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Higher-precision inferences about impending software failures can be achieved when the same software
reliability model that fits failure data from the test interval also fits data from the field interval. If the test
and field environments differ significantly in terms of how the software is used, then a single model for the
pooled data may not be adequate. In this article we formulate the hypothesis of compatible test and field
environments in terms of a statistical hypothesis and develop a Cramer–von Mises (CvM) test procedure
within the context of a well-known nonhomogeneous Poisson process software reliability model. The
CvM test has a compelling advantage over a previously proposed likelihood ratio test (LRT0), because
it does not require specification of the class of alternatives, which are frequently unknown for real-life
problems. Moreover, although there are existence issues with LRT0, the CvM test always exists. An
asymptotic approximation for the p value of the CvM test is derived, and an algorithm for a small-sample
bootstrap approximation is presented. A simulation study shows that the CvM test works well for the class
of alternatives for which LRT0 also would work well and continues to work well for other alternatives for
which LRT0 has no statistical motivation or otherwise has existence problems. Data from a real software
project are used to illustrate the hypothesis testing procedures.
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1. INTRODUCTION

The reliability of software can be a key product differentia-
tor and also can be a defining characteristic of a company’s
image. A classic approach for modeling software reliability
is to suppose that the cumulative number of failures observed
through cumulative exposure time t, say N(t), follows a non-
homogeneous Poisson process (NHPP) with mean value func-
tion M(t; θ), where θ is a vector of unknown parameters.
Discussions of the assumptions and practicality of a vast num-
ber of NHPP software reliability models have been provided
by Xie (1991), Lyu (1996), and Pham (1999). Most NHPP
models assume a parametric form for the mean value function.
Goel and Okumoto (1979; GO hereinafter) proposed a widely
used NHPP model that assumes that the mean value function
is M(t; θ) = a(1 − e−bt). Here θ = (a,b), with a representing
the expected number of initial faults in the software and b rep-
resenting the failure rate of an individual fault. The failure rate
function is the derivative of the mean value function, which is
λ(t; θ) = abe−bt for the GO model. The underlying parameters
of NHPP models are typically estimated using maximum like-
lihood procedures based on grouped failure counts.

Figure 1 provides a conceptual view of the failure data cor-
responding to a software system, where the points(ui,Yi)

l
i=1

correspond to the cumulative exposure time and cumulative
number of failures through the ith measurement epoch of the
test interval. Similarly, the points (vi,Zi)

m
i=1 correspond to the

cumulative exposure time and cumulative number of failures

through the ith measurement epoch of the field interval. During
the test interval, the software is executed in a way that ideally
mimics how actual users will use it in the field. As failures are
observed, the software is modified to remove the underlying
faults. The debugging process continues throughout the test in-
terval, after which the software is released into the field. With
the software in the field, the “find-and-fix” process continues,
as depicted in the right half of Figure 1.

Each point in Figure 1 corresponds to a time epoch in which
the cumulative number of failures and the cumulative exposure
time are observed. The time epochs might be weekly measure-
ments but in general are arbitrary. Note that even if the time
epochs are equally spaced, then the corresponding cumulative
exposure times may not be so, due to varying levels of software
use among the time epochs. A typical use for the data illustrated
by Figure 1 is to fit a curve to the points and then use the deriva-
tive of the fitted curve as an estimate of the failure rate function
of the software. Due to the increasing but bounded nature of the
fitted curve, the failure rate λ(t; θ) will eventually (if not im-
mediately) be decreasing toward 0, and extrapolations can be
made for the failure rate at future time epochs.

If software is tested in a manner that mirrors how users will
use it in a field environment, then inferences about future fail-
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Figure 1. Schematic of fundamental software failure data.

ures obtained based on the test data will be valid from a user’s
point of view. When the test and field environments differ, the
failure data from the field is an important source of information
to use in correcting the otherwise invalid inferences obtained
from the test data. One way in which the environments could
differ is if faults were discovered in the field more slowly than
the rate at which they were discovered during the test period.
This can happen, because users are merely using the software
for its intended function, whereas testers are often purposely
trying to break the code. On the other hand, if the software
is tested only lightly, then the fault discovery rate in the field
can be higher than in the test period. For similar reasons, the
user-perceived number of faults can differ between the test and
field environments. For example, if the testing profile is more
uniform than the usage profile, then testers may discover faults
in the code that users will not experience. The software oper-
ational profile (see, e.g., Musa 1975) defines how users inter-
act with the software. If testing does not follow the operational
profile, then the software could appear reliable from the tester’s
perspective but unreliable from the user’s perspective. The op-
posite situation—the software appearing unreliable from the
tester’s perspective but reliable from the user’s perspective—is
also possible. Unfortunately, operational profile testing is rarely
done, because it is expensive and difficult.

The use of calibration factors has been proposed as a pos-
sible way to reconcile differences between test and field en-
vironments (see, e.g., Huang, Kuo, Lyu, and Lo 2000; Zhang,
Jeske, and Pham 2002; Jeske and Zhang 2004). Jeske, Zhang,
and Pham (2005) proposed applying calibration factors to the
GO model by specifying a mean value function of the form

M(t;a,b,K1,K2)

=
⎧
⎨

⎩

a(1 − e−bt), t ≤ ul

a(1 − e−bul)

+K1ae−bul
(
1 − e−K2b(t−ul)

)
, t > ul.

(1)

In this model a denotes the expected number of initial faults in
the software, and b represents the failure rate of an individual
fault. The calibration factors are shown explicitly as (K1,K2)

and can be interpreted as follows. The expected number of
faults remaining in the code at the end of the test interval is
a − a(1 − e−bul) = ae−bul , indicating that K1 is being used
to scale the residual faults appropriately so that K1ae−bul can
be used as the number of initial faults once the field interval
begins. Similarly, K2 is being used to scale the average fail-
ure rate of a fault in the test interval to the appropriate value,
K2b, in the field environment. It is clear from (1) that under
H0 : (K1,K2) = (1,1), we have M(t;a,b) = a(1 − e−bt) for all
t. Thus when the calibration factors are unity, the two-part mean
value function in (1) reduces to a one-part mean value function.
The one-part model effectively combines the test and field fail-
ure data and advantageously improves the precision of infer-
ences concerning future failures during the field interval.

