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Abstract: The authors provide a rigorous large sample theory for linear models whose endogenous variable
has been subjected to the Box–Cox transformation. The theory provides a continuous asymptotic approx-
imation to the distribution of natural estimates by focussing on the ratio of slope to standard deviation of
the error term, since this parameter has a relatively stable and consistent estimate. The authors show the
importance for inference of normality of the errors and give tests for normality based on the residuals. For
nonnormal errors, the authors give adjustments to the log-likelihood and to asymptotic standard errors.

Les transformations de Box–Cox dans les modèles linéaires :
théorie asymptotique et tests de normalité
Résumé : Les auteurs présentent une analyse asymptotique rigoureuse pour les modèles linéaires dont la va-
riable endogène a été transformée par la méthode de Box–Cox. Partant du fait que le rapport entre la pente
et l’écart-type du terme d’erreur admet des estimations convergentes et relativement stables, les auteurs
sont conduits à une approximation asymptotique continue de la loi des estimateurs naturels du modèle. Ils
montrent aussi l’importance du postulat de normalité des erreurs aux fins d’inférence et s’appuient sur les
résidus pour vérifier ce postulat. Ils expliquent enfin comment ajuster la log-vraisemblance et les erreurs-
type asymptotiques lorsque les termes d’erreur du modèle ne sont pas gaussiens.

1. INTRODUCTION

Table 1 shows 107 values of distance driven, �������������	�
���	 (in kilometers), and corresponding
amounts of gasoline consumed, � ���������	� � ���	 (in liters). A natural, but naive, model for the
relation between these variables is that ������� � ������� for errors ��� that are independent and
identically distributed with mean � and variance ��� .

This regression through the origin model is a submodel of the Box–Cox transformation model
defined more generally as follows. Let � be a positive random variable denoting a response to
some covariates. For each real number � , the Box–Cox transformation is

��� �"! � # �$�&%('*)�!,+-� if �/.� � �021-3 � if � � � .
(1)

The Box–Cox procedure selects a value � so that after transformation, the following linear model
is approximately applicable,

� � �4�5! �*6�� � � �7� � � � � )98*:;8*< (2)

where � �=� �4� �4>?���������	� � �4> @ ! is a known row vector of constants, �A� � �B�C�������	�,�-@ !�D is a column
vector of unknown regression parameters, � is an unknown positive constant, and � � is a random
error with mean � and variance ) . We assume that the errors � � �������,����E are independent and
identically distributed.

Box & Cox (1964) suggested that there will often be a single value of � which achieves, or
nearly achieves, three ends:
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(i) the linear structure of the model will be simplified (for instance by removing interactions);

(ii) heteroscedasticity will be removed; and

(iii) the errors will be more nearly normal.

TABLE 1: Values of distance driven in kilometers � with corresponding liters of gasoline used � .
Read down.

� � � � � � � � � �
390.4 31.41 418.8 31.00 441.4 31.21 418.1 33.99 419.9 30.60

413.6 33.15 365.5 25.86 468.3 35.30 420.7 34.17 433.1 30.05

415.2 33.33 440.1 30.66 410.0 29.87 440.0 33.71 472.0 33.67

429.2 33.18 429.2 31.46 444.0 32.96 459.5 34.99 489.3 33.81

422.1 31.53 442.1 30.91 431.9 33.67 448.8 35.16 433.8 32.42

415.8 33.25 527.2 35.98 445.8 32.24 437.6 35.31 496.7 33.49

438.7 32.48 464.8 32.24 441.9 33.14 465.9 36.63 468.7 32.97

382.9 31.02 449.0 30.80 400.3 32.22 354.0 24.67 505.2 35.53

414.4 32.63 461.6 33.63 452.3 32.87 486.6 34.64 451.2 32.56

443.3 32.42 404.2 30.08 469.4 34.01 399.2 32.33 485.6 32.97

443.7 33.99 531.2 31.30 448.3 33.84 411.2 30.07 468.4 34.34

445.2 32.51 410.1 30.86 435.7 34.41 198.4 14.62 464.5 32.79

447.7 33.80 439.5 27.70 534.5 35.34 438.7 34.34 471.4 34.67

431.2 32.69 420.6 28.70 424.7 33.30 443.1 35.29 454.6 32.52

450.4 34.27 518.2 34.27 418.0 33.92 462.0 33.83 414.1 31.02

470.1 35.76 458.4 31.27 446.8 34.24 476.9 34.36 436.1 31.76

271.8 21.20 471.0 31.36 427.5 33.99 459.6 34.30 486.3 31.98

514.7 31.32 479.1 32.13 465.3 34.66 428.1 30.77 462.1 31.35

440.7 32.81 504.9 34.65 425.1 34.78 461.5 30.12 454.7 32.82

476.1 31.43 442.1 32.01 420.7 37.10 435.4 32.19 421.7 31.85

440.5 30.43 438.1 32.74 420.0 32.75 449.4 31.41 470.8 32.89

490.4 34.24 474.4 34.27

Then, assuming that the errors �C� are standard normal, Box and Cox proposed an estimate
��

of � based on maximum likelihood for the model (2). This can be found from a plot of the profile
log-likelihood,

����� � �"! ; this is the logarithm of the maximum of the likelihood for a fixed � .
The estimate of � will be

�� , the value which maximizes
� ��� � �"! . For the data set in Table 1,

the top left panel of Figure 1 shows the plot of
� ��� �4�5! ; the estimate of � can be seen to be��
	 ) � �� , whereas � � ) corresponds to the naive model mentioned at the beginning of the

Introduction. However, the latter value is contained in the usual 95% confidence interval for � ,
whose endpoints meet

����� �4�5! at a horizontal line (displayed in the figure) drawn a distance of� � �	> ��� ��� +�� below the maximum of
� ��� �4�5! .

When � has been estimated by
�� , Box & Cox (1964) suggest that this value could be treated

as being known and standard normal linear model theory applied to the set of � � � ��"! values to
derive inferences for the regression parameters � and � . Following such a suggestion for our
data and using

�� � ) � ��� would give
��A� ) ��� ��������� (2 standard errors). When � is unknown,
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however, the variability in
�� is much larger. In Figure 1, we have plotted the maximum likelihood

estimates of the slope
�� � �"! and residual standard deviation

�� � �"! as functions of � . The estimates
are plotted on a log scale; they vary by a factor of )�� � over the range of statistically (as opposed
to scientifically) plausible values for � ! Interestingly, however, the last panel of Figure 1 shows
that the estimate

��
of the parameter

� � � +
� , obtained as the ratio of the estimates of � and � ,
varies only modestly over the range of � . The parameters

�
and � � �5� + ��) � � 6 ! play important

roles in the analysis below.
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FIGURE 1: Top left: plot of the profile log-likelihood for � ; top right: the estimated slope �� as a function
of � ; bottom left: the estimated residual standard deviation �� as a function of � ; bottom right: the ratio

��	� ���
 �� as a function of � . The symbol � has been omitted from the estimates �� , �� and �� .

