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ABSTRACT

Cramér—von Mises statistics are developed for use in testing for discrete distributions, and tables
are given for tests for the discrete uniform distribution.

RESUME

Nous développons des statistiques Cramér—von Mises dans le but de tester des distributions
discretes, et présentons des tableaux pour des tests de la distribution uniforme discrete.

1. INTRODUCTION

The Cramér—von Mises family of goodness-of-fit statistics is a well-known group of
statistics used to test fit to a continuous distribution. In this article we extend the family
to provide tests for discrete distributions. The statistics examined are the analogues of
those called Cramér-von Mises, Watson, and Anderson-Darling, namely W2, U? and
A? respectively, and their components. We provide formulae for the test statistics, and
asymptotic percentage points for the test for a uniform distribution with k cells. The tests
are based on the empirical distribution function (EDF) of the sample. They are closely
related to Pearson’s X test, and to Neyman-Barton smooth tests; in particular, all the
tests can be broken down into components, as has been observed by many authors. It is
suggested that A% be used to test the overall null hypothesis in general, and U? for the
particular case where observations are counts around a circle. Their components can be
used to test for particular types of departure from the null.

In Section 2, we define the test statistics and give the general distribution theory. In
Section 3 the solution of the uniform case is given, together with two examples; in Section
4 modified versions of the statistics are discussed. In Section 5 power studies are given
which show that A? is a good omnibus test statistic. Finally, in Section 6 we discuss the
use of components as individual test statistics and demonstrate the use of a graphical
procedure called the Z-plot to determine, when a statistic is found to be significant, the
type of departure from the null.

2. EDF TESTS FOR DISCRETE DATA

The Kolmogorov-Smirnov statistic appears to be the only EDF statistic which has
been studied extensively for testing goodness of fit with discrete data; see, for example,

*A shortened version of this paper was presented at the Wilks Conference, Princeton, N.J., February 1992,
in honour of the work of Professor G.S. Watson.
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Schmid (1958), Conover (1972), Horn (1977), Pettitt and Stephens (1977), Wood and
Altavela (1978), and Stephens (1986). Schmid (1958) derived the asymptotic null distribu-
tion of the Kolmogorov-Smirnov statistic when the hypothesized cumulative distribution
function possessed a finite number of discontinuities and was increasing between the
discontinuities. Wood and Altavela (1978) extended Schmid’s results to cumulative dis-
tribution functions having a countable number of discontinuities, and found that the
Kolmogorov-Smirnov statistic can be calculated using the multivariate normal distribu-
tion. Hirotsu (1986) and Nair (1987) have discussed problems involving two samples
with results closely related to those given below. Freedman (1981) has discussed U 2 for
testing uniformity of counts around a circle.

The W2, U?, and A? statistics for discrete data are defined as follows. Consider a
discrete distribution with k cells labelled 1,2, ..., k, and with probability p; of falling into
cell i. Suppose N independent observations are given; let o; be the observed number of
outcomes in cell i, and let Np; = e; be the expected number in cell i. Let S; = >~;_, o; and
T, = Z{=1 e;. Then S; /N and H; = T;/N correspond to the empirical distribution function
Fn(x) and the cdf F(x) in the continuous case. Suppose Z; = S; —7Tj,j = 1,2,...,k. The
Cramér-von Mises statistics W2, U2, and A? for a discrete distribution are then defined
by

k
=N"'Y"7Zp, (1)
j=1
k
=N (- 2)p;, )
j=1
k Z D
! S £ A
3
VL -y ®

where Z = E]'.;l Z;p;. Note that Z; = 0 in these summations, so that the last term in W2
is zero. The last term in A? is of the form 0/0, and is set equal to zero.