To illustrate the advantage of being able to use the one-part
model associated with (1), consider Figure 2, which shows the
cumulative number of failures versus the cumulative exposure
time for a software system developed for a Brazilian telephonic
switching system (see Martini, Kanoun, and de Souza 1990).
The units of exposure time are 10-day periods of calendar time.
The vertical line in the figure denotes the transition of the soft-
ware into the field environment, separating periods 1–42, which
correspond to the test interval, and periods 43–81, which corre-
spond to the field interval. It will be shown formally in a sub-
sequent section that the one-part model is not rejected for these
data.

Define S(vj) to be the time to next failure, given that the
process has been observed through field time vj. Then P[S(vj) >

s] = exp{−[M(vj + s;a,b,K1,K2) − M(vj;a,b,K1,K2)]}, and
because (1) is bounded, it follows that the probability of the
event S(vj) = ∞ is nonzero. Consequently, the distribution of
S(vj) does not have a mean, and a more useful summary of the
distribution is a quantile, for example, the median Q.5(vj) =
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Figure 2. Software failure data for the Brazilian switching system.

− log [1 − log 2/{K1ae−bul e−K2b(vj−ul)}]/(K2b), which exists
provided that K1ae−bule−K2b(vj−ul) > log 2.

Under the one-part model, Q.5(vj) simplifies to − log [1 −
log 2/(ae−bvj)]/b, and fitting the model sequentially using
the cumulative failure data (test and field) available through
v1, . . . , v39 leads to the estimated median times to next failure
shown in Figure 3. Also shown are pointwise 90% confidence
intervals (CIs) for the median failure time computed using the
formula that is detailed in Appendix B. For example, a 90% CI
for Q.5(v39) is (.31 , .56) or, equivalently, 3.1 to 5.6 days.

In contrast, if the two-part model is (inefficiently) used, then
difficulties arise when using it to estimate the median times to
next failure. Figure 4 is analogous to Figure 3, except that the
two-part model is used at each field period. First, it can be seen
that the median estimates in the field interval are not available
for periods 1–3 or periods 24–29. The difficulty in periods 1–3
is that there are insufficient field observations to estimate the
calibration parameters (K1,K2), and the difficulty in periods
24–29 is that necessary and sufficient conditions on the field ob-
servations for their maximum likelihood estimates to exist are
not fulfilled. Comparing Figures 3 and 4 clearly shows that the
CIs for the medians, when they do exist in the two-part model
analysis, are significantly wider. This is especially true for the
early field periods, but even during the last field period, the one-
part model shrinks the width of the confidence interval by about
50%.

Our example illustrates the advantage of being able to use a
one-part model. At the same time, inappropriate use of a one-
part model clearly will give biased estimates of important quan-
tities concerning future failures. Applications need a statistical
method to test whether or not a one-part model is appropriate
to either take advantage of situations when it is appropriate or
avoid adverse consequences when it is not. Although plots such
as Figure 2 provide some intuition as to the validity of a one-
part model, they are not adequate substitutes for an objective
statistical procedure.

The LRT of H0 under (1), say LRT0, is a natural test to con-
sider for testing the compatibility of the test and field envi-
ronments. The appropriate asymptotic theory for LRT0 follows
from results of van Pul (1992) by letting the expected number
of faults (a in our model) in the software increase. As the ex-
pected number of faults in the software increases, the number of
observed failures also increases, and the more conventional in-
terpretation of asymptotic theory follows. Note that with mod-
ern software architecture and development practices, it would
not be unusual for the expected number of faults to be large;
however, using LRT0 requires a sufficiently large number of ob-
served failures from both environments before its approximate
null distribution will be valid, and furthermore, the maximum
likelihood estimators (MLEs) of the two-part model needed to
implement the test will not exist at the very beginning of the
field interval, and even later individual field observations can

Figure 3. Median times to next failure and 90% CI limits for the Brazilian switching system based on a one-part model.
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Figure 4. Median times to next failure and 90% CI limits for the Brazilian switching system based on a two-part model.

have an appreciable influence on whether the conditions that
ensure their existence are satisfied.

In this article we derive a Cramer–von Mises (CvM) test as
an alternative test to LRT0. The CvM test has two advantages
over LRT0. First, in cases where (1) is a suitable representation
of the alternatives to the null model, the CvM test is always
computable, thus eliminating the problems associated with the
existence of LRT0 in the early stages of the field interval. Sec-
ond, in cases where the alternatives are not contained within
the family of models described by (1), the CvM test is a well-
motivated and applicable test, whereas LRT0, which explicitly
relies on (1) capturing the possible alternatives, has no statisti-
cal justification.

The rest of the article is organized as follows. In Section 2 we
review the development of LRT0, and in Section 3 we develop
the CvM test. An asymptotic procedure and a bootstrap resam-
pling approach for approximating the p value of the CvM test
are proposed, and the CvM test and the two approximations for
its p value are illustrated in the context of a real software failure
data set. In Section 4 we report results from a simulation exper-
iment used to evaluate the size and power of the LRT0 and CvM
tests. Alternatives described by (1), as well as a class of alter-
natives not captured by (1), are used to study the power of the
tests. We conclude with a summary in Section 5.

2. LIKELIHOOD RATIO STATISTIC

2.1 Computation

Define (u0, y0) = (0,0) and (v0, z0) = (ul, yl). The likelihood
function for the NHPP model with the two-part mean value
function given in (1) is then

L(a,b,K1,K2)

∝ e−a(1−e−bul )
l∏

i=1

[a(e−bui−1 − e−bui)]yi−yi−1

(yi − yi−1)!

× e−K1ae−bul (1−e−K2b(vm−ul))

×
m∏

i=1

[K1ae−bul(e−K2b(vi−1−ul) − e−K2b(vi−ul))]zi−zi−1

(zi − zi−1)! .