1.1. Summary of the paper.

Our first goal in this paper is to make an asymptotic analysis to provide large sample approxima-
tions which predict the sort of plots seen in Figure 1, particularly the wide variability in

�� and in�� , and the relative stability of
��

as � is varied across its confidence interval.
It is well known that the Box–Cox model is explicitly approximate: some combinations

of parameter values, covariate values and sample sizes do not describe data sets for which the
model is reasonable. In particular, unless � defined above is small, there will be a nonnegligible
probability that the right-hand side of (2) takes on a value which is not a possible value of the
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left-hand side. In Section 2, we investigate some algebra related to the model, fixing < and taking
a limit where � does not remain constant but � � � , and the truncation effects can be ignored.
Similar expansions for small values of the parameter � have been used by Draper & Cox (1969)
and by Taylor (1985a, 1985b and 1986).

In Section 3, we let < ��� and � � � simultaneously and examine asymptotic expansions
of ���� � � �� ' �"!�+-�
and of

��
. We show that

��
has a limit as � � � provided that

�
is held fixed as the limit is

taken. The usual Box–Cox estimates
�� and

�� can be written in the forms
�� ���	�� and

�� �
� �� ,
where � � �,) � � 6 !������ , and where �� and �� each have reasonable asymptotic expansions. The
presence of )�+ � in the exponent in the coefficient � can produce very volatile, badly biased,
estimates of � and � . However, often

�� � �� + �� ���� + �� can be shown to be only slightly more
variable than it would be if the true value of � were known. Similar conclusions are in Doksum &
Wong (1983) and Carroll (1982), at least in a testing context. They appear to be justified by the
plots in Figure 1.

Tests and confidence intervals for � and for ��D � , where � is a column vector of constants, are
discussed in Section 4. Theorems are given which justify, for normal errors, standard procedures
for � based on the log-likelihood; for example, the use of � � � to obtain the confidence band shown
in Figure 1. Adjustments to the log-likelihood are given so that similar procedures may be used
even with nonnormal errors.

The expansions for
��

lead to an asymptotic covariance matrix � of
��
, and conditions are

given to obtain asymptotic normality of ��D �� . For the special case when the errors ��� are normal,
� simplifies to three terms; the first derives from the regular linear model theory, and the other
two describe the effects of estimating � and � . More generally, asymptotic standard errors of
components of

��
depend on the first six moments of the underlying error distribution.

In Sections 3 and 4, the assumption of normal errors simplifies many of the results; it is
also important for the analysis of regression diagnostics which use the residuals. We give, in
Section 5, goodness-of-fit tests of normality for the errors; these are based on the empirical
distribution function of the residuals. In particular, the Anderson–Darling and Cramér–von Mises
tests are developed in detail, and tables are given with which to make the test.

In Section 6, examples are given to show the use of our results in data analysis. Section 7
has a small Monte Carlo study suggesting that the asymptotic approximations are adequate for
samples of reasonable size in situations likely to arise in practice.

Before turning to the expansions and tests, we summarize some of the work done by previous
authors, and relate our work to theirs.

1.2. Background.

The suggestion of Box & Cox (1964) that
�� be treated as the true value for the purpose of further

estimation of parameters has led to sharp controversy over the question of variance inflation in
the estimates of these parameters; for example, see Bickel & Doksum (1981), Box & Cox (1982)
and Hinkley & Runger (1984).

Bickel & Doksum (1981) made asymptotic calculations showing that if the Box–Cox sugges-
tion is followed, the usual estimate

�� of � is asymptotically more variable than standard linear
model theory gives, and that this variance inflation effect can be very serious. However, the pa-
rameter � is measured in units which are those of � to the power � divided by the units of the
covariates. In Figure 1, for instance, as � varies from 1 to 2.5 the units of the slope

�� �4�5! vary
from km/L to km � � � /L. In particular,

�� and the true � (corresponding to the true � ) will have
different units. Box & Cox (1982) and Hinkley & Runger (1984) therefore argued that while
Bickel and Doksum were mathematically correct to assert that

�� ' � is more variable than stan-
dard linear model theory suggests, they were wrong to attach any meaning to this fact, since the
subtraction of quantities with different units could not be scientifically meaningful.
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Similar criticism will apply to the difference
�� ' � . Hinkley and Runger proposed that

�� be
regarded as an estimate of a data dependent parameter

� � ���� �� ! ; the usual confidence intervals
would be based on the variability of

�� ' � � ���� ��5! . See Hooper & Yang (1997) for an asymptotic
analysis of this suggestion.

Our asymptotic analysis of the model (2) uses a limit which differs from that used by other
authors. Since the difference is crucial to the motivation of this paper, we take some time to
justify our framework. Asymptotic calculations are intended to provide approximations to similar
calculations for fixed < ; the approximations arise by regarding the model for the actual data
collection as the < th in a sequence of models. Different sequences are obtained by making
different assumptions on the parameters as < � � ; since the limits depend on the sequence, one
must choose a sequence which appears to fit the problem at hand.

It is standard in statistical theory to assume that all the models in the sequence have the same
parameter values. One can then imagine that data points are generated one after the other, the
model for each new data point having the same parameter values as for all previous data points.

We shall depart from this assumption. We are analyzing a model for some particular value
of < , and in the sequence of models, the parameter values � , � and � will be allowed to depend
on < . We argue that a good sequence of models should have computable limiting distributions
for estimates and should have finite sample distributions which converge quickly to their limits.
The best sequence need not have constant parameter values.

In Section 3 and 4, we consider limits as � � � . Bickel & Doksum (1981) also take a limit in
which � � � as < � � ; they hold � and � fixed but make � � � so that � � � . The implication
is then that a larger sample has all the data coming from a more accurate model (2) than from a
smaller sample. The limit computed by Bickel and Doksum behaves discontinuouslyat � � � . In
the Box–Cox model, the joint density of the data depends continuously on the parameter values
when < is fixed. In any such situation, limit distributions which depend discontinuously on the
parameters must provide bad approximations for any < for some parameter values. In the case of
the Bickel and Doksum asymptotic calculations, these bad approximations occur for values of �
near � , values which can easily arise in practice.

In order to avoid the discontinuity, we focus on
� �*� +
� and embed our model in a sequence

of models for which
�

is approximately fixed as < � � . One achieves this either by fixing �
and allowing 6 ��� or � � � , or by taking � � � with � � � . In either case, we get a limit
which depends continuously on

�
. We argue that such a limit provides a better description of the

impact on inference of using an estimated value of � since it removes the discontinuity at
� � � .

Our results show that while the estimates
�� and

�� can be subject to gross variance inflation, the
ratio

�� � �� + �� is much less sensitive to estimation of � .
In addition to being estimable in a stable way,

�
has the important advantage over � that the

units are constant;
�

is simply measured in inverse units of the covariates. In the example the
units are inverse liters. This makes the subtraction

�� ' �
physically meaningful. Consideration

of
�

permits us to avoid both data dependent parameters, such as
� � ���� �� ! , and the subtraction of

incomparables.
Consideration of the parameter

�
has been suggested by a number of authors. For instance,

Li & Duan (1989) worked in a more general transformation context and argue for consideration
of � � + ��� � � � + � � . Cox & Reid (1987) studied a reparametrization of the problem for which the
estimate of � is orthogonal to estimates of a number of other parameters at � � � and which
leads to consideration of

�
. Our results may be regarded as providing a rigorous asymptotic

justification for the approach of Cox and Reid. Moreover, we identify several key quantities that
can be estimated to assess the extent of the variance inflation problem when � .� � .

