s,t), for O0<s<t<Ll (6)
Finally, with0 < p<gqg<1,sett* =p+ t(q — p) and s* = p + s(qg — p) and let
p(t, ) = p(s, t) = (g — P)~ {po(t*, s*) — spo(t*, @) — (1 — 5)po(t*, p)

—tpo(s*, @) — (1 — Dpo(s*, p) + stpo(q, @) + (1 — s)(1 — Dpo(p, p)
+ (s +t — 2st)po(p; D)} @)

To simplify notation we shall sometimes omit the arguments of, for example, Q,(t), and of p(s,

1), In order to develop the asymptotic theory of the test statistics A%, Z, and Z,, we require two
results. The first is:

Result 1: 'When the location and scale parameters in G(x) are « = 0 and f = 1, the process
[nt]
n,(t) = nt {( Y yl/n> } converges weakly to a Gaussian process 7(t) with mean 0 and

covariance p,.
Let k/n—>p and (k+r + 1)/n—> q as n— oco. It follows from result 1 that Q,(t) above
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converges weakly to the Gaussian process Q(1) =(q — p)~*[n{p + t(q — p)} — tn(q) —
(1 — )n(p)], and R,(t) then converges weakly to R(t) = —Q(t).

Comment on Result 1: Csorgo (1983) has given a thorough discussion on empirical
processes, a number of which are closely related to #,. In fact, Csorgo and Revesz (1980) have
proved that a process #(t), very similar to #,(t), converges weakly to a Gaussian process 1*(t)
with the same mean 0 and covariance p, as n(t) above. The process #(t) is obtained from 7,
by replacing y;/n = {x;, — x;_}/{n(m; —m;_ )} by {x;, — x;- ,}AF i —11/[n + 1])}. The
convergence of ,(t) in Result 1 might then be proved by showing that #*(r) and 7,(t) are
sufficiently close. For the logistic distribution this is straightforward, but tedious; for other
distributions, for example, the normal, extensive analysis is needed, which we have not
attempted here.

For statistic 4%, we also require that, as n — 0o, A? converges in distribution to S =
{8 [R*(s)/{s(1 — s5)}] ds. This should follow because R,(t) converges weakly to R(t), but the
result is difficult to prove because the denominator is zero at s = 0 and 1. This particular
problem with 42 has occurred in other goodness-of-fit situations; see, for example, Durbin
(1973). However, it is precisely because the weighting of R%(s) becomes large towards the limits
of the integral that A2 is a good statistic — it gives weight to extreme observations. Hence it is
worth giving results for 42

We note here that Result 1 and the convergence of 42 both await rigorous proof. For this
article we have verified by simulation studies that the A2 distributions for finite n do converge
to the appropriate asymptotic distribution. This distribution is that of § = Z4,w;,i = 1,..., oo,
where w; are independent y3 variables, and where 4, > 1, > ... are the eigenvalues of

1
A(s) = f J@p*(s, vt @®)
V]

with p*(s, t)=p(s, t)/{s(1 —s)e(1 —t)}'/%. This follows from well-known theory (see, for
example, Durbin 1973).
The asymptotic distributions of Z, and Z, are respectively N(0, 62) and N(0, ¢3), where

1,1
ot=p(}3 and o} = j J p(s, 1) ds dt. ®
0Jo

In order to obtain asymptotic points and distributions, we therefore need p(s, t) for various
distributions. These are given in the next section.

3. COVARIANCE FUNCTIONS FOR SPECIFIC DISTRIBUTIONS

3.1. When G(x) is the uniform distribution, it is easily shown that the z; are exactly
distributed as the order statistics of a sample of size r from U(0, 1). As was stated in Section 1,
this is also true when G(x) is the exponential distribution. The asymptotic distribution of #,(t)
is then that of Brownian motion, and Q and R are Brownian bridges. The asymptotic
distribution of 42 is then the Case 0 distribution tabulated in Stephens (1974, 1976), and the
asymptotic distributions of Z, and Z, are respectively N(0,1/4) and N(0, 1/12).

3.2. When F(w) = ®(w), the standard normal distribution with density ¢(w), we find

e(x) =1 —x)0 ' (x)/$p(@ '(x)),
Ii(s) = [s + s(@7'(s))* + @71 ()(@ ™ (5))]/2,
I(s) = —[(s* + 9)/4 + (s — )@ '(s))*/2+ (2s — DO™H ()@~ (5))/4,
+(s* =P ()4 + (25 — (P 1(s)* (@ (s))/4
+ (@7 1(5)*¢* (@ '(5))/41/2 and
Iis, ) =J@t) —J(s) for O0<s<t<],
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where
J(@©) = [(@ ')A — ) — D~ H(O)Y(D@™'(1)) — t]/2.