The reparameterization (a,b, c,d), where c = K1ae−bul and
d = K2b, simplifies the optimization problem for obtaining the

MLE (â, b̂, K̂1, K̂2). The reparameterized likelihood is

L(a,b, c,d)

∝ e−a(1−e−bul )
l∏

i=1

[a(e−bui−1 − e−bui)]yi−yi−1

(yi − yi−1)!

× e−c(1−e−d(vm−ul))

×
m∏

i=1

[c(e−d(vi−1−ul) − e−d(vi−ul))]zi−zi−1

(zi − zi−1)! ,

from which it is evident that the MLE (â, b̂, ĉ, d̂) can be ob-
tained by first finding (â, b̂) that maximizes the first term of the
right side (which represents the contribution of the test data to
the full likelihood), and then finding (ĉ, d̂) that maximizes the
second term of the right side. The MLE of (K1,K2) is then ob-

tained from K̂1 = ĉeb̂ul/â and K̂2 = d̂/b̂. Moreover, it can be
shown that (â, b̂) can be found by first finding b̂ as the solution
to the equation

ylule−b̂ul

1 − e−b̂ul
=

l∑

i=1

(yi − yi−1)
uie−b̂ui − ui−1e−b̂ui−1

e−b̂ui−1 − e−b̂ui
, (2)

and then computing â = yl/(1 − e−b̂ul). Similarly, (ĉ, d̂) can be
found by first finding d̂ as the solution to the equation

(zm − yl)(vm − ul)e−d̂(vm−ul)

1 − e−d̂(vm−ul)

=
m∑

i=1

(zi − zi−1)

× (vi − ul)e−d̂(vi−ul) − (vi−1 − ul)e−d̂(vi−1−ul)

e−d̂(vi−1−ul) − e−d̂(vi−ul)
, (3)

and then computing ĉ = (zm − yl)/(1 − e−d̂(vm−ul)). Simple bi-
section routines can be used to find the solutions of (2) and (3).

The likelihood function for the NHPP model corresponding
to the one-part mean value function [i.e., the likelihood function
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reduced by H0 : (K1,K2) = (1,1)] is

LH0(a,b) ∝ e−a(1−e−bvm )
l∏

i=1

[a(e−bui−1 − e−bui)]yi−yi−1

(yi − yi−1)!

×
m∏

i=1

[a(e−bvi−1 − e−bvi)]zi−zi−1

(zi − zi−1)! .

The constrained MLE (ã, b̃) is obtained by first finding b̃ as the
solution to

zmvme−b̃vm

1 − e−b̃vm
=

l∑

i=1

(yi − yi−1)
uie−b̃ui − ui−1e−b̃ui−1

e−b̃ui−1 − e−b̃ui

+
m∑

i=1

(zi − zi−1)
vie−b̃vi − vi−1e−b̃vi−1

e−b̃vi−1 − e−b̃vi
,

and then computing ã = zm/(1 − e−b̃vm). The LRT statistic of
H0 is then LRT0 = −2 log�, where � = LH0(ã, b̃)/L(â, b̂, K̂1,

K̂2), and the test rejects if LRT0 > χ2
2,α .

The existence of the solutions b̂, d̂, and b̃ is not automatic.
However, when they do exist, they trivially imply the existence
of â, ĉ, and ã. Jean (1998) showed that a necessary and suffi-
cient condition for b̂ to exist is

l∑

i=1

(yi − yi−1)(ui + ui−1) < ylul. (4)

Similarly, it can be shown that a necessary and sufficient condi-
tion for d̂ to exist is

m∑

i=1

(zi − zi−1)(vi + vi−1) < (zm − yl)(vm − ul), (5)

and that b̃ exists if and only if

l∑

i=1

(yi − yi−1)(ui + ui−1) +
m∑

i=1

(zi − zi−1)(vi + vi−1)

< zmvm. (6)

Thus it follows that LRT0 of H0 will exist if and only if all
three conditions (4)–(6) are satisfied. One of the problems that
will because evident later is that if the alternatives in the field
do not follow the two-part mean value function specified by
(1), then LRT0 often will not exist due to failure of either (5) or
(6). Moreover, even when the two-part model specified by (1)
is correct, there can be times during the data collection from the
field during which (5) and/or (6) is violated, and LRT0 will not
exist.

2.2 Computation of p Values

In what follows, the p value is computed by comparing LRT0

to its asymptotic chi-squared distribution with 2 degrees of free-
dom. It also would be possible to use the parametric bootstrap
in the way discussed in Section 3.2.2 for the CvM test to com-
pute a p value.

2.3 Example

Returning to the data in Figure 2 and following the afore-
mentioned sequence of steps results in â = 586.25, b̂ = 2.184×
10−2, K̂1 = .660, and K̂2 = 1.434. In addition, (ã, b̃) is (524.98,

2.60 × 10−2), which leads to LRT0 = 1.34. The p value of
the test statistic is .512 and the LRT0-based test does not re-
ject H0. Thus, as Figure 2 suggests, it would be acceptable to
fit a one-part model to both the test and field data for the pur-
pose of making inference about future failures, such as esti-
mating their median failure times. In particular, the median of
the next failure time based on all of the data through time v39
is Q.5(v39) = − log [1 − log 2/(ae−bv39)]/b, and using (ã, b̃),
its estimate is .42. The results in Appendix B can be used to
compute an approximate 90% confidence interval for Q.5(v39),
namely (.31, .56), as was reported in Section 1.

3. CRAMER–VON MISES STATISTIC

As discussed previously, the use of LRT0 depends on the cor-
rect specification of the class of field alternatives. If the field
alternatives are correctly specified by (1), then LRT0 is an opti-
mal test; however, if the field alternatives are not correctly spec-
ified by (1), then the use of LRT0 lacks statistical justification.
When little is known about what type of alternative to a one-
part model can be realized in the field, it is preferable to use a
test for the adequacy of the one-part model that does not depend
on specifying a class of alternatives.

An early detection test of H0 was derived by Jeske and Zhang
(2006) that is independent of the field part of the mean value
function. But, their test was intended primarily as a gap solution
for use between the time at which the field interval starts and the
time at which a sufficient number of observations from the field
are available, to ensure that LRT0 exists and can be used. Using
the early detection test with a large number of field observations
would be computationally tedious.