An important feature of Section 3 is that we do not show that the estimates of � and �
are consistent nor that the estimate of the transformation parameter � is consistent. Only the
parameter

�
is, in general, estimated consistently. This conclusion contrasts sharply with earlier

work on large sample theory. See Hernandez & Johnson (1980) and Carroll (1982), Carroll &
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Ruppert (1984) as well as Bickel & Doksum (1981) for a large sample framework in which the
estimate of � is consistent.

2. THE LIMIT OF NEGLIGIBLE TRUNCATION

In this section, we study the limit when < is held fixed and � is permitted to converge to � .
Our goal is to discover those statistics which are fairly stable, that is, whose behaviour is not
dramatically dependent on the value of � .

Fix < . Add a subscript � to distinguish true parameter values � � , � � , � � and
� � from argu-

ments of functions such as � in the log-likelihood. Let� � � 6 � � � � ��� � � � � ! �
where � � = � D� � � ,

� � � � � +-� � . Our data will be � � � ��) � � � � � ! � � %�� ; for � � � � this becomes� � �����
	 � � � ! . Note that the � � , thus defined, satisfy the Box–Cox model (2). For � ��� � , if� �� ' )�+-� � put � � � � ; similarly for � �� � , if
� ��� ' )�+-� � put � � � � . We will be taking a

limit in which the probability tends to � that any � � is � .
It will be convenient to use vector notation. For the complete data set with < values of � � , we

write � �4�5! � � � � � �"! ������� � � E �4�5!,! D , where D denotes transposition. Without loss of generality,
we can suppose � � has been centered; that is, replace the original � � by � � ' �4� � ��������� � E !�+
< .
Then the <�� ��� � )�! design matrix, � , has the form � � ��� � � � ! , where � is a column vector
of 1’s, and the <���� matrix � � has : th row the centered � � . Then ��D�� � � � . Let � �! '#" ,
where  is the <�� < identity matrix and " � � �$� D%��!'& � � D is the usual hat matrix. Finally let� � � � � �������	�,��E !�D . The conventional form of the linear model is � � �"! � 6 � � � � �7� � � .

Treating the likelihood for (2) as if the errors were normal and then maximizing over 6 , �
and � leads to the log-profile-likelihood for � :

� ��� �4�5! � ' <
�

021-3)( � �4�5! D �  '#"�!*� � �"!�+
<,+(' <
�

� �4��' )�!
E- �/.�� 021-3 � � � ! � (3)

With true parameters, � becomes

� � � � � � + ��) � 6 � � � ! �
Define � � � � � ' � � !�+-� ���
For � � � � , put

� � � � � . We have

� %� � ��) � � � 6B� ! ��0  ��� ( ) � � �1� �5� ��� !�+ �20  � � � (4)

Then consider the log-likelihood ratio
� � � ! � � ��� � �"!;' � ��� � � � ! for an assumed value � . Use�3� � � to check that

� � � ! � ' <
�

021-35476 D � � � �-!8� 6 � � � �-!� D � � 9 � �
�

E- �/.�� 021
3 ( ) � � �1� � � � � ! + � (5)

where 6 � � � �-! is the vector with : th coordinate

6 � � � � �-! � ( ) � � �1� �"� ��� !�+ ��0  ��� '*)� � �
�

We now record various estimates in terms of 6 . The formulas show which quantities can be
evaluated stably when � is small and which cannot. Let

��
maximize (5). Let

�� � � ! � � � �/� D � � � ! & � � D � 6 � � � �-! and �� � � � ! � � �� 6 � � � �-! D%� 6 � � � �-!<�':� ' ) �
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The estimated regression vector is
��/� �/� D � � � ! & � �7D� � � �� ! , and using (4) we have

�� � � � ��) � � � 6 � ! � � � �/� D � � � ! & � � D � 6 � �� � �-! � ��) � � � 6 � ! � � � �� � �� ! � (6)

The estimated residual standard deviation is given by
�� � ��) � � � 6 � ! � ��� �� . Thus the usual

estimate of the standardized regression parameters is
�� � �� + �� � �� + �� , where ���� �� � �� ! and

�� � ��;� �� ! . The vector of fitted residuals is

� � ��) � � � 6 � ! �20 � � � � 6 � �� � �-! �
The standardized residuals are

��(� � 6 � �� � �-!�+ � �� +-� � ! .
We are now ready to take the limit as � � � with < fixed. Note that the limit � � � can arise

in one of three ways: � � � � , 6B� � � , or � � � � . Note that the limit of 6 � � � �-! as � � � is

6 � � � � �-! � ���
	 (�� �1� � � ��� !�+9'*)� �
Then

� � � ! has limit
� � � � ! , where

� � � ' <
�

021-3 476 � � � �-!�D%� 6 � � � �
!� D � � 9 � � E- � .�� ��� �
Thus as � � � , the vector of standardized residuals

�� converges to � 6 � �� � � �-!,+ ��;� �� � ! , where�� � minimizes
� � and < �� ��� �� � ! � 6 � �� � � �
! D%� 6 � �� �
� �
! . Moreover, the empirical process � E

derived from the standardized residuals converges (weakly in
��� � � )�� ) to that derived from the

entries in � 6 � �� � � �-!,+ ��;� �� � ! .
3. ASYMPTOTIC EXPANSIONS OF ESTIMATES

3.1. Expansion of
��
.

In the previous section, < was fixed. Now we let < � � and in addition we let � � � in order to
obtain asymptotic results. We concentrate on the necessary conditions and the conclusions, and
leave the proofs of the theorems to Appendix A.

Our asymptotic calculations follow the standard framework: representation of
�

as' � D �4�-!,+ � D?D � �-! , followed by expansion of
� D � �-! and

� D?D �4�-! . In the case of normal errors, we demon-
strate that the variance of

� D � �-! is approximately ' � D?D4� �-! . We are then able to provide asymptotic
expansions of the estimate

��
.

In Chen, Lockhart & Stephens (2001), we give much weaker conditions than we do here.
Those conditions highlight the relations between � , the leverages � �2� and the moments of the set
of effects � � . They also permit the parameter value

�
to grow with < , providing some overlap with

the Bickel and Doksum framework. In this paper, we simplify the presentation by strengthening
substantially the conditions.

Though later conditions will often be more stringent, we will need

����� ���	5�
	 E � � � � � � � (7)

Note that (7) imposes a condition on � and
�

together; the condition is not generally satisfied in
the Bickel and Doksum asymptotics.

Our work permits the dimension � of the parameter
�

to grow with the sample size. We will
need the basic assumption ���C+
< � � � (8)
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We impose a further constraint on the rate of growth of � ; the condition permits � to grow
more quickly when � goes to � more quickly with < :

�
� � � � � (9)

We require moment conditions on the � � and the � � :
0�� ����� 	E��	�

E- �/.�� � 
� +-<  � (10)

and, letting 6 � denote the � th (central) moment of the � � ,
6 
  � � (11)

The following conditions permit � � � more slowly for errors which are more nearly normal.
We assume either (A1) or (A2):

(A1) the errors have a standard normal distribution and � � 0 1
3 �4< ! � � ;

(A2) there is an integer �� � such that the following three conditions hold:

(A2.1) the errors have the same first � moments as the standard normal distribution,

6 � � � � � � ! � # � if � is odd and � 8�� ,
���(' )�! ���(' � ! ����� � if � is even and �&8�� .