These are used in (6) and (7) to give p(s, t). o
3.3 For F(x) = exp{—exp(—x)}, the extreme value distribution, we find

c(x)=(ogx)™' —x7! —(xlogx)™", I,(s) = E,(—logys),
I,(s) = —E?(—log s)/2 + (log s — log(—log s))E,(—log s) — s

+ J y~!log(y)e ’dy, and

—logs
Is(s, ) =K(s) — K1) 0 <s <t < 1),

where

K(s) = E,(—log s) + log(—log s) +log s and E1(Y)=J x e * dx.
y

These expressions are used in (6) and (7) to give p(s, t). The extreme value distribut‘ion is
sometimes written in the form F*(x) = 1 — exp{—exp(x)}, —o0 <X <. F *(x) is the
distribution of —x’, where x’ has the distribution F(-) at the beginning of this subsection. For
F*(x), the covariance p*(s, t) is found from p(s, t) for F(x), by the relation p*(s, t) = p(1 —s,
1—1).

3.4. For the logistic distribution, F(x) = (1 + e~ *)~*, we have

ox) = (x — D/x,
I,(s) = —s — log(1 — s),

I,(s) =s — s?/2 +'[ u” (1 —u)log(l — u)du, and

0
Ijs,t)=t—s+1logs—logt, O0<s<t<l;

p(s, t) is again calculated from (6) and (7).

4. DISTRIBUTIONS AND PERCENTAGE POINTS

Statistic A%. The eigenvalues of p*(s, t) in equation (8), were found by a discrete approxima-
tion of the integral. To high accuracy, the eigenvalues 4,, 4,, ..., 4, are then those of the
matrix system

k
16— = | 3 16~ ko~ Dk G~ bk

We found that k = 100 gave sufficient accuracy, in the sense that an increase in k did not
significantly change the asymptotic percentage points of 42, which are given by those of
T=ZX Aw;i=1,...,k These were evaluated by Imhof’s method (Durbin and Knott, 1972).
The percentage points are given in Table 1, for the normal and logistic distributions, for
various 0 < p < g < 1. (Recall that p =k/nand g = (k + r + 1)/n, as k, r, n — ). In the case
of symmetric distributions such as these, censoring at p, g leads to the same points as censoring
at 1 — g, 1 — p so that the tables are quite compact.

The asymptotic points change fairly slowly with the censoring pattern, and interpolation in
the tables is straightforward and works well.

For finite samples, Monte Carlo points have been found for the normal test, and for
uncensored samples of sizes n = 20 and for n = 40. For A2, the points for finite n converge fairly
quickly to the asymptotic points; we observed that use of the exact values for the m; (rather
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than, say Blom’s approximation m; ~ ®~!{(i — 3/8)/(n + 1/4)} makes the convergence faster.
Use of the asymptotic points at level a with finite samples gives a test level which is slightly
greater than a.

Statistics Z, and Z,. Statistics Z, and Z, are asymptotically normally distributed with
mean 0, and variance given by (9). For the uncensored case, these have been worked out
analytically. For the normal distribution ¢ = 3/16 = 0.1875 and ¢2 = (1 — 3'/?/n)/8 =
0.056084; for the logistic distribution the values are 67 = 1 — n2/12 + (0.5 — log 2)® = 0.21484,
and 62 = (n% — 9)/12 = 0.07247. Statistics Z, and Z, converge quickly to their asymptotic
distributions, as one would expect. Thus, to make a test for normality based on the median, we
calculate Z¥ = {r/0.1875}'/%(z(, 1), — 0.5) if r is odd, and refer Z¥ to a standard normal
distribution; if r is even, the bracket including z is replaced by [z, + 1/2) — (r + 2)/{2(r + 1)}].
For the test based on the mean, Z% = {r/0.0561}/%(z — 0.5) is referred to the standard normal
distribution. Note that if the z, were ordered uniforms, the values of 63 and 63 would be 0.25
and 0.0833 respectively; the true asymptotic variances of Z; and Z, are much smaller,
especially in the normal case.

Non-consistency and bias. Some calculations have also been made when the test is for the
normal or the logistic distribution, but the sample tested is actually uniform. For the logistic
test, statistics Z, and Z, are again asymptotically normal with mean 0; the variances ¢ = 0.3
and o2 = 3/70 = 0.04286. The algebra involved in the calculations is extensive and is not
included here. Straightforward calculations then show that the asymptotic power of Z,, for a
5% test against a uniform alternative, is 0.011, that is statistic Z, is not consistent and also
biased. For Z, the asymptotic power is 0.097, very low, showing that Z, is not consistent.
Similar results hold for Z, and Z, in the test for normality against the uniform alternative; the
asymptotic power of Z, is 0.11, so that Z, is not consistent, and that of Z, is 0.031, so that Z, is
biased and inconsistent. The Monte Carlo studies in Section 6 below verify these results, which
certainly weaken the appeal of these statistics.

5. EXAMPLE

Example. Table 2, part (a), gives 15 values of X, a measure of endurance of industrial
specimens, taken from Section 6.2 of Biometrika Tables for Statisticians, Vol. 2. Graphical plots
are given there and suggest that x = log X might be normally distributed. Also given in Table 2
are: the values x;; values of m;; the normalized spacings y;; and the values z,, together with
the values of the test statistics. Reference to Table 1 shows that A? is not nearly significant, so
that lognormality of the original values is acceptable. The values of Z¥ and Z% (Section 4
above) are —0.958 and —0.594 and these too are not significant.