In this section we derive another test, the CvM test, which
is a competitor to LRT0 in the sense that it provides a test for
the adequacy of the one-part mean value function and is not
necessarily intended to be an early detection test. On the other
hand, the CvM test has two apparent advantages over LRT0: It
is easier to compute and is always available, and it has moti-
vation independent of the field part of the mean value function
and thus is an omnibus test that may be expected to have satis-
factory power against an arbitrary alternative.

3.1 Derivation

Numerous common tests of goodness of fit for a sample of
data, are based on a comparison of the empirical cumulative
distribution function Fn(x), defined by

Fn(x) = #{observations ≤ x}
n

,

and a theoretical cumulative distribution function F(x). In the
situation considered here, there is a strong analogy between the
cumulative process N(t) and its null expected value M(t; θ) on
the one hand and Fn(x) and F(x) on the other hand. Various sta-
tistics have been suggested to summarize the discrepancy be-
tween Fn(x) and F(x) (see, e.g., Stephens 1986 for a survey).
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Extensive Monte Carlo experience suggests that quadratic sta-
tistics, such as CvM and others, have superior power properties
in the goodness-of-fit context, and we are led to suggest an ana-
log of the CvM test for our situation. The classic CvM statistic
is defined as

W2 = n
∫ ∞

−∞
{Fn(x) − F(x)}2 dF(x).

The analog for an NHPP would be a multiple of
∫ T

0
{N(t) − M(t; θ̂ )}2 dM(t; θ̂ )

where T is the end of the observation period and θ̂ is an appro-
priate estimator of θ .

When adapting this analogy to our context, several points
arise:

a. The hypothesized form of M(t; θ) is M(t;a,b) = a(1 −
e−bt), and we are concerned only about its shape for t > ul,
because we assume that the model is correctly specified during
the test interval.

b. We have data only at the time points {ui}l
i=1 and {vi}m

i=1.
c. An appropriate estimator (a,b) is the MLE based exclu-

sively on the test data, because in that interval the model is as-
sumed to be correctly specified, and there is typically a suffi-
cient amount of test data to yield an accurate estimate.

d. As mentioned previously, the total amount of data will be
large only if the parameter a is large, and thus a must play the
role of n in the asymptotic theory of the test.

These points lead us to approximate the integral as a sum,
start the integration at ul, and compare N(t) − N(ul) to the hy-
pothesized form of M(t; θ) − M(ul; θ) = a(e−bul − e−bt). Fur-
thermore, although (â, b̂) has been previously defined as the
MLE of (a,b) under the two-part model, examining (2) demon-
strates that it also can be viewed as the MLE of (a,b) based
only on the test data. Consequently, our proposed statistic in
standardized form (necessary for subsequent asymptotic con-
siderations) becomes

CvM =
m∑

i=1

(e−b̂vi−1 − e−b̂vi)[Zi − Yl − â(e−b̂ul − e−b̂vi)]2/â.

(7)

The form of CvM is strongly analogous to suggestions made by
Choulakian, Lockhart, and Stephens (1994) and Spinelli and
Stephens (1997) for goodness-of-fit testing for discrete distrib-
utions in general and the Poisson distribution in particular.

Although we propose (7) as the CvM statistic, other possi-
bilities could be considered. For example, we could compare
N(t) − N(ul) to the hypothesized form of M(t; θ) − M(ul; θ)

over both the test and field intervals. We choose not to do this,
because our assumption is that the model is correct in the test
interval, and thus it seems that including the test data in the
computation of the CvM test statistic would only mute its sen-
sitivity to alternatives. Another possibility would be to estimate
(a,b) by fitting the null model to the pooled test and field data,
because the null distribution of the CvM statistic is ultimately
desired. However, this estimation approach would have practi-
cal problems in applications in which the null model is not cor-
rect. Very often in these cases, for example, the MLE of (a,b)

based on the pooled data would not exist, and the practitioner
would be left without a usable test procedure.

Test statistics could be based on other comparisons of N(t)
to M(t; θ). Our CvM statistics and the variants suggested in the
previous paragraph are quadratic in nature. We also might con-
sider linear statistics of the form

∫ T
0 w(t; θ̂ ){N(dt) − M(dt; θ̂ )}

or, equivalently,
∫ T

0 w(t; θ̂ ){N(dt) − λ(t; θ̂ )dt}, where w(t; θ̂ ) is
a suitably chosen weight function. Although such statistics cer-
tainly deserve consideration, we do not pursue them here.

3.2 Approximate p Values for CvM

In this section we derive an asymptotic approximation for
the p value of the CvM statistic, and also describe a bootstrap
approximation that can be used when the conditions for the as-
ymptotic approach are suspect.

3.2.1 Asymptotic Approximation. It is possible to derive
the asymptotic null distribution of the statistic CvM as a tends
to infinity. Define δ = (δt

T , δt
F)t to be the column vector with

entries

e−bu0 − e−bu1 , . . . , e−bul−1 − e−bul ,

e−bv0 − e−bv1, . . . , e−bvm−1 − e−bvm .

To state the asymptotic theory, we need several definitions. De-
fine

I∗ =
[ ∑l

i=1 δi
∑l

i=1 ∂δi/∂b
∑l

i=1 ∂δi/∂b
∑l

i=1(∂δi/∂b)2/δi

]

and

A = (I∗)−1
[

11×l 01×m

∇ log δt
T 01×m

]

,

where ∇ log δT is the l × 1 vector whose ith element is
(∂δT,i/∂b)/δT,i. Next, let

M = I(l+m)×(l+m) −
[

δ
∂δ

∂b

]

A and Q = St	2S,

where

S =
[

0l×l 0l×m

0m×l S∗
]

,

with S∗ the m × m matrix with elements 0 above the diagonal
and elements unity on and below the diagonal, and where 	 is a
diagonal matrix with elements {√δi}l+m

i=1 . The following propo-
sition is proved in Appendix A.

Proposition. The limiting null distribution, as a → ∞, of the
CvM statistic defined in (7) is the distribution of

∑l+m
i=1 λiχ

2
i ,

where the χ2
i are independent, 1-degree of freedom, chi-

squared random variables and the λi are the eigenvalues of the
matrix 	MtQM	.

