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ABSTRACT

Goodness-of-fit tests for the uniform distribution based on sums of smooth functions of m-
spacings are studied. A limiting sum-of-weighted-chi-squareds approximation is shown to be
accurate uniformly in m for the special cases of analogues of Greenwood’s statistic and Moran’s
statistic. Asymptotic critical points are provided; theory and Monte Carlo studies show they are
accurate for all m provided »n is moderately large.

RESUME

On étudie des tests d’ajustement pour la loi uniforme basés sur des sommes de fonctions lisses
de m-espacements. Dans les cas particuliers de statistiques analogues a celles de Greenwood et de
Moran, il est démontré qu’une approximation asymptotique par une somme pondérée de khi-deux
est précise uniformément en m. Des valeurs critiques asymptotiques sont fournies. La théorie et des
études Monte-Carlo indiquent que ces valeurs sont précises pour chaque m si n est modérément
grand.

1. INTRODUCTION

Suppose U; < --- < U, are the order statistics from a sample of size n from a
distribution F. The m-spacings D, ...,D, are defined by D; = U;,,, — U;, where we set
Uop = 0 and Upik+1 = 1+ Ui. Tests of the hypothesis that F is the uniform distribution
on the unit interval or the circle of unit circumference have been based on statistics of

the form
R (n+1)D;
()

Here and throughout we suppress the dependence of most quantities on n and m if no
confusion can result; where necessary we use notation such as C(m).

Examples with m = 1 include Greenwood’s statistic (Greenwood 1946), where ¢(x) =
x2, and Moran’s statistic (Moran 1947), where ®(x) = log x. Cressie (1976, 1979) and Del
Pino (1979) suggested using higher values of m. For fixed m Holst (1979) has obtained
limiting asymptotic normality for the statistics under very weak conditions. Cressie (1976)
obtained asymptotic normality when m grows with n subject to the restriction that m3/n
tends to O; he speculated that asymptotic normality would fail for m growing too fast.
Recently, Hall (1986) has shown that C is asymptotically normally distributed provided
that m = o(n) and that m’/n is bounded away from O for an r which depends on the
smoothness of ¢ near 1. When m/n — ¢ € (0, 1), Hall shows the limiting distribution is
that of the integral of the square of a Gaussian process.
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The statistic C uses “wrapped-around” spacings D; where i + m exceeds n + 1. This
may be avoided by using

n+l—m

(n+1)D;
L= }; ¢(T)

The statistic L is discussed by Cressie (1976, 1979) and Hall (1986). We do not support
the use of L, since it assigns more weight to central spacings than to those in the tails.
Hall (1986) shows that the power of L deteriorates with increasing m when m exceeds
nt. Power is considered more fully in Guttorp and Lockhart (1988) and in a technical
report available from the authors.

In this paper we concentrate on two special cases. In the first case ¢(x) = (x — 1)* and
the statistic becomes

D?
G=(n+1)22—”—l‘3—n—1.

Cressie (1979) has shown that for fixed m, among statistics symmetric in the m-spacings,
G uses the most powerful choice of function ¢ against local alternatives converging to
the null hypothesis at a suitable rate. In the second case ¢(x) = logx and the statistic is

(n+ 1)D;
M= log &2 D0

When m/n tends to ¢ > 0, G and M have asymptotically the distribution of a sum of
weighted chi-squareds. We obtain explicit expressions for the weights and show that by
centering and standardizing properly the distinction between ¢ > 0 and ¢ = 0 disappears.
Our work thus completes that of Cressie and that of Hall on the null distribution of G
and M. The asymptotic distribution theory for L is essentially the same as for C except
that we do not have closed-form solutions for the asymptotic weights when m/n tends
toc€(0,1).

In Section 2 we obtain the asymptotic distribution of G uniformly in m < n with no
other assumptions on the rate of growth of m. We indicate how the results of Hall and
Cressie extend our results for G to the more general statistic C. In particular we show
how our results apply to M.

In Section 3 we tabulate critical points of the sum-of-weighted-chi-squareds approx-
imation. The theory of Section 2 shows the critical points should be useful for all m
provided n is sufficiently large; a Monte Carlo study confirms this conclusion for an n
of 40 or more.

