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Abstract

We establish the conjecture of Moore [1973. A note on Srinivasan’s goodness-of-fit test. Biometrika 60,
209–211] that the usual plug-in estimate of a distribution function and the Rao–Blackwell estimate of the
distribution function are asymptotically equivalent for a wide class of exponential family distributions.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let X 1; . . . ;Xn be independent and identically distributed according to a distribution G which
under a null hypothesis, H0, is known to belong to the parametric family fF ð"; yÞ; y 2 Yg. Under
H0 let Tn be a minimal sufficient statistic for y and let ŷn be the maximum likelihood estimate
(mle) of y. By the plug-in estimate of the unknown cumulative distribution function (cdf) Fð"; yÞ
we mean F̂ n ¼ Fð"; ŷnÞ. The Rao–Blackwell estimate is ~Fn given by

~FnðxÞ ¼ PðX 1pxjTnÞ.
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Lilliefors (1967, 1969) proposed Kolmogorov–Smirnov tests for the null hypothesis of an
exponential distribution with unknown scale parameter and for the null hypothesis of a normal
distribution with unknown mean and variance. The test statistics proposed were

D̂n ¼
ffiffiffi

n
p

sup
x

jFnðxÞ % F̂ nðxÞj,

where Fn is the usual empirical distribution function, that is,

FnðxÞ ¼ n%1
X

n

i¼1

1ðXipxÞ.

Srinivasan (1970) proposed, for the normal and exponential null hypotheses analogous
Kolmogorov–Smirnov test statistics based on ~Fn:

~Dn ¼
ffiffiffi

n
p

sup
x

jFnðxÞ % ~FnðxÞj.

Both Srinivasan and Lilliefors studied their tests by simulation. Kac et al. (1955) derived large
sample distribution theory for D̂n in the case of tests for the normal distribution. Sukhatme (1972)
extended this to general regular families by showing that the process

ffiffiffi

n
p

fFnðxÞ % F̂ nðxÞg

converges weakly, under H0, to a mean zero Gaussian process whose covariance depends on the
model being tested. Moore (1973) showed the process

ffiffiffi

n
p

fFnðxÞ % ~FnðxÞg

converges weakly to the same limit in the exponential, Normalðm;s2Þ and Uniform ½0; y' families,
by establishing that for these families

n1%d sup
x

jF̂ nðxÞ % ~FnðxÞj ! 0 (1)

in probability for any d40 fixed. The weak convergence result is a consequence of this in the
special case d ¼ 1=2. For a detailed practical discussion of tests of this type see Stephens (1986).
We refer to (1) as Moore’s conjecture. In addition to the cases established by Moore (who

studied explicit forms for ~Fn in the normal, exponential and uniform cases), the conjecture (1)
has been shown to hold for the inverse Gaussian family by O’Reilly and Rueda (1992) when
d ¼ 1=2.
In Section 2 we use a uniform version of the local central limit theorem to establish (1) for

exponential families where the complete sufficient statistic has a density relative to Lebesgue
measure. We give a corresponding result for exponential families supported on a lattice and end
the section with an example showing the conjecture is not much more general than the cases
covered by our theorem. In particular the result does not hold for the Nðy; y2Þ curved exponential
family. The paper finishes with proofs and lemmas.
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2. Main results

2.1. Absolutely continuous distributions

We suppose our interest is to test the hypothesis that G belongs to a natural exponential family
with density, relative to Lebesgue measure, of the form

f ðx; yÞ ( cðxÞ expfytTðxÞ % KðyÞg

with natural parameter space Y ) Rk. The statistic

Tn ( TnðX 1; . . . ;XnÞ ¼
X

n

i¼1

TðXiÞ

is complete and sufficient. The notation Pŷn
ðAÞ describes the plug-in estimate of PyðAÞ, that is, the

function y 7!PyðAÞ evaluated at y ¼ ŷn.

Theorem 1. Suppose the true value y0 of y is in the interior of Y. Assume that there is an integer r
and a neighbourhood N of y0 such that Tr has a bounded density relative to Lebesgue measure for
each y 2 N. Then for each fixed integer m and each d40 we have

n1%d sup
H

jPŷfðX 1; . . . ;XmÞ 2 Hg% PfðX 1; . . . ;XmÞ 2 HjTngj ! 0

almost surely as n ! 1. The supremum is over all Borel sets H in Rm.