It is convenient to put these expressions into matrix notation. Let I be the k X k identity
matrix, and let p” be the 1 X k vector ( DP1,D2, ..., Pk). Suppose D is the k X k diagonal
matrix whose jth diagonal entry is p;, j = 1,...,k, and let G be the diagonal matrix
whose jth diagonal entry is H;(1 — H;), j = 1,...,k. The S; and T; may be defined in
terms of the o; and e;. Arrange these quantities into column vectors S, T, o0, e (so that,
for example, the jth component of Sis S;, j = 1,...,k). Then Z = Ad, whered = 0 —e
and A is the k X k partial-sum matrix

1 00 ... 0
110 ..0
A=|1 1 1 0
1 11 1
The definitions become
w2 =Z"DZ/N, )
U*=2"1-p11")DA - 11'D)Z/N, (5)

A’ =7"DG™'Z/N. . (6)
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The well-known Pearson X? statistic, defined by X2 = 3"~ (0; — &,)?/e;, is

X2 = d'D'd ZA''D'A'Z
- N N '

2.1. Distribution Theory.

The covariance matrix of 0 is 39 = N(D — pp'), and that of Z is 3, = AS0AT, with
entries X; = N{min(H;, H;) — H;H;}. All four statistics above are of the general form
Z™Z, where M is symmetric. We may write a typical statistic S as

k—1
S=2"MZ =" A(w]Z), @)

i=1

where A; are the kK — 1 nonzero eigenvalues of M2 and w; are the corresponding
eigenvectors, normalized so that w,-TEWj = §;. In (7), the quantity si2 = (WZ)? is
called the ith component of the statistic. As N — oo, the distribution of Z/ \/1-{1_ tends
to the multivariate normal with mean 0 and variance 2 /N. The distribution of a typical
s; tends to univariate normal with mean O and variance 1, and asymptotically the s; are
independent. A typical statistic S has an asymptotic distribution

k—1
S~ Nish, ®)
i=1

which is a sum of independent weighted x% variables. To calculate percentage points for
this distribution it is necessary only to find the weights A ; for the appropriate statistic and
then use the method of Imhof (1961). This method has been used to find the asymptotic
distribution of W2, U2, and A% when the tested distribution is discrete uniform with k
cells, and percentage points for these statistics are given in Table 1.

2.2. Calculation of \.; and Components.

1
To find the A; and w; in (7), it is convenient to work with X = M2Z; the covariance

1 1
of X is then 3x = M23,M2Z. The statistic is S = X'X and can be written in a form
similar to (7) using the eigenvalues and eigenvectors of 2x. It may be shown that the
eigenvalues A; of 2x are the same as those of M3, and corresponding eigenvectors v;

1
are related to w; above by w; = M2v;. The required normalization is now v} 2xv; = §;,
which follows from the normalization of w; given above. Since 2xv; = A;v;, it follows
that the v; are jointly orthogonal and of length v,Tvi = 1/A;. The statistic § = Z'™™MZ

may be written CeTe P Tww
S=X'X= LX)’ =) @X)? )

where u; = 4/A;v; is an eigenvector of 3y with length 1. Finally, the component (W,TZ)Z
is found from (u]X)? by dividing by A;.

An advantage to the above form (9) is that 3x is symmetric and MY, is not. It is often
easier to find the A; and v; algebraically for a symmetric matrix; this is the case for the
discrete uniform distribution considered below. Also, when eigenvalues and eigenvectors
must be found numerically, computer packages are more readily available if the matrix
is symmetric, and the packages usually give eigenvectors of unit length.
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TABLE 1: Percentage points for Cramér-von Mises statistics for tests for the discrete
uniform distribution with k cells. . = upper-tail significance level.