In part (b) of Table 2 the calculations are shown for a censored sample consisting of the first
11 of the ordered X set; again normality can be accepted. If the original X are used without
taking logarithms, values of A2 are 7.424 for the whole set, and 3.262 for the censored set.
Reference to Table 1, with p=0 and g =1 or 11/15, shows both of these to be significant at
the 1% level. These results agree with results of other tests described in Biometrika Tables
for Statisticians.

6. POWER COMPARISONS: TESTS OF NORMALITY

In this section, we examine the power of the tests for normality, for complete samples, taken
from a set of alternative distributions. Table 3 gives the percentage of 5000 samples declared
significant by the various test statistics. These tests are for sample sizes n = 20 and n = 40, and
the test level is 5%. The test statistics compared are A2 (NS), that is A based on normalized
spacings, Z, and Z,, against the well-known Anderson-Darling statistic 4% (Case 3) and the
Shapiro-Wilk (1965) statistic W. In 4% (Case 3), the Anderson-Darling statistic is calculated
using values z; = G(x;), with estimates X and s? for the normal distribution parameters x4 and
2. Critical points are given by Stephens (1974).
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TABLE 2
Values X of endurance measurements and calculations
for A%, Z* and Z%*

Part (a)
Values X,,: 0.20 0.33 0.45 0.49 0.78
0.92 0.95 097 1.04 1.71
2.22 2.275 3.65 7.00 8.80
Values x;: —1.609 —1.109 —0.799 —-0.713 —0.248
—0.084 —0.051 —-0.030 0.039 0.536
0.798 0.822 1.295 1.946 2.175
m; —1.736 —1.248 —0.948 —-0.715 —-0.516
—0.335 —-0.165 0.000 0.165 .
Vi 1.026 1.033 0.366 2.334 0915
0.189 0.126 0.422 2.925 1.447
0.123 2.031 2.169 0.469
Z4 0.066 0.132 0.156 0.306 0.364
0.376 0.385 0412 0.598 0.692
0.700 0.831 0.970
A? = 0375
Median z,, = 0.385 Z¥ = (13/0.1875)!/%(0.385 — 0.5) = —0.958
Mean z = 0.461 Z% = (13/0.0561)!/%(0.461 — 0.5) = —0.594
Part (b) z;, 0.095 0.191 0.225 0.441 0.526
0.544 0.555 0.595 0.866
A% = 06067
Median 75, = 0.526  Z¥ = (9/0.1875)/2(0.526 — 0.5) = 0.104
Mean z = 0.449 Z3% = (9/0.0561)1/2(0.449 — 0.5) = —0.646

The power studies show 4% (NS), 42 (Case 3) and W to have much the same power overall.
A? (NS) detects skew alternatives better, and W and 42 (Case 3) are better against symmetric
alternatives. Z, and Z, are poor in power against symmetric alternatives; the results for the
uniform and logistic alternatives, for example, verify the asymptotic results of Section 4, that
Z, and Z, can be not consistent or even biased. Z, was originally introduced in connection
with tests for the two-parameter Weibull distribution against a special class of alternatives, and
was suggested as a one-tailed test. Here we have a different tested distribution and a wider
range of alternatives and Z, and Z, have both been used as two-tailed tests. In their
examination of Z,, Z, and 4% (NS) in connection with the tests for the Weibull distribution,
Lockhart, O’Reilly and Stephens (1984) also found that 4% (NS) has good power.

7. FINAL REMARKS
Tests based on normalized spacings have the considerable appeal in that they follow the
same procedure for all distributions, and can be used with right-or left-censored samples. They
avoid estimating unknown parameters, although values of m; are required. It appears that 42
(NS) is competitive in terms of power with other methods of testing, although more extensive
comparisons are needed.
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TABLE 3
Power comparisons: Tests of normality. Test Level =
5%. The table gives the percentage of 5000 Monte
Carlo samples declared significant by the appropriate

Statistics
n=20
Shapiro-
Alternative A? (Case 3) Wilk A% (NS) Z, z,
P 1df 98 99 99 96 98
2 3df 59 63 69 51 68
xr4df 50 54 58 41 58
2 10df 24 24 26 20 29
Exponential 79 83 87 72 82
Log Normal 93 94 96 90 95
Uniform 20 22 14 10 4
Logistic 11 10 9 6 10
Laplace 30 25 20 10 20
Cauchy 90 88 84 50 67
t, 53 51 47 24 40
ty 34 34 28 8 25
ty 26 26 21 7 21
n=40
2 1df 100 100 100 100 100
2 3df 97 98 97 88 96
xr4df 82 89 92 76 90
x210df. 39 4 50 38 53
Exponential 99 99 100 96 99
Log Normal 100 100 100 99 100
Uniform 46 62 43 11 4
Logistic 14 12 12 6 13
Laplace 50 42 36 10 21
Cauchy 100 99 98 62 76
[ 79 75 71 30 49
ty 51 50 45 18 31
ty 35 36 32 12 26
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