Our analysis is based on the following standard construction of uniform order statistics.
Suppose V; +1 for i = 1,...,n are independent random variables each with the standard
exponential distribution, F(x) = 1 — e™*. We may construct uniform order statistics as

Vi+---+Vi+i

Ui = .
Vi 4 Vg +n+ 1

LetV=3V/(n+1)and V; = Zj:’," V;/m, where we set Vy.14; = V;. Then

m+n 2= 1V
m 1+V
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2. LARGE-SAMPLE THEORY

2.1. The Quadratic Statistic, G.

The statistic G is equivalent to Greenwood’s statistic Y- D?. We may write G =
N/(1+V)?, where N = 3°(V;—V)*. Since G and V are independent, by Basu’s theorem
we have E(G*) = E(N*)/E{(1 + V)*}. Define

(n+1)*
= i 22+ 3)(n+d)’
b = (n+1)°
" M+ 2P+ 3+ A+ 5)n+6)’
(n+1)

o D+ )+ A+ 5)n+6)’
p(m, 1) = 160m* — 72m* — 168m* + 48m + 32,

p(m,2) = 40m* + 232m> + 8m* — 168m — 32,
p(m,3) = 22m> + 98m?* + 72m + 8.

Lengthy calculations establish that the first three moments of G are

nm+D(n+1—m)

H=E@G)= v (2.1)
& = Var(G) = {n(@m+2) — 6m;-;32m +4}(m+ Da, , 22)
and, for 3m < n+3,
1 = {n*p(m,3) — np(m,52”)ls+p(m, D}m+ )b, : 23)
for 3m>n+3 and 2m < n+ 2, the term
2B3m—n—-3)3m—n—2)3m —n—1)3m —n)B3m —n+ 1)c, 2.4)

15m®

is added to the value given in (2.3).
The asymptotic distribution theory for G is summarized in the following theorem.

THEOREM 1. Let m = m(n) be a sequence of integers in the range 1 <m < n.

(a) For all m we have m>G(m) = (n+1 — m)>G(n+ 1 —m).
(b) If m = o(n), then (G — p)/c has asymptotically a standard normal distribution.
(©) fm/n—c €0, %], then G has asymptotically the distribution of

Z A (c)ax,
1

where the w; are independent standard exponential variates and

Mi(c) = {1 — cos(2mke) } / (mkc)>.
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The apparent distinction between (b) and (c) disappears if the limit in (c) is centered
and standardized. Let F,,, be the cumulative distribution function of (G — u)/o. Let
H. be the cumulative distribution function of {)_ Ak(c)(ex — 1}/{> K,%(c)}%, and let
¢ = c(m,n) = m/(n+1). By considering a subsequence of any potential counterexample
sequence along which m/(n + 1) converges we may prove the following corollary.

COROLLARY. As n— 00, SUp{|Fp(x) — Hc(x)|} — O where the supremum extends over
all x and all m in the range 1 <m < (n+1)/2.

Proof of the theorem. Statement (a) is an elementary algebraic manipulation. Statement
(b) is in Hall (1986). Hall also shows that if m/n — ¢ € (0,1) then Z = m*G/(n + 1)
converges in distribution to [{B(r + ¢) — B(¢)}* dt, where B is a Brownian bridge and
we put B(t+c¢) = B(t+c — 1) for t + ¢ > 1. Following Durbin (1973), this integral has
the distribution of a sum of weighted chi-squareds. The weights are the eigenvalues of
the integral equation

Af() = / f(s)p(s, D ds, (2.5)

where p(s, ) = Cov {B(s+c)—B(s), B(t+c)—B(t)}. Direct calculation with this covariance
shows that any eigenfunction of (2.5) is periodic. Differentiating (2.5) twice, we see that

Af"(s) = f(s+c)+ f(s —c) — 2f(s).

Expanding f in a Fourier series in the family sin(2mks), cos(2rks), we find that the
nonzero eigenvalues of (2.5) are 2{1 — cos(2mkc)} /(21tk)2, each occurring with multi-
plicity 2. Since G = Z/c?, statement (c) follows after some algebraic manipulation.

2.2. General Statistics, C.

Cressie (1976) suggests that the statistic M = Y log{(n + 1)D;/m} will be sensitive
to the presence of clusters in the data. Cheng and Stephens (1987) have shown that for
alternative densities with sharp peaks which tend to produce such clusters this statistic is
indeed more sensitive than G. This motivates consideration of the more general statistic
C.