(A2.2)
� � � � ���  � .

(A2.3) �-����& � < � � .

Note that condition (A2.1) implies that the errors have zero skewness, i.e.,
� � � � ! � � .

Without this condition, the profile score,
� D � �
! , is biased even when � � � (as happens when the

true value of � is � ) and none of the parameter estimates will be consistent. Note also that (A2.2)
is stronger than (11) for ���� . Finally, note that either (A1) or (A2) implies

� � � ���	5�
	 E � ��� ������� ��)�! � (12)

The above conditions permit the usual conclusions about the existence and asymptotic nor-
mality of a consistent root of the likelihood equations. We shall use the notation

� � �
� < � �

E- �/.�� � �� � )� ����� � ! D � �1��� � ! �
��� � 4 � 6�� ' ��6 � ��� !�< � � � 6 � '*)�!

E- �/.�� � �� � �1� � � ! D � �1� � � ! 9  �
and

� �!� � 4 � ��6 � + � '*)�!�< ��" E- �/.�� � �� � ��� � � ! D � �1� � � ! 9  �5�
where � � � � � � and � � � is the column vector with : th entry � �� . Define also the vector # ��!� � � ; entries are # � . It will be convenient to set

$ � � � � � � '%# � !�+��9'#� � � � �� ' )�!�' � �� +�� �



2002 BOX–COX TRANSFORMATIONS IN LINEAR MODELS 9

THEOREM 1. Assume (7), (8), (9) (10), (11) and either (A1) or (A2). Then there is a sequence� E increasing to infinity so slowly that on an event whose probability approaches ) the supremum
of the log-profile likelihood

�
over the set �

� � 8 � E +�� � is achieved at a point
��

which is the

unique solution of
� D � � ! � � over the set in question. This point

��
has the asymptotic expansion

�� � - $ � + � �!� �%� ��� )�+ � <��
and � �!� ��

� � � � � �!� � � ���' �5!� � � � � � � � � )�! �
For normal errors (or errors with the same first six moments as normal errors), we have �A�
� � ��� �!� . Then

� � � � �� � � � � � � � �� 'A�5!� � � � � � )�! �
3.2. Expansions of

��
.

We now turn to expansions of other estimates. We have not yet given conditions which would
make the asymptotic standard errors of our estimates have limits. Our expansions are phrased
in terms of the distribution of an arbitrary linear combination of the entries in

��
; then when the

dimension � of
�

is fixed, the Cramér–Wold device will give multivariate limiting distributions.
Recall that �� � � ! � �;�/� D � � � ! & � � D � 6 � � � �-! and �� �
� � ! � � � 6 � � � �-!�D%� 6 � � � �-!,+ �4<9' � ' )�! . Put	 � �/� D � � � ! & � � D � � � � . Then:

THEOREM 2. Under the conditions of Theorem 1,

��� 	�




�� �
� � !� � ' ) ' )<

E- �/.�� � � �� '*)�! 




� � ��� )�+ � <� � (13)

Let � � � E be a sequence of vectors of dimension � . Then

��� 	 ( � � D �� � � !�+
��' � D � ' � D �$� D � � � ! & � � D � � ' � � D 	 +�� � + ��������� � D �/� D � � � ! & �
��� � (14)

If the sequence �
DE � is bounded, then

��� 	 4 



 � D
�� � � !�' � D � ' � D �$� D � � � ! & � � D � � ' � �
D 	

�
� �
D �

�-<
E- �/.�� � � �� ' )�! 



 9� � � � )�+ � < � �%� � � � � D �$� D � � � ! & �

��� � (15)

Finally,

��� 	���� �� � � !�' ��� D � D � � ��� �� � � !�' ����� � ��� 	��� ��"� � !�'#� � D � ��"� � !�'#� ��� ��� � � �5! � (16)

In the expansions, the suprema are over �
� � 8 � + � < for any fixed

� � � .

Equation (15) implies the following expansion of
��
:

�� � � !�	 � � �/� D � � � ! & � � D � � � � 	
� ' �

�-<
E- �/.�� � � �� ' )�! �

If we replace
�

by
��

and apply Theorem 1, we get the expansion

�� 	 � � �/� D � � � ! & � � D � � ' �
�-<

E- �/.�� � � �� '*)�! � 	
� � �!�

E- �/.�� $ � �
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This gives an asymptotic covariance matrix � of
��

of the form

� � �� ! � �$� D � � � ! & � � � � D�� 6 � '*)�!� < � � �
� � � � � ! � 	 	 D � 6 �

" � �!� � 	 � D � � 	 D ! �
Covariance matrices are usually used to provide confidence intervals for quantities of the

form �
D � , provided the estimate � D �� is approximately normally distributed. Our conditions are
not strong enough to guarantee asymptotic normality of � D �� for an arbitrary sequence � . Adding
the standard condition ��� � � � � � ! � � gives asymptotic normality of � D4�/�7D� � � !'& � � D � � , which
then implies asymptotic normality of � D �� .

For the special case of normal errors, we have 6 � � � and � � ��� �!� , so that

� � �� ! � �$� D � � � ! & � � )
�-< � � D � 	 	 D

� � � (17)

Moreover, in the normal case, the further condition � � � � � � � ! � � is not needed to guarantee
the asymptotic normality of � D �� .

More generally, the first two terms in the expansion of
��

give the exact representation of�� +
� in the usual linear model context which would arise if � were known. The other two terms
represent effects due to estimation of

�
(i.e., � ), and of � and are both negligible if

� � � .
In many cases, � will differ only slightly from the classical �/��D� � � ! & �

. Some examples are
given in Section 6. Notice that, as in Cox & Reid (1987), there is no variance inflation if �/� � .
Indeed there is little variance inflation if a regression of the squared effects � �� on the original
design matrix produces negligibly small regression coefficients 	 .

As an example, consider a simple linear regression with the covariate values � � spread at
equal intervals or in some way arranged so that

� � �� � � . Then 	 � � . Similarly, a two-sample
problem may be regarded as a linear model by taking � � as a dummy variable. If the two sample
sizes are equal, the covariate values � � will be ) for observations in one of the samples and ' )
for observations in the other sample. Then

� � �� � � and 	 � � .
However, it is central to the conclusion that

�
and not � is being estimated. Moreover, it is

important to remember that estimation of � will inflate the variance of
��

whenever the regression
coefficients are not � .

3.3. Variance estimation.

The asymptotic variances of
�� and �
D �� can be estimated consistently by replacing all unknown

parameters with corresponding estimates. Specifically, estimate 6�� , for # � � , � or � using�6�� � � �� �� +-< . Estimate � using
�� � � ��

and get
�� ,
�� � and

�� �!� by replacing all occurrences
of 6�� or � by the corresponding estimate. Similarly, the estimated variance of � D �� is �
D��� � ,
where �� is � with 6�� replaced by

�6�� , � replaced by
��

and 	�� �/� D � � � ! & � �7D� � � � replaced by�	 � �/� D � � � ! & � � D � �� � � . In Appendix A, we prove the following theorem.