The proposition facilitates the computation of approximate p
values corresponding to an observed value of the CvM test, say
CvMobs, as follows:

1. Obtain â and b̂ using only the test data.
2. Use â and b̂ to compute the entries in the matrices M,Q,

and 	.
3. Find the eigenvalues λ1, . . . , λl+m of 	MtQM	.
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For k = 1 to B:
Simulate (ui,Y∗

i )l
i=1 from Y∗

i |Y∗
i−1 ∼ Y∗

i−1+ Poisson [M0(ui; â, b̂,1,1) − M0(ui−1; â, b̂,1,1)].
Simulate (vi,Z∗

i )m
i=1 from Z∗

i |Z∗
i−1 ∼ Z∗

i−1+ Poisson [M0(vi; â, b̂,1,1) − M0(vi−1; â, b̂,1,1)].
Compute the MLE (â∗, b̂∗) of (a,b) using the booststrap sample (ui,Y∗

i )l
i=1.

Compute the CvM∗(k) =∑m
i=1(e

−b̂∗vi − e−b̂∗vi−1)/â∗[Z∗
i − Y∗

l − â∗(e−b̂∗ul − e−b̂∗vi)]2.
Continue.
Estimate the p value as the [number of CvM∗(k) values > CvMobs]/B.

Figure 5. Bootstrap algorithm for approximating the p value of the CvM statistic.

4. Compute an asymptotic p value as p ≈ P(
∑l+m

i=1 λiχ
2
i >

CvMobs), using either the numerical inversion algorithm
of Imhof (1961) or an approximation to the distribution
of

∑l+m
i=1 λiχ

2
i of the form c1 + c2χ

2
c3

, where the con-

stants {ci}3
i=1 are found by matching the first three mo-

ments. Genest, Lockhart, and Stephens (2002) found that
the three-moment approximation is very accurate in the
upper tail, where p values are usually required.

3.2.2 Bootstrap Approximation. An alternative approach
to approximating the p value is to use a parametric bootstrap
approach. Figure 5 shows an algorithm for implementing this
approach.

3.3 Example

When computing LRT0 for the example in Section 2, we
found â = 586.25 and b̂ = 2.184 × 10−2. It is an easy cal-
culation to show that the CvM statistic in (7) evaluates to
.0728. Straightforward calculations using the R programming
language show that the first 10 eigenvalues of 	MtQM	 are
9.28 × 10−2, 3.08 × 10−3, 9.28 × 10−4, 4.65 × 10−4, 2.78 ×
10−4, 1.87×10−4, 1.34×10−4, 1.01×10−4, 7.96×10−5, and
6.44×10−5. Using Imhof’s (1961) inversion algorithm gives an
asymptotic p value of .394. On the other hand, using the boot-
strap approximation with B = 10,000 gives an approximate p
value of .388. The agreement between the two p values is quite
good. Consistent with the conclusions drawn from LRT0, the
adequacy of the one-part model is not rejected by the CvM test.

4. SIZE AND POWER OF TEST STATISTICS

To examine the size and power of LRT0 and CvM, we con-
sider a mean value function of the form

Mc(t;a,b,K1,K2)

=

⎧
⎪⎪⎨

⎪⎪⎩

a(1 − e−bt), t ≤ ul

a(1 − e−bul) + K1ae−bul[1 − e−K2b(t−ul)]
1 + ce−K2b(t−ul)

,

t > ul.

(8)

Here (a,b,K1,K2) have the same interpretation as given previ-
ously and c ≥ 0 is an additional parameter to be discussed in
what follows. Note that M0(t;a,b,K1,K2) is the class of mean
value functions corresponding to the two-part mean value func-
tion defined by (1), and M0(t;a,b,1,1) corresponds to the re-
duced one-part mean value function.

LRT0 is well motivated for testing the adequacy of M0(t;a,b,

1,1) within the class M0(t;a,b,K1,K2), and we would expect
that finding a test of the same size that has better power to not be
an easy task. However, for c > 0, LRT0 lacks motivation and is
no longer a valid test for the adequacy of M0(t;a,b,1,1) within
the class Mc(t;a,b,K1,K2), for c > 0. On the other hand, the
CvM test defined in Section 3 does not explicitly require speci-
fication of the form of the alternative in the field. The CvM test
is valid for testing M0(t;a,b,1,1) versus any unspecified alter-
native. The only assumption made by the CvM test is that the
mean value function in the test interval is M0(t;a,b,1,1). In
particular, it is a valid test for the adequacy of M0(t;a,b,1,1)

versus Mc(t;a,b,K1,K2), for c > 0.
The parameter c is referred to as a learning parameter. When

c is nonzero, the term 1 + ce−K2b(t−ul) slows down the initial
rate at which faults are discovered in the field and gives the
mean value function a convex shape in the early portion of the
field environment. As time in the field environment increases,
1 + ce−K2b(t−ul) approaches unity, and the mean value func-
tion transitions to a concave shape. For c > 0, the field portion
of Mc(t;a,b,K1,K2) takes on a stretched “S” shape. S-shaped
mean value functions are viable alternatives to concave shapes
(see, e.g., Yamada, Ohba, and Osaki 1983), and as such, the al-
ternatives Mc(t;a,b,K1,K2), c > 0, are plausible and provide
an interesting context for evaluating the power of the CvM test
of Section 3 and to demonstrate the difficulties associated with
using LRT0.

4.1 Case 1: c = 0

If a practitioner prefers to use the CvM test on the basis of
not having any specific knowledge of the type of alternatives
that could arise in the field, then he or she might be inter-
ested in knowing how well it does compared with LRT0 when
LRT0 is known to be optimal. In this section we examine the
size and power of the CvM and LRT0 tests of the adequacy of
M0(t;a,b,1,1) within the class M0(t;a,b,K1,K2). We inves-
tigate this question through simulations using the R program-
ming language.