Remark 1. Moore’s conjecture is the special case m ¼ 1 with the supremum taken over the smaller
class ofH of the form ð%1; x'. The condition that Tr have a bounded density for some r is mild; it
is equivalent to integrability of some power of the characteristic function. (That is, if ZðuÞ ¼
EyfexpðiuT1Þg and there is a 0ogo1 such that

R1
%1 jZðuÞjg duo1 then Tr has a bounded density

for all r4g.) If Tr has a bounded density for some r0 it has a bounded density for all larger r (see
Bhattacharya and Ranga Rao (1976, Section 19) for a discussion). For the normal case, for
instance, we have Tn ¼ ð

P

Xi;
P

X 2
i Þ which has a bounded density if nX3. (For m ¼ 0 and s ¼ 1

for instance the density is a constant multiple of f ðu; vÞ ¼ ðv% u2=nÞðn%3Þ=2e%v=21ðv4u2=nÞ which is
bounded for nX3.)

Remark 2. The supremum over H is the total variation distance between the measures
PŷfðX 1; . . . ;XmÞ 2 " g and PfðX 1; . . . ;XmÞ 2 " jTng.

Remark 3. Through the rest of the paper all convergences of random quantities to 0 are almost
sure. It is well known that ŷn ! y0 almost surely.

Remark 4. Moore (1973) notes his conjecture holds in the normal and exponential cases even
when H0 is false. It will be seen, by examining our proof, that it is not necessary for H0 to be true.
It is, however, necessary that Tn=n converge in large samples to some value of y for which the
conditions of the theorem apply. In the exponential case for instance we need

P

Xi=n to converge
to a positive limit; we cannot condition on a negative value of X̄ to compute a Rao–Blackwell
estimate. Typically, of course, exponential family models would not be used when the statistic
Tn=n takes values outside the range of the mean parameter of the model.
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Remark 5. Remark 4 has implications for the consistency of goodness-of-fit tests such as that
based on ~Dn. Suppose the true cdf of the Xi is G and that G is not in the closure of H0 (that is,
there is no sequence yn such that F ðx; ynÞ ! GðxÞ for all x). Then the Kolmogorov–Smirnov
statistic D̂n converges to 1 as n ! 1 and the test is consistent against G. A similar conclusion
holds for ~Dn provided G satisfies the conditions in Remark 4.

2.2. The discrete case

Now suppose X 1; . . . ;Xn are discrete with

f ðx; yÞ ( PyðX 1 ¼ xÞ ¼ cðxÞ expfytTðxÞ % KðyÞg

for x in some countable set X. We assume that as x ranges over X the function TðxÞ takes values
in a k dimensional lattice, namely, a set of the form fðaþ ‘1h1 þ " " " þ ‘khkÞ; ‘i 2 f0;+1; . . .g; i ¼
1; . . . ; kg for some k dimensional vectors a; h1; . . . ; hk. We can then use a different local central
limit theorem to obtain an analogue of Theorem 1. For simplicity we assume in the proofs that
each component TiðxÞ of TðxÞ is actually integer valued and that the lattice size of the distribution
of TiðX Þ is 1. This amounts to saying that the greatest common divisor of

fj % ‘ : PfTiðX 1Þ ¼ jg40;PfTiðX 1Þ ¼ ‘g40g

is 1. Notice that the support of the distribution of T does not depend on y.

Theorem 2. Suppose y0 is in the interior of Y. Assume that Vary0fTðX 1Þg is nonsingular. Then for
each fixed integer m and each d40 we have

n1%d sup
H

jPŷfðX 1; . . . ;XmÞ 2 Hg% PfðX 1; . . . ;XmÞ 2 HjTngj ! 0

almost surely as n ! 1. The supremum is over all subsets H in Xm.