THEOREM 3. Assume the conditions of Theorem 1. Assume that the support of the error distri-
bution has cardinality greater than � . Then

�� + � � ) ��� � �,)�! � �� � + � � � ) � � � ��)�! � �� �!� + � � � � ) � � � ��)�! �
Furthermore, � D �� � +��
D � � � ) �%� � �,)�! and

�6�� ' 6�� ��� � ��)�! for # � �5� � ��� .

The second assumption, which rules out only a few pathological distributions for the errors,
is required only for the last result.

4. HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

The theorems above can be applied to give tests and confidence intervals for � and � D � .
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4.1. Parameter � .

Consider the null hypothesis � � � � . When this null hypothesis is true, we see that

� � � �� ! � � � ����� � ��5! ' ����� � � � ! � �
Theorem 1 shows that, for the case of normal errors, when � � � � �!� � � , likelihood-based
confidence intervals for � , using the � � � approximation to the null distribution of the test statis-
tic � � � �� ! , are asymptotically justified. More generally this log-likelihood ratio must be replaced
by � � � �� �!� ( � ��� � ��"!;' � ��� �4� � ! + + �� � �
Critical points and � -values are then obtained by referring � � � �� ! or

�
to the � � � distribution.

The asymptotic standard error of
�� is � �% � � � � � � � + � � � � � � � ! . Under our conditions,

this quantity need not go to � ; thus
�� need not be consistent. However, we can show that� ��"+-�"!�+ � ��-+ �-! � ) . In view of Theorem 3, if we define

�� �% � � �� � � �� � + � � �� � �� �!� ! , then we
have

�� �% +
� �% � ) in probability. Under the assumption of normal errors, the simpler estimate�� �
�% � � ��"+ � �� �� � � ��! � also satisfies

�� �
�% +-� �% � ) in probability.

We can therefore use Wald tests and intervals for � that are based on the approximation� �� ' � � !�+ �� �% 	 � �4� � )�! . The standard error of
�� can also be estimated by

)  �� �� � � ' � D?D��� � ��"!�� �
4.2. Parameters

�
and � .

Assume Theorem 2 and 3 and also that � � � � � �2� ! � � . Then we have

�-D � �� ' � !�
� D �� � � � �4� � )�! �

Confidence intervals and tests for ��D � can then be found. Testing � D � � � is equivalent to testing
�
D � � � . If �
D � � � , then the asymptotic variance of � D �� is

� D �$� D � � � ! & �
� � � �
D 	 !�� � �

� � � �!� ! � �
and the second term then provides a rather simple correction term to the variance given by stan-
dard linear regression. Notice that if 	 � �/� D � � � !'& � �7D� � � � � � (or even, of course, if merely
�
D 	 � � ), there is no variance inflation to worry about.

We now consider parameter � . If � � � � � � � as < � � , then
�� + � � � in probability.

Confidence intervals for � may then be found by linearizing the term �,) � � � 6�� ! � ��� in (6), but
the resulting normal approximations are complicated and will not behave well if the convergence
of � � � � � is slow. Also, under the conditions of this paper, � � � need not diverge, so that

the linearization may not be valid. Finally, recall that confidence intervals based on
�� ' � can be

regarded as of little scientific use since they are derived from subtraction of incomparables. For
these reasons, we do not consider intervals for � further.

4.3. Values of � for some special cases.

Some insight into the three terms in � can be gained by consideration of special cases. The � -
sample analysis of variance problem can be cast in the linear model framework. Suppose we
have � samples, where sample : is � � � , � � ) ��������� < � and

� < � � < . The Box–Cox model
becomes � � � � �"! ��67�	��� � ��� where we impose the constraint

� < �
����� � . Take � ������� for: � ) ������� � � '*) . The resulting design matrix is correctly centered. In this model, � reduces to
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� < +�� � � < � � �� ; the final term ��� � ��! D/� �1� � ��!,+ � is � . Similarly, in simple linear regression with
equally spaced covariate values � � , we would find that the term �1� � � ! D � �1� � � !�+ � vanishes.

For other designs, it may be expected that all three terms in � will be important. Consider the
situation in which the effects are large, in the sense that

� ���� is large compared to < . The term�1� � ��! D/� �1� � ��!,+ � involves
� � �� , which might be expected to be even larger than

� ���� which
would make this last term in � dominant. This contrast between the � -sample design and more
general designs has been discussed, for instance, by Hooper & Yang (1997).

5. TESTS OF NORMALITY

5.1. Weak convergence of the empirical process.

In Sections 2 and 3, we frequently obtained better results on the assumption that the errors are
normally distributed. In this section, we consider the problem of testing this hypothesis. Again
we consider a sequence of Box–Cox models indexed by < , suppressing the dependence of � ,�
, � and � on < wherever possible. Let �� E � � ! be the empirical process of the fitted residuals,

namely,

�� E � � ! � )� <
E- �/.�� � ) ��� � ���� ! 8 � � ' � � �

We will strengthen the conditions (8) and (9) to

� � 021-3 � ���5!	+
< � � (18)

and
� � � � � � (19)

Then we have the following theorem.

THEOREM 4. Consider a sequence of designs satisfying (7), (10), (18), and (19). Assume the
errors have a standard normal distribution and

� 021
3 � � � � < ! � � �
Assume that � +-< ����� � � +�� � � ! as < � � . Then the empirical process �� E � � ! converges
weakly to a Gaussian process � � � ! with zero mean and covariance function

� �	� � � ! � � ��
 �	� � � !�'�� � '� � �	��!� � � � !�' )
�  � ����!� � � � !�' )

� �  � �	��!� � � � ! �
where  � � � ! ��� D ��� & � � � ! � ,  � � � ! ��� & � � � !� � � � ! ,  � � � ! � � ��� & � � � ! � �(' )��� � � � ! , � is the
standard normal distribution function and � � � � � � � )�� .

The lengthy proof is outlined in Appendix B.

5.2. EDF tests of normality.

To test the hypothesis of normal errors when fitting model (2) to data, we use the well-
known Cramér–von Mises family of EDF statistics. See, for example, Durbin (1973) and
Stephens (1986). For each : , let 	 � ��� � �� � ! and let the empirical distribution function of the	�� be

�� E � � ! � )<
E- �/.�� )-� 	�� 8 � ! � � 8 � 8 ) �
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The EDF statistics are based on the discrepancies between �� E � � ! and
� � � ! � � � � 8 � 8�)�! ,

namely, � E � < � �
� ( �� E � � ! ' � + ��� � � !�� � �

where � � � ! � � is a suitable known weight function. As special cases, the Cramér–von Mises
statistic � � is obtained when � � � ! � ) , and the Anderson–Darling statistic � � is obtained when� � � ! � )�+ � � �,) ' � ! � . For a given data set 	 � �������,� 	�E , with order statistics 	�� �
	  �����  	�� E 	 ,� � and � � can be computed easily as

� � � E- �/.��� 	 � ��	 ' �-: ' )
�
<�� � � )) �
< � (20)

� � � ' < ' )<
E- �/.�� ( � �-: ' )�! 021-3 	 � ��	 � � �-< � ) ' : ! 0 1
3 �,) ' 	 � ��	 ! + � (21)

5.3. Calculation of test statistics.

To perform a goodness-of-fit test of � � : model (2) fits the data with
� � � � , the following steps

are needed:

(a) Write the original model matrix in the form � � � �*� � � � � ! . Center matrix � � � into � �
by subtracting from each column the mean of that column and let � � �*� � � � ! . Let � �
denote the : th row of � � .