Taking u and v to be the vectors associated with the BSS
application, we simulated sample paths {(ui,Yi)

42
i=1, (vi,Zi)

39
i=1}

from an NHPP with mean value function given by M0(t;a,b,

1,1) for various choices of (a,b). Values for a, the expected
number of initial faults, came from the set {100,200,400}.
The choices for a reflect the number of faults found in the
actual BSS data set, as well as consideration of the size of
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Table 1. Simulation estimates of power for nominal γ = .1 tests using (u, v) from the Brazilian switching system application

(K1,K2) = (.5, .5) (K1,K2) = (.5,1.0) (K1,K2) = (.5,1.5)

a FRE LRT0 CvM LRT0 CvM LRT0 CvM

100 2/3 .50 .54 .23 .31 .18 .20
3/4 .48 .46 .27 .28 .25 .19
4/5 .48 .38 .25 .21 .25 .16

200 2/3 .83 .86 .47 .52 .33 .32
3/4 .80 .82 .48 .47 .37 .28
4/5 .78 .77 .46 .42 .38 .27

400 2/3 .99 .99 .76 .79 .51 .46
3/4 .98 .99 .79 .79 .63 .50
4/5 .99 .99 .74 .78 .64 .50

new software development efforts. Values for b, the failure rate
of an individual fault in the test environment, were driven by
consideration of the fault removal efficiency (FRE), defined
as the fraction of faults removed during the test interval. For
the models Mc(t;a,b,K1,K2), we have FRE = 1 − e−bul . For
the BSS application, ul = 42, and by choosing b from the
set {.02615744, .03300701, .03831995} values of 2/3, 3/4, and
4/5 are achieved for the FRE.

For each choice of (a,b), we generated 1,600 sample paths
from the model M0(t;a,b,K1,K2) and calculated the LRT0 and
CvM tests of H0 : K1 = K2 = 1 for each of them. We examined
the power of the CvM test against alternatives that are equally
spaced around the null value (K1,K2) = (1,1). The first three
alternatives, (.5, .5), (.5,1.0), and (1.0, .5), all correspond to
alternatives where the fault discovery process “slows down” in
the field. The next three alternatives, (1.0,1.5), (1.5,1.0), and
(1.5,1.5), correspond to “speed up” alternatives. The remain-
ing two alternatives, (1.5, .5) and (.5,1.5), are “conflicting” in
the sense that one parameter of the failure rate decreases while
the other increases. The cutoff value for the CvM test was deter-
mined using the Monte Carlo method described in Section 3.2,
and, that for the LRT0 test was determined using the nominal
asymptotic chi-squared cutoff point χ2

2,γ .
Tables 1–3 show the size and power of nominal 10% LRT0

and CvM tests. The sizes of the tests are shown in the mid-
dle two columns of Table 3, which corresponds to (K1,K2) =
(1,1). It appears that LRT0 is a slightly conservative test (actual
size smaller than nominal) for small a and that CvM is a slightly

liberal test (actual size is larger than nominal) for small FRE. As
a result, the power comparisons must be interpreted with care,
because a liberal test will naturally reject more often. Neverthe-
less, the power results in Tables 1–3 indicate that the CvM test
competes surprisingly well with the LRT0 test even in this set-
ting, in which the alternatives are those for which the LRT was
designed. The simulated powers for the two tests are quite com-
parable, with neither test dominating the other. For the speed-up
alternatives, however, the CvM test often has power equal to or
greater than LRT0 for the cases considered. The low power for
the case (K1,K2) = (1.5, .5) is a consequence of the fact that
for the values of a and FRE considered here, this alternative is
much closer to the null than the other alternatives considered;
this may be expected due to the fact that K1 > 1 and K2 < 1
have conflicting effects on the mean function.

4.2 Case 2: c > 0

For the class of models Mc(t;a,b,K1,K2), where c > 0,
LRT0 loses its motivation and optimal property. Unbeknown
to the practitioner, the correct LRT should be derived from the
likelihood based on Mc(t;a,b,K1,K2), and the adequacy of a
one-part model would have to be tested according to H0 : K1 =
K2 = 1, c = 0. If the data follow Mc(t;a,b,K1,K2), with c > 0,
then we could expect that LRT0 may not exist, because the as-
sumed model is not correct. Figure 6 illustrates this problem
by plotting simulation estimates of the probability that LRT0

exists versus c ∈ {1,2,4} for the models Mc(t;a1,b1,1,1) and

Table 2. Simulation estimates of power for nominal γ = .1 tests using (u, v) from the Brazilian switching system application

(K1,K2) = (1.0, .5) (K1,K2) = (1.0,1.0) (K1,K2) = (1.0,1.5)

a FRE LRT0 CvM LRT0 CvM LRT0 CvM

100 2/3 .15 .24 .070 .13 .23 .26
3/4 .13 .20 .075 .14 .22 .24
4/5 .11 .14 .074 .11 .18 .20

200 2/3 .30 .40 .078 .14 .32 .29
3/4 .32 .32 .084 .12 .35 .32
4/5 .28 .27 .091 .10 .35 .26

400 2/3 .65 .60 .098 .13 .55 .43
3/4 .66 .58 .11 .11 .51 .34
4/5 .64 .52 .10 .11 .53 .34
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Table 3. Simulation estimates of power for nominal γ = .1 tests using (u, v) from the Brazilian switching system application

(K1,K2) = (1.5, .5) (K1,K2) = (1.5,1.0) (K1,K2) = (1.5,1.5)

a FRE LRT0 CvM LRT0 CvM LRT0 CvM

100 2/3 .051 .12 .22 .40 .58 .67
3/4 .064 .13 .20 .36 .55 .61
4/5 .072 .11 .19 .33 .52 .57

200 2/3 .076 .15 .33 .50 .84 .83
3/4 .13 .11 .31 .47 .79 .79
4/5 .13 .09 .29 .47 .77 .76

400 2/3 .27 .15 .48 .67 .99 .97
3/4 .33 .12 .53 .65 .97 .96
4/5 .37 .095 .50 .65 .96 .93

Mc(t;a3,b3,1,1). The estimates were obtained by simulating
800 data sets according to each model and checking what frac-
tion of them satisfy all three conditions given by (4)–(6). Fig-
ure 6 shows results for m ∈ {5,39}. It is evident that the prob-
ability that LRT0 exists is low in all cases and decreases as c
increases.