2.3. A counterexample

In both the discrete and continuous cases covered by our theorem the minimal sufficient
statistic has the same dimension as the parameter space. When this is not the case (1) will generally
not hold for d ¼ 1=2 (or any smaller d) as the following example shows. Suppose X 1; . . . ;Xn are
an iid sample from the Nðy; y2Þ distribution where the unknown parameter y belongs to
Y ¼ ð%1;1Þnf0g. It is easily seen that the statistic Tn ( ð

P

Xi;
P

X 2
i Þ is minimal sufficient for

this model. Since this statistic is the canonical sufficient statistic for the larger Nðm;s2Þ model the
Rao–Blackwell estimate ~Fn of the underlying cdf of the Xi is identical in the two models.
For the Nðm;s2Þ model the plug-in estimator of Fðx; yÞ is

F̂ fullðxÞ ¼ Ffðx% X̄ Þ=ŝg,

where X̄ is the usual sample mean, ŝ2 ¼
P

X 2
i =n% X̄

2
and F is the standard normal cdf. As

observed in the Introduction it is well known that
ffiffiffi

n
p

½Fnfmþ sF%1ð"Þg% F̂ fullfmþ sF%1ð"Þg'
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converges weakly in D½0; 1' to a mean 0 Gaussian process with covariance

rfullðs; tÞ ¼ minðs; tÞ % st% J1ðsÞJ1ðtÞ % J2ðsÞJ2ðtÞ=2,

where J1ðsÞ ¼ ffF%1ðsÞg, J2ðsÞ ¼ F%1ðsÞJ1ðsÞ and f is the standard normal density. By Moore’s
original result the same conclusion holds for the process

~Wn (
ffiffiffi

n
p

½Fnfmþ sF%1ð"Þg% ~Fnfmþ sF%1ð"Þg'.

For the Nðy; y2Þ model ~Fn is unchanged so the weak limit of ~Wn is unchanged. The mle of y,
however, is now a root of the equation

P

XiðXi % yÞ ¼ ny2: There are two roots, one positive and
one negative; the mle is the one of these roots which maximizes the likelihood. It is easily seen that
this root is consistent and that Sukhatme’s (1972) theory applies to show that

ffiffiffi

n
p

½Fnfmþ sF%1ð"Þg% F̂ restfmþ sF%1ð"Þg'

converges weakly to a mean 0 Gaussian process with covariance function

rrestðs; tÞ ¼ minðs; tÞ % st% fJ1ðsÞ þ J2ðsÞgfJ1ðtÞ þ J2ðtÞg=3.

Since the restricted and full covariance functions are different we cannot have

n1=2f ~FnðxÞ % F̂ restðxÞg ! 0

uniformly in x and so (1) does not hold for dp1=2.
The same sort of argument may be expected to apply in any curved exponential model with

parameter space of dimension say p embedded in a natural exponential family of dimension k4p
(provided the curved family is not flat so the minimal sufficient statistic has dimension higher
than p).

3. Proofs

Proof of Theorem 1. We do the notationally simpler case m ¼ 1 but the extension to general m is
easy. By shrinking N if necessary we may assume that the closure of N lies in the interior of Y
and that the conditions on the existence of a density hold for all y in the closure of N. Let f nðt; yÞ
denote the density of Tn with respect to Lebesgue measure; this density exists and is bounded over
t for all y 2 N and all nXr. For nXrþ 1 the pair ðXn;Tn%1Þ has joint density (because Xn is
independent of Tn%1)

f Xn;Tn%1
ðx; tÞ ( f ðx; yÞf n%1ðt; yÞ.

Since Tn ¼ Xn þ Tn%1 we see that ðXn;TnÞ has joint density

f Xn;Tn
ðx; tÞ ( f ðx; yÞf n%1ft% TðxÞ; yg.

Now we observe that PðX 1 2 HjTnÞ ¼ PðXn 2 HjTnÞ so we evaluate

PðXn 2 HjTn ¼ tÞ ¼
Z

H

f XnjTn
ðxjtÞdx ¼

R

H f ðx; yÞf n%1ft% TðxÞ; ygdx
f nðt; yÞ

.
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The right-hand side of this formula does not depend on y. Since the mle ŷn converges almost
surely to y0 it must lie in N for all large n. From now on we work on the event ŷn 2 N and write

PðXn 2 HjTn ¼ tÞ ¼
R

H f ðx; ŷnÞf n%1ft% TðxÞ; ŷngdx

f nðt; ŷnÞ

or

PðX 1 2 HjTnÞ ¼
R

H f ðx; ŷnÞf n%1fTn % TðxÞ; ŷngdx

f nðTn; ŷnÞ
.