(b) Find
�� by maximizing the log profile likelihood (3). We recommend that each observa-

tion � � be divided by the average
� � � +-< before computing this profile to avoid some

numerical difficulties.

(c) Compute
�6 ,
�� and

�� by regressing the transformed values � � � �� ! � � � �%� 'A)�!�+ �� on the de-
sign matrix � . If � � �� ! has entries � � � ��5! , then

�6 � � � � � � ��"!�+
< ,
�� � �/� D � � � !'& � � D � � � ��5!

and
�� � � � � �� !�D/� � � �� !�+ � < ' � '*)�! � where � �  ' �/�/� D�� ! & � �7D .

(d) Compute standardized residuals
�� � � ( � � �%� ' )�!�+ �� ' �6 'A� � �� + + �� .

(e) Compute 	��;� � � ���� ! .
(f) Calculate � � or � � according to (20) or (21), respectively.

(g) Find
�� � � � D� �� + �� , and obtain an estimate

�� of � defined by

�� � � <
�

� �
E- � .�� �� �� � )� � �� � � ! D � � �� � � ! �

(h) Enter Table 2 with the value of < + �� , and reject � � at significance level � if the test statistic
exceeds the corresponding upper � -percentile given in Table 2.
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TABLE 2: Upper percentiles of the asymptotic distributions of
���

and � � for testing
Box–Cox transformations when � � � � 
����
	 �������� and ����� .

Upper percentiles

�
Statistics � 
�� 0.50 0.25 0.20 0.15 0.10 0.05 0.01

0 0.0508 0.0739 0.0812 0.0915 0.1036 0.1260 0.1787

1/250 0.0508 0.0738 0.0810 0.0905 0.1031 0.1258 0.1785

1/150 0.0508 0.0738 0.0810 0.0903 0.1031 0.1257 0.1783

1/100 0.0507 0.0737 0.0809 0.0902 0.1030 0.1256 0.1781

1/50 0.0506 0.0736 0.0807 0.0899 0.1028 0.1251 0.1773���
1/25 0.0504 0.0731 0.0802 0.0894 0.1022 0.1243 0.1759

1/15 0.0501 0.0726 0.0796 0.0887 0.1011 0.1231 0.1740

1/10 0.0498 0.0719 0.0787 0.0878 0.1002 0.1217 0.1716

1/5 0.0487 0.0700 0.0766 0.0851 0.0970 0.1175 0.1649

2/5 0.0463 0.0660 0.0721 0.0800 0.0909 0.1097 0.1530

2/3 0.0428 0.0608 0.0663 0.0736 0.0836 0.1007 0.1406

0 0.3405 0.4702 0.5100 0.5607 0.6318 0.7530 1.0375

1/250 0.3403 0.4697 0.5094 0.5601 0.6310 0.7520 1.0351

1/150 0.3400 0.4693 0.5090 0.5596 0.6304 0.7512 1.0339

1/100 0.3398 0.4689 0.5085 0.5590 0.6297 0.7504 1.0326

1/50 0.3392 0.4677 0.0571 0.5574 0.6277 0.7476 1.0281

� � 1/25 0.3378 0.4653 0.5043 0.5541 0.6236 0.7422 1.0187

1/15 0.3359 0.4620 0.5005 0.5496 0.6182 0.7351 1.0007

1/10 0.3335 0.4578 0.4958 0.5441 0.6115 0.7262 0.9928

1/5 0.3262 0.4454 0.4817 0.5277 0.5918 0.7004 0.9518

2/5 0.3106 0.4202 0.4537 0.4958 0.5546 0.6537 0.8820

2/3 0.2871 0.3880 0.4186 0.4575 0.5117 0.6035 0.8168

The entries in Table 2 are the upper tail percentiles of the asymptotic distributions of � � and� � , respectively, as < � � , and as � � � ; see Subsection 5.4 below for the theory. Note that the
percentiles corresponding to < + � � � are the upper tail percentiles for testing the goodness of fit
of linear models without taking any Box–Cox transformation (see Stephens 1986, Section 4.8.5);
the percentiles in the table differ increasingly from these values as < + � grows larger. The line< + �&� �-+ � corresponds to models in which all the effects � � are � .

5.4. Asymptotic theory and calculation of Table 2.

The statistic ��� is a continuous functional (on
��� � � )�� ) and the weak convergence result of the

last section guarantees that if the conditions of Section 4 hold and � +-< ��� , then � � converges
in distribution to � �� �&�
� � !�� � , where � is the limiting Gaussian process of the previous section.
The integrand may then be expanded as usual in orthonormal eigenfunctions of the operator� ��� � � ! to show that the limiting distribution of ��� is that of�- �/.���� � � �� � (22)

where the
� � are independent standard normals and the � � are the eigenvalues of the integral equa-

tion � �� � ��� � � !���� � ! � � � � ���	��! . We computed the � � following the method of Stephens (1976).
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We computed the largest 40 eigenvalues and replaced the sum in (22) by
� �- �/.���� � � �� � �-�/. � ��� � � (23)

computing the last term as � �� � � � � � !�� � ' � � ��/.�� � � . Table 2 gives critical points from the dis-
tribution of (23) calculated by the method of Imhof (1961), namely, numerical inversion of the
characteristic function. In Section 7, we present some limited evidence of their accuracy. Our
calculations for � � are not rigorous. The difficulty is that � � is not a continuous functional of
the empirical process, involving as it does the unbounded weight function � � � ! � )�+ � � �,) ' � ! � .
The theory of the previous section permits us to prove that there is a sequence

� E � � such that� � &����
���

< � � E � � !�' � � � � � � !�� � � � �
� � � � � ! � � � !�� � �

The distribution of the limiting integral is of the same form as that for � � but with the kernel� ��� � � ! replaced by � �	� � � ! � �	��! � � � ! . We conjecture that� ���� < � � E � � ! ' � � � � � � !�� � � � �
� &�� � < � � E � � !�' � � � � � � !�� � � �

in probability and hence that � � � � �� �&�
� � ! � � � !�� � but are unable to complete the proof. This
problem has occurred before; see, for instance, Durbin (1973). Nevertheless our Monte Carlo
studies confirm this limit.

Linnet (1988) studied the use of the Anderson–Darling statistic � � and the Cramér-von Mises
statistic � � to test for normality of the power transformed data for a sample � with no covariates.
Through simulation studies, Linnet concluded empirically that the null distributions of � � and� � do not depend on parameter values for transformation parameter � , mean 6 and variance � � .
A table was provided for � � and � � for finite samples in which the asymptotic critical points
were obtained by extrapolation.

6. EXAMPLES

Four examples are given below to illustrate the theory of the previous sections.

Example 1 (Gasoline data). We return to our opening example of gasoline mileage. We have�� � ) � �� (standard error, SE =0.64),
�� � � ��� ��� ,

�
� � � � � ��� ,

�� +-< � � � ) . The standard error of
�� �

taking into account that both � and � have been estimated, is computed as after Theorem 2; the
value is 0.047.