Statistic W2

k o =025 0.15 0.10 0.05 0.025 0.01 0.005 0.001

3 0.198 0.282 0.351 0.472 0.603 0.783 0.922 1.215
4 0.205 0.284 0.351 0.470 0.595 0.767 0.899 1.213
5 0.207 0.284 0.350 0.467 0.590 0.750 0.888 1.204
6 0.208 0.284 0.349 0.465 0.587 0.754 0.883 1.188
8 0.209 0.284 0.348 0.464 0.584 0.749 0.877 1.179
10 0.209 0.284 0.348 0.463 0.583 0.748 0.874 1.175
20 0.209 0.284 0.347 0.462 0.581 0.743 0.871 1.170
40 0.209 0.284 0.347 0.461 0.581 0.744 0.870 1.168
00 0.209 0.284 0.347 0.461 0.581 0.743 0.869 1.167
Statistic U2
Kk o=025 015 010 005 0025 001 0005 0001
3 0.103 0.141 0.171 0.222 0.273 0.341 0.395 0.512
4 0.106 0.139 0.165 0.209 0.252 0.309 0.351 0.453
5 0.107 0.137 0.161 0.201 0.241 0.294 0.335 0.427
6 0.107 0.136 0.158 0.197 0.235 0.286 0.325 0414
8 0.106 0.134 0.156 0.193 0.230 0.278 0.315 0.401
10 0.106 0.133 0.154 0.191 0.227 0.275 0.311 0.395
20 0.105 0.132 0.152 0.188 0.223 0.270 0.305 0.388
40 0.105 0.131 0.152 0.187 0.222 0.269 0.304 0.387
00 0.105 0.131 0.152 0.187 0.222 0.268 0.304 0.385
Statistic A2
k o =025 0.15 0.10 0.05 0.025 0.01 0.005 0.001
3 0.892 1.267 1.580 2.125 2.714 3.52 4.15 5.47
4 0.989 1.363 1.675 2.235 2.821 3.63 4.24 5.71
5 1.043 1.417 1.733 2.289 2.874 3.68 4.28 5.77
6 1.079 1.452 1.763 2.324 2.909 3.72 4.33 5.80
8 1.122 1.495 1.807 2.367 2.952 3.72 437 5.84
10 1.147 1.521 1.832 2.392 2977 3.78 4.40 5.88
00 1.248 1.621 1.933 2492 3.077 3.88 4.50 5.97

The components s? take different values for different statistics, since they depend on
M through the eigenvectors w;; however, 3 s? is the same for all the statistics and equals
the well-known Pearson X2. This is illustrated in Section 6. For different statistics, the
different components s?, when compared with the x% distribution, may be used to test for
different kinds of departure from the tested distribution. We return to these applications
later.

3. THE DISCRETE UNIFORM DISTRIBUTION
3.1. Statistic W2.

We now consider tests for the discrete uniform distribution with k cells and with
pj = 1/k for all j.

1
For W2, we have M = D/N; thus X = D2Z/+/N = Z/+/kN, and Zx has entries
k minGi, j) — ij

Cx)j = s

(10)
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The last row and last column of 2y are all zeros [this occurs because the final term
is included in the sum (1)], so one eigenvalue, say A, is zero. For the others, suppose
Q is the matrix 3y with the last row and column omitted. The inverse of Q is k? times
P*, where P* is the (k — 1) X (k — 1) tridiagonal matrix with 2 along the main diagonal
and —1 on the subdiagonal and superdiagonal. The eigenvalues and eigenvectors of this
matrix are well known. The eigenvalues of Q can then be found. They are

1

hi= 2k2{1 — cos(in/k)}’

The orthonormal eigenvector w; corresponding to A; has jth component u; =

(2/k)% sin(mij /k), j = 1,2, ..., k. The ith component s? is then (u]X)?/A;.

Asymptotic percentage points of W2, given by (8), are in Table 1. Monte Carlo studies
show that the points for k cells and N observations converge quickly, as N — oo, to the
asymptotic points for k cells. This rapid convergence is similar to the continuous case.
Note also that, as k — 00, the values A; — 1/(i’>1%), the A-values for the continuous
uniform test, and the percentage points converge, as expected, to the asymptotic points
for W2 for this test.