For general ¢ we present a slight variation of Theorem 2 of Hall (1986) specialized
to the case of the null hypothesis. If m(n)/logn — oo, then sup{|(n+ 1)D;/m — 1|; 0 <
i < n} tends to 0 in probability. Fix an integer r > 2, and assume m’~!/n is bounded
away from 0. If ¢ admits a Taylor expansion at 1 of the form ¢(x) = 3_] 6V(1)(x — 1)/ +
o(|x — 1]"), then we may write

N HD;\"
C= 22: oS /jt+ (%) €,

where S§; = Y {(n+ 1)D;/m — 1} and max{|¢;; 1 <i < n} — O in probability. Let
w; = E(S;). The proof given by Hall then shows that

o 0 v — )
G(C sz i "G —w | —0

in probability, where | and G are the mean and standard deviation of G.
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Thus, provided that ¢ has r derivatives at 1, that ¢ (1) # 0 and that m"~!/n is bounded
away from 0, the statistic {C — >} ;69 (1)/j'}/{¢"(1)c} has asymptotically the same
distribution as (G — p)/o; the latter distribution is given in the corollary above.

This result gives centering constants which depend not only on m and » but also on r.
In principle it seems undesirable to have an approximation to the distribution of a statistic
depend not only on the statistic but also on what statistic might have been used for a
different sample size. The problem does not arise for G, since the centering constant in
the corollary is the exact mean of G. Following a suggestion from a referee, we made
some numerical calculations of the effect of using r = 4 versus r = 6 for the statistic
M with n = 50, 100, and 200 and m running from 1 to n/2. We found that for m larger
than 5 to 7 use of r = 4 was adequate, while smaller values of m required r to be at
least 6. No general formula for a useful value of r as a function of m and n is known to
us.

Although we do not have a complete solution for this problem, we are able to deal
with the most common special case of C other than G, namely, M, the high-order-
spacing version of Moran’s statistic. Cressie (1976) gives formulae for the exact mean
and variance of M — (n + 1)log{(n + 1)/m} = > ¢ logD; and proves that if m3/n — 0,
then {M —E M)}/ Var 3(M) is asymptotically standard normal. When m*/n is bounded
away from O it is possible to prove, using asymptotic expansions for the digamma
function, that {35 (—1Y'p;/j — E(M)}/c — 0. Therefore the corollary holds with
{M — EM)}/Var (M) replacing (G — p)/o.

3. NUMERICAL RESULTS

The results of Section 2 permit tabulation of critical points from the limiting distribu-
tion of G. To test the null hypothesis that the underlying distribution is uniform on the
unit interval or the circle of unit circumference, compute (G — p)/c from (2.1), (2.2),
and compute ¢ = m/(n+1). If ¢ > %, use this value to enter Table 1. If ¢ < % the approx-
imation may be improved by adjusting for the exact skewness of the statistic as follows.
Compute the standardized skewness y; = W3 /03 from (2.3, 2.4), and use this value to
enter Table 1. If m/(n+1) > 3, let m* = n+1—m, and compute G(m*) = m*G(m)/(m*)?,
and proceed as above with G(m*). To interpolate between columns in the table use linear
interpolation in the logarithm of the upper-tail probability. To interpolate between rows
use linear interpolation in 7y;; this is justified for ¢ near 0 by a Cornish-Fisher expansion
of the critical points of T.

The values in Table 1 are approximations to the critical points for the distribution of

_ IR ME@— )
{7 M}

For ¢ > 0.1 the points in Table 1 are critical points for the truncated sum

T

oo 2 M@ 1)
(T ¥}

The truncation causes no problems, since

Var {Z (e (@ — 1)}

101



424 GUTTORP AND LOCKHART Vol. 17, No. 4

TABLE 1: Critical values for (G — p)/a.?