In (17), the term 	 	 D + � � � ! gives the variance inflation due to estimation of � ; if this term is
dropped, so that � is assumed known and correct, the estimated SE of

��
is 0.041. Also, the term� � D + � � < ! gives the variance inflation due to estimating � ; if this term also is omitted (assuming� to be known), the estimated SE of

��
becomes 0.034. We see that the effect of estimating the

transformation parameter is not negligible even in the estimation of the SE of
��
.

When estimating � , the variance inflation is huge in this example. If we transform the data
using

�� � ) � �� and fit a straight line via ordinary least squares, treating � as known and correct,
we get a fitted slope

�� � ) ��� ��� with a standard error of 16.5. As noted in the Introduction, this
is far smaller than the uncertainty of four orders of magnitude visible in the top right panel of
Figure 1.

In Figure 1,
021-3 �� �4�5! appears to depend linearly on � . Turning to (6), we see that the leading

term in
021-3 �� � � ! is

�9021-3 ��) � � � 6B� !�+ � , which predicts linearity of the type shown. A similar
observation holds for

0 1
3 ��;� � ! .
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The goodness-of-fit statistics are ��� � � � )���� and � � � � ������� , giving � -values of about
0.08 and 0.06, respectively; thus the assumption of normal errors is probably adequate.

There are grounds other than the quality of the normal assumption for believing that the
model as posed provides a poor description of this data set. In particular, the model ignores
an important serial correlation in the measurement of the amount of gasoline required to refill
the tank, and it also ignores annual variations in gasoline consumption per kilometer due to
changing weather. The purpose of using the model here is principally to illustrate the volatility
of the estimates when slopes are not standardized by division by

�� .

Example 2 (Textile data). Table 4 of Box & Cox (1964) contains the result of a single replicate
of a � � factorial experiment. The response � is the cycles to failures of worsted yarn. The three
explanatory variables assume three different levels each; we code these three levels as ' ) , �
and ) . See Box & Cox (1964) for details.

TABLE 3: EDF tests of fit for three main effect linear models for the textile data of Example 2.

Model Parameter estimates EDF statistic (� -value)

�� �� �� 
 � �� � � � �
�

: 488.2 1 7.9 0.57 1.3523 ( � 0.01) 0.2364 ( � 0.01)
� � ��  : 0.125 �
��� ��� � 262 �
��� � � � 0.3372 ( 	 0.50) 0.0495 ( 	 0.50)

�����

: 0.186 0 247 0 0.2480 ( 	 0.50) 0.0323 ( 	 0.50)

We fit three main effect linear models to the data using one slope for each factor. The first
model uses � directly. The second transforms � according to the Box–Cox model (1) and
the third uses the log transformation since the estimate (

�� � ' � � � � � , SE = 0.065) of � in the
transformation is very close to � . As can be seen from Table 3, the transformed models provide
the better fits. Note that � -values for � and

021
3 � are based on asymptotic results treating � as
known and applying the theory of Stephens (1986, Section 4.8, Case 3).

Table 4 contains estimates
��

of the standardized slopes and the associated standard errors
for the second model, i.e., for the Box–Cox model with

�� � ' � � � � � . These standard errors
are again calculated in three ways: SE � is calculated as though the estimates of � and � were
correct and known, so that the effect of making estimates is ignored; SE � assumes � is correct
and known, but � is estimated (thus ignoring the effect of estimating � ); and finally SE � is found
assuming both � and � are estimated, using (17). In this example, there is little variance inflation
due to estimation of � (cf. SE � and SE � ), though estimation of � makes an important difference
(cf. SE � and SE � ).

TABLE 4: Parameter estimates �� and standard errors for Example 2.

Estimated

Covariate coefficient �� SE � SE � SE �

Factor 1 ��� ��� 0.236 0.664 0.664

Factor 2 ����� ��� 0.236 0.526 0.526

Factor 3 ����� � � 0.236 0.376 0.376
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Example 3 (Tree data). The tree data in Minitab Student Handbook (Ryan, Joiner & Ryan 1976,
p. 278) are analyzed here. The heights ( � � ), the diameters ( � � ) at 4.5 feet above ground level and
the volumes ( � ) were measured for a sample of 31 black cherry trees in the Allegheny National
Forest, Pennsylvania. The data were collected to determine an easy way of estimating the volume
of a tree based on its height and diameter.

Again, three linear models are fitted to the data, using � , �7� �� ! and �7��)�+ � ! , where )�+ � is
chosen from the dimension of volume versus length.

Table 5 contains summary statistics and goodness-of-fit test results. The Box–Cox estimate�� � � ��� � � (with estimated standard error 0.087) is close to the estimate )�+ � derived from dimen-
sional considerations. All three models pass the EDF tests easily; as in Example 2 we compute� -values for � and � �,)�+ � ! treating � as fixed. For the model with

�� � � ��� � � , Table 6 contains
estimates

��
of the standardized slope and the associated standard errors calculated as before in

three ways. Again in this example, there is little variance inflation due to estimation of � , though
estimation of � cannot be ignored.

TABLE 5: EDF tests of fit for three straight line models for the tree data of Example 3.

Model Parameter estimates EDF statistic (� -value)

�� �� �� 
 � �� � � ���
�

: 3.882 1 126 0.13 0.2482 ( 	 0.50) 0.0361 ( 	 0.50)
� � ��  : 0.227 0.307 623 0.025 0.2925 ( 	 0.50) 0.0450 ( 	 0.50)
� ��� 
 �  : 0.249

� 
 � 625 0.2735 ( 	 0.50) 0.0407 ( 	 0.50)

TABLE 6: Parameter estimates �� and standard errors for Example 3.

Estimated

Covariate coefficient, �� SE � SE � SE �

Diameter 1.824 0.068 0.241 0.247

Height 0.1763 0.0340 0.0400 0.0410

Example 4 (Biological data). In Table 2 of Box & Cox (1964), the entries are the survival times
(unit is 10 hours) of animals in a � � � completely randomized factorial experiment. The factors
are poison content, with three levels, and treatment, with four levels.

Following Box and Cox, three main effect models are fitted as in the two previous examples.
Table 7 clearly shows that the two power transformations improve the model fit considerably.
Box and Cox felt the inverse transform (model 3) was not only reasonable on scientific grounds,
but was also supported by the data. Our tests of fit, with � -values calculated as in Examples 2
and 3, clearly support this view. The estimated standard error of

�� is 0.189; thus � � ' ) is well
within two standard errors of

�� � ' � � � � .
TABLE 7: EDF tests of fit for three main effect linear models for the biological data of Example 4.

Model Parameter estimates EDF statistic (� -value)

�� �
� 
 � �� � � � �

�
: 1 5.4 0.33 1.0373 ( � 0.05) 0.1572 ( � 0.05)

� � ��  : �
��� � � 15.7 �
��� � � 0.1974 ( 	 0.50) 0.0281 ( 	 0.50)
� � � �  : � � 16.2 �
��� � � 0.2861 ( 	 0.50) 0.0387 ( 	 0.50)
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In these models, there are two parameters for the main effects of poison content and three for
the treatment main effects. The actual value of

��
will depend on the particular choice of coding

for the linear two factor additive model, and for this reason, we do not give a table of estimates
of the components of

�
and their standard errors. However, we have made calculations which

suggest that variance inflation due to estimation of � is again unimportant, but estimation of �
inflates standard errors for coefficients

��
by about 15% on average.