3.2. Statistic U?.

It is convenient to write U2 in the form U2 = (1/kN) Y5 1(Z Z)?, where Z =

Z, 1 Zi [k. Let Y be the vector with components Y; = (Z;—Z)/(kN )2 sothat U2 = Y'Y.
We now need the eigenvalues and eigenvectors of the covariance matrix 2y of Y. Write
B = I — 117 /k; then it may be shown that 3y = BZxB. Since B is idempotent, the
eigenvalues of Sy are the same as those of BEX From W2, we have 2xw; = A;w;; then
B3xw; = A;Bw; = A;(w; —w;1), where w; = )_._, w;;/k. Thus the eigenvalues of B2x
are the same as those of 2x, provided the elgenvector w; has mean w; = 0. For k odd,
this occurs when i is even, and the eigenvalues of 2y then occur in pairs; the values,
each occurring twice, are

1

hi= 2k2{1 — cos(in/k)}’

i=2,4,..., k-1 (11

The corresponding orthonormal eigenvectors are the u; of W2 above, now called r;, and

1
another set r} whose jth components are (2/k)2 cos(mij/k). For k even, A; is again given
by (11), for i = 2,4,...,k — 2, and each occurs twice; the eigenvectors are again r; and
rj, i =2,4,...,k — 2. There is a further eigenvalue A;_; = 1/4k> with corresponding

eigenvector ry_; = (1 /k)%(—l, 1,—1,1,...,1). Let A} denote the ith eigenvalue when
the complete set of k — 1 eigenvalues has been arranged in descending order, and let u}
denote the corresponding eigenvector. The ith component s? of U? is then (u;‘TX)2 /AL

For k odd, the asymptotic distribution (8) may be written, for U2, as a sum of weighted
exponentials. The distribution function of such a sum may be put in closed form. For &
even there is a similar but more complicated expression. However, it is easy to obtain
percentage points by Imhof’s method, and these are given in Table 1. U? has already
been discussed by Freedman (1981), who gave A’s for certain values of k, and suggested
fitting Pearson curves to obtain asymptotic points, but did not give a general formula for
the A-values or their eigenvectors.



130 CHOULAKIAN ET AL. Vol. 22, No. 1

3.3. Statistic AZ.

The analysis for A2, given by (3), can follow the same lines as for W2, with matrix
M =DG™! /N (note that D and G are both diagonal). The algebra to find A; and v; is
now more complicated, and we omit the details. The interesting result is that, for k cells,
the eigenvalues are A; = 1/{i(i+1)}, i = 1,2,...,k—1, and A, = 0. The nonzero values
are exactly the same as for the continuous case, up to k — 1, whereas for W2 and U?,
the A; only tend to the continuous A’s as k — oo.

To obtain components s? of A2, define vectors w;, with components w;;, j = 1,2,...,k,

given by . .
;= L(j) — t(J — 1)’ 12)
Ci
where ¢? = (k +i)!/{(2i + 1)(k — i — 1)!}, and #(}j) is the ith Chebyshev polynomial for
discrete values (Erdelyi 1953, p. 223, with N = k). The normalizing constant ensures
that w%w; = §;. Then component s? = k(w] Z)*>/N. The #(j) can be found from the
recurrence relation

(i + Dtin(j) = i + DQj — k + Dt(j) — KK* — D)ti-1()), (13)

together with #(j) = 1 and #(j) = 2j — k + 1. Eigenvalues A; and eigenvectors w; have
already been given by Hirotsu (1986) and by Nair (1987) in connection with similar
problems, arising from the analysis of ordered contingency tables, and involving the
matrix here called 3.

3.4. Test for the Discrete Uniform Distribution.

The test of H, : observations x,, » = 1,2,...,N, are from a discrete uniform
distribution with k cells is as follows:

(1) Calculate the statistics from the formulae (1)~(3) above, with p; = 1/k.