The only assumption that the CvM test makes is that
M0(t;a,b,1,1) is the correct model in the test environment. Ir-
respective of the mean value function in the field environment,
the CvM test is a valid test of the adequacy of M0(t;a,b,1,1)

as a one-part model. Table 4 gives simulation estimates of
the power of the CvM test against alternatives of the form
Mc(t;a,b,1,1) with c > 0. The results confirm intuition that
the power increases as c grows larger. Note, however, that the
power for m = 39 is not significantly larger than the power
for m = 5. While this result is surprising at first, the reason
for it is that sufficient learning has taken place by the time
m = 5, so that the field part of the mean value function from
that point onward looks very much like the corresponding part
of M0(t;a,b,1,1). Thus the additional observations provide no
further evidence against the adequacy of the one part model.

To further explore the effect of increasing m, Tables 5 and 6
give simulation estimates of the power of the CvM test against
alternatives of the form Mc(t;a,b, .5,1) and Mc(t;a,b,1, .5),
with c > 0. The results in these tables show that power is
significantly greater for the case where m = 39, due to the
fact that even after the learning period has expired, the mean
value functions of the alternative models Mc(t;a,b, .5,1) and
Mc(t;a,b,1, .5) look different than that of M0(t;a,b,1,1).

Figure 6. Probability that LRT0 exists for various Mc(t;a,b,1,1)

models [ (a3, b3), m = 39; (a1, b1), m = 39; (a3, b3),
m = 5; (a1, b1), m = 5].

5. SUMMARY

Significant gains in inference associated with future failures
can be realized when the one-part model is valid. But the one-
part model is valid only when the test and field environments are
identical in terms of how the software is used during operation.
To take advantage of the increased precision in inference pro-
cedures that are possible when the two environments are identi-
cal, while at the same time avoiding the adverse consequences
of fitting a one-part model that is not valid, a statistical test of
whether the two environments are compatible is needed. We
have proposed a CvM test for this purpose and have shown that
it works well (i.e., has the right size and has satisfactory power)
in situations where LRT0 also would work well, but that it con-
tinues to work well in situations where LRT0 has no statistical
justification or where LRT0 is justified but fails to exist due to
the nonexistence of the two-part MLEs. The most attractive fea-
ture of the CvM test compared with LRT0 is the fact that it is a
valid statistical test no matter what the alternative to compatible
environments might be. The CvM test, unlike LRT0, does not
require that the class of alternatives be specified. As such, the
CvM test is very practical and useful test for software reliabil-
ity engineers. Finally, we note that our proposed data analysis
strategy is a two-stage methodology, with the hypothesis test
for compatible environments constituting the first stage and fit-
ting the appropriate one-part or two-part model constituting the

Table 4. Simulation estimates of CvM test power for nominal γ = .1
tests using (u, v) from the Brazilian switching system application

and (K1,K2) = (1,1)

c = 1 c = 2 c = 3

a FRE m = 5 m = 39 m = 5 m = 39 m = 5 m = 39

100 2/3 .14 .19 .20 .33 .32 .50
3/4 .14 .16 .19 .26 .27 .39
4/5 .11 .11 .16 .18 .23 .31

200 2/3 .27 .30 .50 .53 .71 .80
3/4 .25 .21 .43 .42 .67 .73
4/5 .21 .19 .38 .34 .62 .65

400 2/3 .51 .45 .80 .83 .95 .99
3/4 .48 .38 .77 .75 .96 .98
4/5 .41 .30 .71 .66 .92 .94
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Table 5. Simulation estimates of CvM test power for nominal γ = .1
tests using (u, v) from the Brazilian switching system application

and (K1,K2) = (.5,1)

c = 1 c = 2 c = 3

a FRE m = 5 m = 39 m = 5 m = 39 m = 5 m = 39

100 2/3 .27 .50 .35 .62 .42 .72
3/4 .25 .41 .32 .54 .39 .65
4/5 .18 .31 .22 .43 .31 .55

200 2/3 .63 .80 .79 .90 .88 .97
3/4 .59 .74 .74 .87 .85 .96
4/5 .52 .67 .67 .84 .79 .94

400 2/3 .92 .98 .98 1.0 1.0 1.0
3/4 .90 .97 .97 1.0 1.0 1.0
4/5 .87 .96 .96 .99 .99 1.0

second stage. When making inferences (e.g., prediction inter-
vals) from the model fit in the second stage, we have not pro-
vided guidance on how to adjust the methods used for the added
variability introduced by the first-stage hypothesis test. An in-
tegrated data analysis strategy that explicitly does this will be
the subject of future research.

APPENDIX A: PROOF OF THE PROPOSITION

In this appendix we sketch a proof of the proposition given in
Section 3.2.1; refer back to that section for the notation defini-
tions. We use the symbol ≈ to denote “has the same asymptotic
distribution as.” We introduce some partitioned matrices and
vectors to present the asymptotic results. Let Y be the column
vector (Y1, . . . ,Yl)

t,Z be the column vector (Z1, . . . ,Zm)t, and
W = (Yt,Zt)t. Let D be the column vector with entries Di =
Wi − Wi−1 , where W0 = 0, and partition D as D = (Dt

T ,Dt
F)t.

Our first step, which can be verified by direct multiplication, is
to express the CvM statistic in (5) as

CvM =
(

D − âδ̂√
â

)t

Q̂

(
D − âδ̂√

â

)

, (A.1)

where Q̂ is the matrix Q with b replaced by b̂. The key to prov-
ing the proposition is our second step, in which we develop an
asymptotically equivalent representation for (D − âδ̂)/

√
â.

