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ABSTRACT

The asymptotic distribution of certain tests of fit to the exponential distribution is obtained. The
tests are based on regression of the order statistics on their expectations under a standard exponential
distribution. Asymptotic normality at the rate (log n)" is obtained for a family of statistics including
the correlation coefficient.

RESUME

L’auteur détermine la distribution asymptotique de certaines statistiques définissant des tests
d’ajustement analytique de la loi exponentielle. Il s’agit en occurrence de la régression des
statistiques d’ordre d’un échantillon par rapport a leur valeur espérée calculée relativement 2 une loi
exponentielle standard. La normalité asymptotique d’ordre (log n)"? est établie pour une famille
entiére de statistiques, y compris le coefficient de corrélation.

Let X, =X, =- - - =X, be an ordered sample from an unknown distribution G. Suppose
we wish to test the hypothesis H, that G(x) = F((x — a)/B), where F is some known
standard distribution, o is an unknown location parameter, and $ is an unknown scale
parameter.

Set W, = (X; — a)/B, and let m; = €(W,) and a;; = Cov (W,, W,). Under H, we have

€X)=ao+ Bm,
(1
Cov (X, X;) = B*0y.
A number of tests of H, have been based on assessing the fit of the linear model (1).

The most obvious of these is R%(X, m), the square of the correlation coefficient between
X and m. When F is standard normal the resulting test is quite powerful; indeed Leslie
(1985) and Fotopolous, Leslie, and Stephens (1984) have shown that R*(X, m) is asymp-
totically equivalent to both the Shapiro-Wilk and Shapiro-Francia statistics.

In this note we investigate the asymptotic behaviour of R*(X, m) when F is the standard
exponential distribution. This statistic has been studied by Smith and Bain (1976),
who give finite-n Monte Carlo critical points. For a full discussion see Stephens and
D’Agostino (to appear). In this case
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=2 (n—k+1)"
k=1
and
=X (n—k+1)? for i<j
k=1

We establish below the asymptotic normality of the correlation coefficient and related

statistics at the rate (log n)%. The result contrasts with the situation for the normal distri-
bution and for Type II censoring, where a sum of weighted chi-squareds arises. [See
deWet and Venter (1972) for the normal case and Lockhart and Stephens (1985) for the
Type Il censoring situation. ]

THEOREM. Suppose &, B are estimates of o, 3 with n2(a — ) and nZ(B B) bounded
in probability. Suppose B is an estimate of B with (log n)2 (B — B) = 0 in probability.
FT,=B22", (X, — & — Pm,), then

(4log n) X(T, — log n) = N(O, 1).

Note that n{l — R2(x m)} has the form T,, where B ', mx; — nX)/
(S mP=n),&a=X—PB,andB2=n"'Z", (X, — X)* The hypotheses of the theorem
may be checked by direct calculation of the means and variances of X, 2 m,X;, and
n' 2] X The identities X/_, m; = n and 2/, m} = 2n — m, are useful in the
calculatlons

Other natural statistics of the form 7, arise by using efficient estimates such as the
blas-corrected maximum-likelihood estimates B (n— 17" 20 , (Xi — X)) and & =
X - B/ n. Use of the maximum-likelihood estimator for B permits calculation of the
cumulants of T,. This allows fitting of Pearson curves to the distribution of T,. [See
Lockhart and Stephens (1985) for details.] This is important in view of the extraordinary
slowness of the convergence in our Theorem. For instance, with n = €' = 9 X 10° the
normal approximation gives P(7, < 0) = 0.023.

Monte Carlo studies by Lockhart and Stephens (1985) show R*(X, m) has substantially
lower power than EDF statistics such as the Anderson-Darling statistic A>. Use of the
maximum-likelihood estimates improves the power substantially but does not bring the
power up to that of A. In fact Lockhart and McLaren (1985) have used the result presented
here to show that statistics of the form T, have 0 asymptotic efficiency relative to A* against
a wide variety of contiguous alternatives.

Lockhart and Stephens (1985) have investigated more powerful statistics which avoid
this problem by weighting the terms in 7,, say, as

5 -2 z O';I(X, — & - ém')Z
i=1
Easy applications of weak-convergence results for the quantile process show U, is gener-
ally asymptotically distributed as a sum of weighted chi-squareds.

The result obtained here has been extended by McLaren (1985) to other distributions
with an exponential tail, such as the extreme-value and logistic.

Proof. Without loss of generality take « = 0, B = 1. Let
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X, —my+n&+ P -172 m
i=1

+2naB -1 -2naX -1 —-2B -1 2 m(X; — m).

The hypotheses on &, ﬁ together with calculations of Var (Zm;(X,— m,)) show

(4logn)? (T;“ -2 (X - m,»)z) — 0 in probability.
i=1

255

We will use the martingale central limit theorem of Hall and Heyde (1981, p. 58) to show
that

(4logn)”? (Z (X; — m)* — log n) — N, 1).
i=1

The result will follow, since then

log n)?
(4logn)_%(Tn - T:) = ((4]0g n)'%(T:‘— log n) + (Og n)

2

-0 in probability.

Let V|, V,, . .. be independently and identically distributed standard exponentials. Then

Xy, ...,X, can be constructed (see Pyke 1965) as

We have easily

Let
9;/( = 0{V|, e ’Vk)’
o; = Var(Z X — m,-)2>
1
= 4(21" + 2;“2),
1 1
and
k k k
Ser = 07 (22 fmax(i, YV - DY, - 1) = 3 ).
i=1 j=1 j=1
It is easily checked that (S, ,, %, k = 1,2,...,n) is a mean-0 martingale. Since

> j ' =logn + 0(1),

j=1

it suffices to show S, , — N(0, 1). This will follow from the martingale central limit
theorem if we show

> X —m) =2 > {max (i,j)}(Vi — )(V; — 1).
i=1 j=1 i=1
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2 (Sen— Si1)*— 1 in probability, @
1
€[max{(S, — Si-1..)%; 1 = k < n}] is bounded in n, 3)
and
max{(S;, — Si-1..)% 1 =k =n}—0  in probability. @)

The conditions (2) and (3) follow from easy moment calculations. Note that

max{(Sy, — Sk—l,n)z; l=k=n}= 20',._2 [max{k'z[(Vk - 172 - 1];

l<k=n}+ 4max{k'2(Vk - l)z(kz_:I v, - 1)2); l<k= n}]
1

Applying Markov’s inequality and the Borel-Cantelli lemma to k‘%(Vk — 1) shows
pplying

k™3(V, — 1)*— 0 a.s. The law of the iterated logarithm shows k3 VNV - 1) > as.
The condition (4) follows easily, since o, — .
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