(2) Refer the statistic to the appropriate part of Table 1, for a distribution with k cells,
and reject Hj at level a if the statistic exceeds the given point for level o.. Although the
points given are asymptotic, Monte Carlo studies show that they provide good accuracy
for N as low as 10.

Statistic U? should be used for cells which occur around a circle because its value
does not depend on which cell is chosen to be the first. All three statistics may be used
for cells along a line. We give power studies below which suggest that overall A? is the
recommended statistic for such cells, particularly as it is effective in detecting changes
in the tail of the distribution.

3.5. Example 1.

Pettitt and Stephens (1977) give an example, from Siegel (1956), of data with k = 5
cells. N = 10 subjects were asked to rank photographs according to preference; the
same photograph was presented in five tones, so that there was a natural ordering of
the cells. The observed preferences for tone, or cell, i were, for i = 1,2,...,5, the
values 0; = 0, 1,0, 5,4. It was desired to test for no preference in tone, that is, for equal
probabilities for the cells, so that e; =2 fori = 1,...,5. Then 7" = (-2,-3,-5,-2,0)
and (Z —Z)" = §(2,—3,—13,2,12). These give values W? = 0.84, U2 = 0.264, and
A? = 3.83, with p-values 0.007, 0.019, and 0.009 respectively. The p-values, taken from
Table 1, must be treated with caution, since the sample size is small; nevertheless, those



1994 CRAMER-VON MISES STATISTICS 131

for W2 and A? are clearly significant, near the 0.008 level. Pettitt and Stephens found that
the Kolmogorov-Smirnov statistic was also significant at this level, while the Pearson X?
statistic (whose value is 11) had exact p-value 0.04 and an approximate p-value, from
the asymptotic 2 distribution, of 0.024.

3.6. Example 2.

In this example we illustrate the use of U2. The data are taken from Edwards (1961),
and consist of counts of births of children with anencephalitis, for the years 1940-1947,
in Birmingham, England. The counts for January to December are 10, 19, 18, 15, 11, 13,
7, 10, 13, 23, 15, 22. It is desired to test F : the counts are uniform over the months,
against the possibility of a seasonal effect. The total is 176, so e; = 14%, ignoring the
slight variability in the lengths of the months. Such data are often displayed as counts
around a circle divided into 12 monthly sectors. For these data a goodness-of-fit statistic
for testing H;, should not depend on which month of the year is regarded as the first, so
U? is the statistic of choice.

The value of U? is 0.214, and from Table 1, with k = 12 cells, the p-value is 0.031.
The Pearson X? statistic is 18.727, with p = 0.066 when compared with 2,. Rayner and
Best (1989) have also tested these data for uniformity, but used the Kolmogorov statistic
with tables given by Pettitt and Stephens (1977), and also V,, the second component of
X2, partitioned using Chebyshev polynomials. Both these statistics depend on the month
that is regarded as origin.

4. MODIFIED VERSIONS OF W2 AND A?

The definitions of W2, U2, and A? given in Section 2 have been chosen to be analogous
to the corresponding statistics for testing specified continuous distributions. However, they
can be modified in various ways [as can the continuous statistics; see, for example, de Wet
and Venter (1973)], to give greater prominence to certain parts of the tested distribution.
One such modification is to omit the p; in the definitions (1)—(3); then, for long-tailed
distributions such as the Poisson, the modified statistics will give more weight to accuracy
in the long tail. We denote the statistics modified in this way by W2 and A2. For the
discrete uniform test, of course, all p; = 1 / k; the new statistics, as well as the percentage
points, are k times their old values, and therefore the test is unchanged.

We illustrate the modified statistics by finding A> and A2, for the following example.