Table 6. Simulation estimates of CvM test power for nominal γ = .1
tests using (u, v) from the Brazilian switching system application

and (K1,K2) = (1, .5)

c = 1 c = 2 c = 3

a FRE m = 5 m = 39 m = 5 m = 39 m = 5 m = 39

100 2/3 .27 .49 .36 .63 .44 .74
3/4 .26 .39 .33 .55 .39 .67
4/5 .19 .29 .24 .44 .31 .58

200 2/3 .64 .79 .78 .91 .90 .98
3/4 .55 .72 .74 .88 .85 .97
4/5 .52 .64 .67 .86 .8 .95

400 2/3 .92 .98 .99 1.0 1.0 1.0
3/4 .90 .97 .98 1.0 1.0 1.0
4/5 .86 .95 .96 1.0 1.0 1.0

Suppose that the hypothesized model holds for all t ≤ vm,
that is, M(t; θ) = a(1 − e−bt) for all t ≤ vm. Then it is well
known from the normal approximation to the Poisson distribu-
tion that a−1/2{D − aδ} has a limiting multivariate normal dis-
tribution with mean 0 and variance–covariance matrix 	2. The
limiting distribution of CvM can be deduced from this funda-
mental result by applications of Slutsky’s theorem and Taylor
expansion, as we now describe.

First, note that the MLE of (a,b) obtained from the two-part
model maximizes the likelihood constructed from only the test
data,

LTest(a,b) ∝ e−a(1−e−bui )
l∏

i=1

[a(e−bui−1 − e−bui)]yi−yi−1

(yi − yi−1)! .

The score vector corresponding to LTest(a,b), namely U(a,b) =
[ ∂ log LTest

∂a ,
∂ log LTest

∂b ]t, has the form

U(a,b) =
[

a−111×l 01×m

∇ log δt
T 01×m

]

(D − aδ).

We know that U(a,b) has a large-sample distribution that is
bivariate normal with mean 0 and variance–covariance matrix
equal to the Fisher information matrix derived from LTest(a,b),
say I(a,b). Rather than computing the elements of I(a,b) as
expected values of the mixed second-order partial derivatives,
we instead use the equivalent form I(a,b) = E{U(a,b)U(a,b)t}
and find that

I(a,b) =
[

a−111×l 01×m

∇ log δt
T 01×m

]

× a	2
[

a−11l×1 ∇ log δT

0m×1 0m×1

]

=
[ ∑l

i=1 δi/a
∑l

i=1 ∂δi/∂b
∑l

i=1 ∂δi/∂b a
∑l

i=1(∂δi/∂b)2/δi

]

. (A.2)

We also know that (â, b̂)t is asymptotically bivariate normal
with mean (a,b)t and variance–covariance matrix I−1(a,b).
Therefore, we have (â − a, b̂ − b)t ≈ I−1(a,b)U(a,b) and

[
(â − a)/a

b̂ − b

]

≈
[

1/a 0
0 1

]

I−1(a,b)U(a,b)

=
{

I(a,b)

[
a 0
0 1

]}−1

U(a,b)

=
{[

1 0
0 a

]

I∗
}−1

U(a,b)

= (I∗)−1
[

1 0
0 a−1

]

×
[

a−111×l 01×m

∇ log δt
T 01×m

]

(D − aδ)

= (I∗)−1
[

11×l 01×m

∇ log δt
T 01×m

]

×
[

a−1 0
0 1

]

(D − aδ)

= (I∗)−1
[

11×l 01×m

∇ log δt
T 01×m

]
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×
[

a−1 0
0 a−1

]

(D − aδ)

= A
D − aδ

a
. (A.3)

Next, using a first-order Taylor expansion about (a,b) of the
elements in âδ̂ , we have

âδ̂ − aδ√
a

= √
a

[

δ
∂δ

∂b

][
(â − a)/a

b̂ − b

]

. (A.4)

Applying Slutzky’s theorem and combining (A.3) and (A.4), we
find that

D − âδ̂√
â

≈ D − âδ̂√
a

= M
D − aδ√

a
. (A.5)

Combining (A.1) with (A.5) and again using Slutzky’s theorem
gives

CvM ≈
(

D − aδ√
a

)t

MtQ̂M

(
D − aδ√

a

)

≈ Zt	MtQM	Z, (A.6)

where Z has a standard (l+m)-dimensional multivariate normal
distribution. The proposition follows trivially from (A.6).

APPENDIX B: APPROXIMATE
CONFIDENCE INTERVALS

In this appendix we derive an approximate confidence inter-
val for the median of the time to next failure under the one-
part model associated with (1). The confidence limits shown in
Figure 3 were computed from this formula. A derivation very
similar to what is shown here produces a formula for approx-
imate confidence limits under the two-part model associated
with (1), and we used that formula to compute the confidence
limits shown in Figure 4.

Under the one-part model associated with (1), the median
time to next failure given that the process has been observed
through field time vj is Q.5(vj) = − log [1 − log 2/(ae−bvj)]/b.
It can be shown that

∂ log Q.5(vj)

∂a
= − 1

Q.5(vj)

log 2

a2be−bvj [1 − log 2/(aebvj)]
and

∂ log Q.5(vj)

∂b
= 1

Q.5(vj)

{
1 − log 2/(aebvj)

b2

+ vj log 2

abe−bvj[1 − log 2/(aebvj)]
}

.

Denote the MLE of a and b based on the cumulative failure data
observed in [0, vj] by ã(j) and b̃(j). The MLEs of Q.5(vj) and

log Q.5(vj) are then Q̃.5(vj) = − log[1 − log 2/{ã(j)e−b̃(j)t}]/

b̃(j) and log Q̃.5(vj), and using the delta method, we have the
following approximation:

Var{log Q̃.5(vj)} ≈
[
∂ log Q.5(vj)

∂a

∂ log Q.5(vj)

∂b

]

× I−1
j (a,b)

[
∂ log Q.5(vj)

∂a

∂ log Q.5(vj)

∂b

]′
,

≡ σ 2(j)

where Ij(a,b) denotes the Fisher information matrix in (A.2)
but with l replaced by l + j. With σ̃ 2(j) denoting σ 2(j) but with
[ã(j), b̃(j)] replacing (a,b), an approximate 100(1−α)% confi-
dence interval for log Q.5(vj) is thus log Q̃.5(vj) ± zα/2σ̃ (j), and
therefore an approximate 100(1 − α)% confidence interval for
Q.5(vj) is [Q̃.5(vj)e−zα/2σ̃ (j), Q̃.5(vj)ezα/2σ̃ (j)].

[Received July 2006. Revised May 2007.]
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