On the other hand

Pŷn
ðX 1 2 HÞ ¼

Z

H

f ðx; ŷnÞdx.

Comparison of these two formulas shows that for ŷn 2 N

sup
H

jPŷn
ðX 1 2 HÞ % PðXn 2 HjTnÞjp

R

R f ðx; ŷnÞjf n%1fTn % TðxÞ; ŷng% f nðTn; ŷnÞjdx

f nðTn; ŷnÞ
.

We will show that n1%d times the right-hand side of this inequality tends to 0. Our proof uses a
uniform version of the local central limit theorem following Bhattacharya and Ranga Rao (1976)
but using the uniform version of their results outlined by Yuan and Clarke (2004). Our lemma
below contains a number of well-known facts about exponential families which we use in the
sequel and in the proof of the local limit conclusion.

Lemma 1. Under the conditions of Theorem 1 the random vector Tn has:

(1) moment generating function Ey½expfftTðX Þg' ¼ expfKðfþ yÞ % KðyÞg;
(2) mean vector nmðyÞ ( nK 0ðyÞ;
(3) covariance matrix nV ðyÞ ( nK 00ðyÞ which is nonsingular for y 2 N;
(4) finite moments of all orders which depend continuously on y;

Moreover, for nXr the quantity fTn % nmðyÞg=
ffiffiffi

n
p

has a density qnð"; yÞ. There is a function, cðu; yÞ ¼
Pk

1 aiðyÞui þ
P

ij‘ bij‘ðyÞuiuju‘ such that

!n ( n1%d sup
y2N

sup
u

jqnðu; yÞ % ffu;V ðyÞgf1þ cðu; yÞ=
ffiffiffi

n
p

gj ! 0. (2)

Here fðu;VÞ is the multivariate normal density with mean 0 and covariance matrix V . Finally the
functions ai and bij‘ depend continuously on y.

We will not prove this lemma in detail. The conclusions in the enumerated list are well known
properties of exponential families. Non-singularity of VðyÞ follows from the existence of a density
for Tr. Assertion (2) is a consequence of a uniform version of Theorem 19.2 in Bhattacharya and
Ranga Rao (1976). The proof of our minor generalization is essentially that outlined by Yuan and
Clarke (2004). To get the conclusion with n1%d it is necessary to use the Edgeworth expansion up
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to order 4 given by Bhattacharya and Ranga Rao. Finally the quantities ai and bij‘ are functions
of moments of order 3 and so are continuous by the earlier assertions in the theorem.
The density of Tn and the density qn are related by

f nðt; yÞ ¼ n%k=2qn½n
%1=2ft% nmðyÞg; y'.

Moreover Tn and ŷn are related by Tn ¼ nmðŷnÞ. Thus by Lemma 1

nk=2f nðTn; ŷnÞ ! ff0;V ðy0Þg ¼ ð2pÞ%k=2 detfV ðy0Þg%1=2. (3)

We must therefore show that

nðkþ1Þ=2%d
Z

R

f ðx; ŷnÞjf n%1fTn % TðxÞ; ŷng% f nðTn; ŷnÞjdx ! 0.

Introduce the shorthand notation

AnðxÞ ¼
fTn % TðxÞ % ðn% 1ÞmðŷnÞg

ffiffiffiffiffiffiffiffiffiffiffi

n% 1
p ¼

fmðŷnÞ % TðxÞg
ffiffiffiffiffiffiffiffiffiffiffi

n% 1
p .

Written in terms of qn we then have

f n%1fTn % TðxÞ; ŷng ¼ ðn% 1Þ%k=2qn%1fAnðxÞ; ŷng.

Thus our problem reduces to showing that

n1%d
Z

R

f ðx; ŷnÞ
n

n% 1

" #k=2
qn%1fAnðxÞ; ŷng% qnð0; ŷnÞ

$

$

$

$

$

$

$

$

dx ! 0. (4)

Lemma 1 guarantees supu2Rk supy2N supnXr qnðu; yÞo1. Thus

n1%d
Z

R

f ðx; ŷnÞ
n

n% 1

" #k=2
% 1

% &

qn%1fAnðxÞ; ŷng
$

$

$

$

$

$

$

$

dx ! 0. (5)