4.1. Example 3.

Best and Rayner (1987, Section 4) give an example of data with k = 5 and N = 20
observations. The p;, i = 1,2,...,5, are 0.05, 0.3, 0.3, 0.3, 0.05, and the observed values
in the cells are 1, 4, 11, 4, 0. These lead to values Z; = 0, —2, 3, 1, 0. Best and
Rayner use their statistics V12 and V2, which, asymptotically, have %3 distributions and
are independent, and also the statistic V? + V7, with asymptotic %3 distribution. They
obtain values VZ = 0.2, V2 = 2.666, V! + V? = 2.866, and give p-values 0.605, 0.103,
0.077. The first and last of these are incorrect; they should be 0.655 and 0.239. They also
calculate Pearson’s X? statistic = 6.5 (correct) and give the incorrect p-value 0.0034 and
reject Hp, inviting us to “better” their results. We start by giving the correct p-value for
X? = 6.5 on 4 d.f.,, which is 0.165 — then %, cannot be rejected even at the 10% level.
If A? is used as the test statistic, the eigenvalues of 2x are A; = 0.515, 0.258, 0.133,
and 0.044, and the value of A? is 1.173; this has p-value 0.280 when compared with
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distribution (8). If A2 is used, the A; are 1.834, 0.987, 0.757, 0.422, and A2, = 3.910,
with p-value 0.396. Clearly the null hypothesis cannot be rejected.

5. POWER STUDIES

We now consider the power of the Cramér—von Mises statistic for testing uniform
pi, especially against trend alternatives. The natural statistic for comparison is Pearson’s
X2, which is usually used for discrete distributions, but we include also the Kolmogorov-
Smirnov statistics S*, S, and S, which were studied by Pettitt and Stephens (1977). These
are defined by S* = max; Z;, S~ = max;(—Z;), S = max(S*,S7). Pettitt and Stephens
compared S with X2, using certain families indexed by a constant &, called A;(5) and
A2(8), as alternatives to equal values of the p;. For the family A;(8), p; = {i®—(i—1)%}/5,
i=1,...,k. If =2, p; = (2i—1)/n?, and the p; increase linearly. For the family A,(3),
pi=1/n—8for1 <i<n/2 and p; = 1/n+8 for n/2 <i < n. For Ay, there is a steady
trend, and for A; there are two blocks of equal values of the p;. Two other alternatives
have been added, called A3 and A4; these have cell probabilities which are U-shaped —
symmetric around the centre cells, and with higher probabilities at the ends.

Table 2 gives power results for Monte Carlo samples of size 20, for the test of #;: all
pi equal (to 1/n), against the alternatives shown. It is clear that EDF statistics are much
better than the familiar X*> when the alternative is a trend in the values of the p;. For the
U-shaped p;, U? is the best statistic, a result corresponding to continuous data, where
U? detects a change in variance rather than mean, but A? still holds its own against X2.
Since trend alternatives are often likely to be the case, A is recommended as an omnibus
test statistic. Of course, if the direction of trend is known, either S* or S~ can do better,
as is seen from the table.

6. USE OF COMPONENTS

We have seen that each statistic may be decomposed into components such that the
entire statistic, for example A2, is a weighted sum of the components. The individual
components can be expected to describe certain features of the data, and the importance
of each component is assessed by the weight it is given. Several authors have discussed
components — for example, for W2, Durbin and Knott (1972) and Durbin, Knott, and
Taylor (1975); for W2, U2, and A2, Stephens (1974); for X? and for Neyman-Barton tests,
Lancaster (1969) and Rayner and Best (1989). It has been suggested that the components
be examined in order, and used as test statistics by comparing them with their (asymptotic)
x3 distributions. In addition, differences of the type A% — Ais?, A2 — Ays? — Ays3, etc.,
can be compared to their asymptotic distributions.