Upper-tail level of significance

c Y1 50 25 15 10 5 2.5 1 0.5 0.1
0.5 1.960 —-0.297 0.391 0.898  1.301 1.989 2677 3.587 4275 5.873
0.4 1.955 -0.296 0.392 0.898  1.301 1.988 2.675 3.585 4275 5.869
0.3 1.744 -0.257 0430 0918 1303 1958 2611 3475 4.128 5.645
0.2 1.389 -0.213 0491 0963 1.323 1922 2507 3269 3.840 5.156
0.1 0.944 -0.152 0.560 1.005 1.333 1.81 2360 2992 3.455 4.495
0.02 0.408 -0.068 0.632 1.033 1316 1.752 2.146 2.623 2960  3.688
0.01 0.287 -0.048 0.646 1.036 1308 1.722 2.092 2536 2.847 3.508
0.001  0.090 -0.015 0666 1.037 1.291 1.670  2.002 2393 2.661  3.220
0 0 0.000 0.675 1.036 1.282 1.645 1960 2326 2576 3.090

“See the text for interpolation techniques.

is very small in this case. The distribution function of T* is then available in closed
form; see Johnson and Kotz (1970, p. 222). For ¢ <0.1 the eigenvalues A;(c) fall off too
slowly with increasing k to neglect the truncated terms. Instead we truncated the sum
at 40 terms and replaced zﬁ’ A(c) (o — 1) by a(x\z, — V), where a and v are chosen
to match the variance and skewness of the truncated terms. Such a choice is feasible
because the cumulants of T can be computed analytically. Indeed, the rth cumulant, x,,
of Tis x, = (r — 1)! Z‘I” AL(c). The latter sums may be evaluated using trigonometric
identities and the relation, for 0 <x <1,

(=1)""'2m)*"B2a(x)
2(2n)! ’

oo
Z cos(2mkx) k™" =

k=1

where By (x) is the kth Bernoulli polynomial; see Abramowitz and Stegun (1965, p. 804
ff.) for details on these polynomials. In particular, x; = (1 — ¢)/c, 2 = (4/3 — 2¢)/c,
and for ¢ < 1, 3 = (22/5—8c)/c, while for ¢ > §, k3 = (¥ —8¢)/c+2(3c—1)’/(15c5).

For ¢ < 0.1 the points in Table 1 were then computed, following Durbin and Knott
(1973), by numerical inversion of the characteristic function of

T = S el — 1) +a(xl — v)

{2‘1‘0 A(o)+ 2azv} :

The two approximations were compared at ¢ = 0.1 and agree to all the decimal places
given in the table.

The quality of the asymptotic approximation suggested here was studied in a Monte
Carlo experiment. For sample sizes n = 40 and 100 and spacing orders m = 1, 5, 20,
and (for n = 100 only) m = 40 we generated 10,000 Monte Carlo values of G. For
various significance levels the number of rejections using critical points derived from
an extended version of Table 1 is recorded in Table 2. We also evaluated the normal
approximation to the distribution of (G — p)/o. Except for m = 1 this approximation is
very poor; for m = 1 Table 2 also presents the number of Monte Carlo samples rejected
using this normal approximation. The poor performance of the normal approximation
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TABLE 2: Number of rejected Monte Carlo samples in 10,000 trials.

Normal Sum-of-weighted-chi-squareds
approx. approximation
Upper-tail
area m=1 m=1 5 20 40
n =40

0.99 10000 9707 9767 9999

0.95 9912 9358 9368 9743

0.75 7338 7593 7496 7382

0.50 4240 5095 5073 4831

0.25 2048 2472 2486 2524

0.05 644 470 488 494

0.01 294 98 105 95

n =100

0.99 9998 9812 9847 9868 9943
0.95 9787 9408 9459 9435 9604
0.75 7348 7545 7475 7546 7492
0.50 4317 5006 5012 5077 4987
0.25 2154 2434 2469 2535 2540
0.05 618 460 475 506 505
0.01 255 110 97 100 107

conforms with the findings of Stephens (1981), who gives accurate finite-sample points
for the case m = 1.

The results show that the asymptotic sum-of-weighted-chi-squareds approximation is
good for n of 40 or more and for all m. The normal approximation does not appear to
work as well even in the case m = 1. The approximations are best for points near the
5% level and worst in the lower tail.

In Section 2.2 we indicated that for sufficiently smooth ¢ the statistic C can be
referred to Table 1 provided exact expressions for the mean and variance are available.
In particular, Cressie (1976) gives the mean and variance of M. Since the exact skewness
of the statistic is not available, the value ¢ = m/(n + 1) must be used to enter the table;
as a result the asymptotic approximation cannot be expected to be as accurate.
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