Put HnðxÞ ¼ 1þ cfAnðxÞ; ŷng=
ffiffiffi

n
p

. In view of Lemma 1 we have

n1%d
Z

R

f ðx; ŷnÞjqn%1fAnðxÞ; ŷng% ffAnðxÞ; ŷngHnðxÞjdxp!n ! 0. (6)

Similarly

n1%d
Z

R

f ðx; ŷnÞjqnf0;V ðŷnÞg% ff0;V ðŷnÞgjdxp!n ! 0. (7)

From (4)–(7) and the triangle inequality we need only show

n1%d
Z

R

f ðx; ŷnÞjffAnðxÞ; ŷngHnðxÞ % ff0;VðŷnÞgjdx ! 0. (8)

Split the domain of integration into two pieces. Fix a with 0oaod=2. Put I1 ¼ fx : jmðŷnÞ %
TðxÞjpnag and I2 ¼ fx : jmðŷnÞ % TðxÞj4nag. Over I1 use Taylor expansion of f and c near 0 and
over I2 Markov’s inequality.
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For x 2 I1 we have jjAnðxÞjjpna=
ffiffiffiffiffiffiffiffiffiffiffi

n% 1
p

p2na%1=2. The smallest eigenvalue of V ðyÞ is bounded
away from 0 over N and so

AnðxÞtfV ðŷnÞg%1AnðxÞpC1n
2a%1

for some constant C1 and all x 2 I1. Since j1% expð%xÞjpx for all xX0 and infy2N detfV ðyÞg40
there is a constant C2 such that for all x 2 I1

jffAnðxÞ;V ðŷnÞg% ff0;VðŷnÞgjpC2n
2a%1. (9)

Finally the polynomial structure of c shows there is a constant C3 such that

jcfAnðxÞ;V ðŷnÞgjpC3n
a%1=2 (10)

for all x 2 I1. Now combine (9) and (10) to see that

n1%d
Z

I1

f ðx; ŷnÞjffAnðxÞ; ŷngHnðxÞ % ff0;V ðŷnÞgjdx

pC2n
1%dþð2a%1Þ þ C3n

1%dþða%1=2Þ%1=2 ¼ C2n
2a%d þ C3n

a%d ! 0. ð11Þ

Since the statistic T has finite moments of all orders and all these moments depend continuously
on y there is, for each s, a constant Ds such that

sup
y2N

PyfjTðX Þ % mðyÞj4nagpDs

nsa
.

Thus on the event ŷn 2 N we have
Z

I2

f ðx; ŷnÞdxp
Ds

nsa
. (12)

Take s ¼ 1=a. Combine (12) and (11) to get (8), finishing the proof. &

Proof of Theorem 2. Again take m ¼ 1. Let f nðt; yÞ ¼ PyðTn ¼ tÞ. Then

PðXn 2 HjTn ¼ tÞ ¼
P

x2H PyfXn ¼ x;Tn%1 ¼ t% TðxÞg
PyfTn ¼ tg

.

We use the independence of Tn%m and ðXn%mþ1; . . . ;XnÞ and the fact that this conditional
probability does not depend on y to write

PfXn 2 HjTng ¼
P

x2H f ðx; ŷnÞf n%1fTn % TðxÞ; ŷng
f nðTn; ŷnÞ

.

As in the continuous case this gives the bound

sup
H

jPŷfX 1 2 Hg% PfX 1 2 HjTngj

p
P

x f ðx; ŷnÞjf n%1fTn%1 % TðxÞ; ŷng% f nðTn; ŷnÞj
f nðTn; ŷnÞ

.

Finish the proof as for Theorem 1 using the following local central limit theorem. &
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Lemma 2. Under the conditions of Theorem 2 the vector Tn has mean nmðyÞ ( nK 0ðyÞ and covariance
nK 00ðyÞ. There is a function, cðu; yÞ of the form cðu; yÞ ¼

Pk
1 aiðyÞui þ

P

ij‘ bij‘ðyÞuiuju‘ such that

n1%d sup
y2N

sup
u2Rk

jn1=2PyðTn ¼ tÞ % ffu;V ðyÞgf1þ cðu; yÞ=
ffiffiffi

n
p

gj ! 0,

where u ¼ n%1=2ft% nmðyÞg. The functions ai and bij‘ are continuous.
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