We shall concentrate our discussion on the use of components with tests for discrete
distributions and, in particular, for the discrete uniform distribution. The statistic X2 is
an interesting special case; because the A; are all equal to 1 it may be decomposed in
many different ways. For the uniform discrete test, Rayner and Best (1989) use Chebyshev
polynomials to decompose X2. These are successively constant, linear, quadratic, etc., and
are equivalent to using the mean, variance, third moment, etc. of the cell numbers. Thus
a significant low-order component can be interpreted in terms of fairly simple departures
from the tested distribution. In Section 3 we have shown that the components of A% and
A2 are also based on Chebyshev polynomials and lead to similar components. Neyman-
Barton tests for discrete distributions again use the same polynomials. The difference
in the various statistics is that the X*> and Neyman-Barton tests give the successive
components equal weights, while A2 and A% give them decreasing weights.
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TaBLE 2: Power of EDF statistics and X2. Percentage of 1000 samples rejected by seven
statistics, when the sample size is 20 and the number of cells is 12. Tests are at the 5% level.
Cell probabilities are given to two decimal places.

Rejection (%)

Alternative w2 U? A* st s S5 x? Description

A1(0.5)

29 .12 .09 .08

07 06 06 05] 71 33 77 8 0 70 56 Trend,

05 .05 .04 .04 decreasing p
A1(0.8)

14 .10 .09 .09

08 08 08 07)] 14 6 15 23 2 14 9 Trend,

07 .07 .07 .07 decreasing p
Ay(1.5)

02 .04 .06 .07

08 08 09 10| 32 11 32 0 46 31 14 Trend,

11 11 12 12 increasing p
A1(2)

01 02 .03 .05

06 08 09 10| 76 27 76 0 8 72 33 Trend,

12 13 15 16 increasing p
A2(0.05)

('033 © tfmes)) 72 47 68 0 8 75 39 6 equal p;;

.133 (6 times) 6 equal p;.
Az

12 .10 .09 .08 .

06 05 05 06) 10 16 13 12 13 13 11 Symmetric;

08 .09 .10 .12 pi lower in middle.
A4

Jd4 11 09 .07 ‘

05 .03 .03 .05 14 33 21 19 18 22 20 Symmetric;

07 09 .11 .14 pi lower in middle.

When distributions are tested where the cells have unequal probabilities, as in Example
3 above, it is still possible to define polynomials in cell numbers of increasing order for
use in decomposing X2. Rayner and Best (1989, Appendix 3) give formulae folr the first

two such components (but note two errors: their V, should be divided by n2, and in
the constant C the coefficient of S should be —2A%Y). However, the components of A2
or A2, are no longer simple polynomials which are interpretable in terms of successive
moments of cell numbers. We illustrate with Example 3. The four components of A2
are 0.369, 1.506, 4.397, and 0.229; the third of these is significant at the 5% level, with
p = 0.036. The components of A,Z,, are 0.239, 1.313, 0.261, and 4.687, and here it is the
fourth component which is significant at the 5% level, with p = 0.030. Notice that both
sets of components add to 6.5, which is the value of X2.

Even if components are directly interpretable in terms of sample moments of cell
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numbers, one may question the use of a goodness-of-fit statistic to test, say, that the
mean is correct. For a parametric alternative, for example, there might be a better test
available from likelihood-ratio test theory.

An important objection to testing components in order, even though components of
the Chebyshev type are attractive for the reasons given above, is that in general it is
difficult to decide where to stop — and, of course, if the data are used to make the
decision, it is impossible to assess the correct o-level of the overall procedure. It is also
difficult to establish a stopping rule independent of the data, because the “best” number
of components to use depends on the tested distribution and also the type of alternative
it is desired to detect. The question is especially acute for X> and Neyman-Barton tests,
both of which give components equal weights. Authors who have discussed how many
components of these test statistics to use include Miller and Quesenberry (1979), Solomon
and Stephens (1983), and Rayner and Best (1989). There is general agreement that low-
order components give the most power, and after a certain order, the addition of further
components may dilute the power. Nevertheless, for some alternatives, the departure
from the null may be detected only by a quite high component. In the case of the EDF
statistics W2, U2, and A% we recommend use of the entire statistic for testing and use of
components, when the statistic is significant, to examine where the departure lies when
components can be easily interpreted. This recommendation is based on three properties
of these statistics. They are easily calculated directly from the definitions, they are based
on natural measures of difference between the tested and observed distributions, and the
components are given decreasing weights — thus dilution is taken care of in a natural
way without totally omitting higher components. The power studies in Section 5 bear
out the overall effectiveness of the statistics used in this way.

The statistic U? is an interesting special case. This statistic can be used for cells along
a line, but (as we have shown) it is the natural statistic for observations around a circle,
because it does not depend on which cell is considered the first. An important alternative
to uniformity, for example with monthly data, would be a periodic distribution of cell
counts. The individual components of U? depend on the origin; however, the sum of the
two components for the same eigenvalue will be indpendent of the origin. Such “double”
components are asymptotically distributed 3. There is one extra component which is
itself cyclically invariant and is asymptotically x2. The first components have a natural
interpretation in terms of frequencies of a cyclic departure from the null. For example
the first of these “double” components, if significant, shows a departure from uniformity
with one peak and one trough 6 months apart; the second double component shows a
departure with two peaks and two troughs separated by 3 months, etc. This continues
until the final component represents peaks and troughs occurring every other month. In
Example 2, the first five double components are 6.636, 3.489, 1.136, 1.375, 1.637 while
the last single component is 4.455. The first and last are significant with P-values 0.036
and 0.035. The significant first double component indicates a cyclic effect with period
1 year, but the last is more difficult to interpret.

6.1. The Z-Plot.

One method of examining the data is to plot the values of Z; against j. It is useful
also to plot the values of w;; (or —w;;) against j when the w pattern can be interpreted
usefully in relation to the tested distribution. For example, consider the components of A2
for the discrete uniform test; the components w; of w;, as i increases, are successively
constant, linear in j, quadratic in j, etc. If sf is large, the Z; take roughly the same
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Ficure 1: Plots of the jth components of Z, —w;, and —w, against j, the cell number, for the data in

Example 1.

pattern as the wy;. This indicates a shift in mean. This is so because s; is proportional
to Yk Z; = — " j(0; — ¢;) which is the sample mean minus its expected value. Similarly
if 52 is large the Z; are approximately linear, indicating a shift in variance, and so on.
A plot, carefully interpreted, can give more information than a test based on a single
component, much as a plot of residuals after fitting a regression is more informative than
a simple test for homoscedasticity.

We illustrate this procedure by plotting the Z-plot and the plots of —w; and —w, for
Example 1 in Figure 1. The Z-values are all negative, indicating clearly that the observed
distribution is stochastically larger than the hypothesized. If the values were closer than
they are to —wj, this would indicate a direct shift in mean; the merit of the plot lies in
showing the more subtle effect of stochastic ordering.

If the cells do not have equal probabilities, the w; arising from either A2 or A2 are
more difficult to interpret. This is demonstrated by Figure 2, in which we plot w3 for
A? and wy for A2, for Example 3. These are the eigenvectors which yield the largest
components in the respective statistics.

Consider the statistic A2. The Z-plot is reasonably close to w3, which is roughly cubic.
This can be interpreted as a difference in the length of the tails. For the statistic A2, the Z-
plot is close to the plot of wy4. This is even closer to a cubic polynomial and is much easier
to interpret. (The fact that the tested distribution is symmetric makes the interpretation of
the w’s easier. In general, corresponding eigenvectors become increasingly more difficult
to interpret as the cell probabilities depart from uniformity.) With reference to the example
we can reach no strong conclusions, since neither the overall statistic A% nor A2 was
close to being significant. We give the Z-plots to demonstrate the possibilities but also
the difficulties of interpreting a single significant component when the tested distribution
is not uniform.
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Ficure 2: Plots of the jth components of Z, w3, and w4 against j, the cell number, for the data in Example
3.
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