In Examples 2, 3 and 4 the estimate
�� was found to be close to a “physically meaningful”

value such as 0, 1/3 or ' ) . The scientist may well choose to take this value as providinga sensible
transformation. We refer to this method for choosing � as the “snap-to-the-grid” procedure by
analogy with the jargon used in computer windowing systems which keep icons aligned. We are
investigating how the expansions in Theorem 2 should be used to deal with this procedure.

7. MONTE CARLO STUDIES

The accuracy of the asymptotic points for the goodness-of-fit statistics, in Table 2, was investi-
gated by a simulation study. Consider the tree data of Example 3 with < � � ) values; using the
Box–Cox transformation with estimated � the value of � � is 0.0450 and the � -value, given by
the asymptotic points, is 0.590. The accuracy of this value was examined as follows. First, for
the Box–Cox model, the estimates of the parameters were taken as the true values. A sample
of size 31 was then simulated from this model, the Box–Cox transformation procedure was ap-
plied and the EDF statistics calculated. This was repeated 10,000 times so that estimates of the
distributions of � � and � � were obtained. The fraction of � � values which exceeded 0.0450
gives the empirically derived � -value of the original data, for the statistic � � ; similarly for the
statistic � � . A similar study was made for the biological data of Example 4. Table 9 gives a
comparison between the asymptotic � -values of the data and the empirical � -values. They are
close enough to indicate that the asymptotic points in Table 2 can be safely used for samples of
reasonable size (we suggest < � �-� ).

TABLE 9: Asymptotic and empirical � -values for the tree data (Example 3)
and the biological data (Example 4).

Data Asymptotic � -value Empirical � -value

Tree
� � � � 	 ��� ��� � �  0.5895 0.5833
� � � � 	 ��� ��� ���  0.6282 0.6100

Biological
�
� � � 	 ��� � ��� �  0.8700 0.8850
� � � � 	 ��� � � � �  0.8848 0.9117

APPENDIX A: PROOFS FOR SECTION 3

It will be useful to review some notation. Recall that 6 � � � �-! is the vector with : th co-ordinate

6 � � � � �-! � � ) � � �1� �"� ��� ! � �20  ��� ' )� � � �-! �
Define

�B�4� �	� ! � �,) � �"! ��� 0���	 � � ' )� � �
and note that 6 � � � � �-! � �1� � � � � ! � ( � ��� � � � � ! � � ��� � � � � ! + �
The function � is analytic on � � � � � !	�
� � ' ) � with

��� � � �-! � ) � �B�4� �	� ! ��

� ' )� � �B�4� � ' �5! � 021-3 �,) � �"!�
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and �B�4� � �-! � ) . We write � �4> � for
� � 0 � �5+ � � � � � � .

We let � � � 6 � � � � �
! � � � � � � . For vectors � and � , we let ����� be the vector with : th entry
� � � � and � � � be the vector with : th entry �

�� . The design matrix is � � �*� � � � ! , with � denoting
a column vector with all entries equal to ) and � � satisfying ��D�� � � � . We need the matrices" � �/�/�7D���!'& � � , � �  ' " , and " � � � � �/� D � � � !��7D� .

Our proof uses the Cauchy–Schwarz inequality many times in several forms. For ease of
reference, we record two of those forms here. In the statements, � is any of � , " or " � , � � is
a row of � � , � is a � -vector and � and � are < -vectors.

� � � � � � 8 � � �$� D � � � ! & � � D� � D �/� D � � � ! � � � �	> �2� � D �/� D � � � ! � (24)
� � D ��� � � 8 � D � ��� D ��� 8	� �
� � ����� � � (25)

Proof of Theorem 1. The theorem is an easy consequence of the following three lemmas.

LEMMA 1. Under the conditions of Theorem 1,

� D �4�-! � E- �/.�� $ � � � � � � < � and
� D � �
!�+ � � � � � �4� � )�! �

LEMMA 2. Under the conditions of Theorem 1, ' � D?D �4�-!�+ � �!� � ) in probability.

LEMMA 3. Under the conditions of Theorem 3, for each fixed
� � �

��� 	  ���� ��� E 4 



 � � � !;' � � D �4�-!�' � � � D?D �4�-!
�





 9 ��� � �,)�! (26)

and

��� 	   	 � ��� E 4 � � D?D � � !�' � D?D �4�-! �< 9 ��� � ��)�! � (27)

Proof of Lemma 1. Through the proof, we will use the notation � for a constant which may
change from use to use but does not depend on < , � , � or on any of the parameters. The profile
score at

� � � is given by

� D �4�-! � ' < � D/� � � �-!� D � � � )
�

E- �/.�� 021
3 ��) � ��� � ! �
where � has components � � � �-! � �5�� � � >?� � ��� � � �-! . Note that � � �4�-! � �"�� +�� . Put � � � $ �������� � $ E . Write � D �4�-! � � ��� � � � � � � � �

� � � � � �-�
where

� � � )
�-< �

E- �/.�� � � � 4
E- �/.�� � � �� ' )�! 9 � � D "/����� � ! � � D " � � � � �

� � � )< � D � � D � � � �-!�' � �4�-! � �
� �

� � D " ��� � � �-!�' � � �-! � �
� � � � D � � � �-! � ) ' <� D � � �

and
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� � � )
�

E- � .�� ( 021-3 ��) � ��� � !;' ��� � + '
E- �/.�� ��� � � � � �-!�' � � � �-! � �

The conditions (7) and (12) permit Taylor expansion of � � �-! ; we then make moment calcu-
lations to show that � � � �-+ � < in probability for : � ) �������,� � . All the arguments are similar;
the case of � � is the most difficult and shows the importance of approximate normality for the� � , so we give details for this term only.

Let � � denote the event � ��� � � 8 )�+�� and � � � � � . Write � � as
� � � > � . In view of (7)

and (12), we have � � � ! � ) and � � � � � � � � > � )���� ! � ) . Consider first the case of normal
errors. Integration by parts of � � � � � �-! yields

� � � � > � )���� ! � � 0
� � � D � ' � � � � )

� � ' � &� � � D � ' � � �(' )
� � �

where � D is the standard normal density, � 0 � � � 021-3 � � +��-! '7) � +�� , and � & � � 021-3 �,)�+��
!�'7) � +�� .
Conditions (7) and (A1) then give

� � � � � > � ) � � � + � < � � . A Taylor expansion of � � > � in �
shows

� � � > � ) � � � 8 � � � � � � � � � � � � � � �
� ��� � � !

for suitable constants � � . Conditions (10) and (11) give � �	� � � � � > � )���� ��+-< � � so � � �
� � �4< � � � ! .

If the errors are not normal, we expand � � > � in a Taylor series in � to terms in � ��& � to get

� � � � & �-
� .�� � �

E- � .�� � � > � � � E- �/.�� 
 � �
where � � > � � has the form � ��� � � 0��� ' � � � � 0 �� + ��� � �-! � . If the errors have the same first � moments
as the normal distribution, then

� � � � > � � ! � � . A variance calculation and conditions (10) and
(A2.2) show that )� < � �

E- �/.�� � � > � � � �
in probability for �&8�� ' � . As with normal errors,E- � .�� 
 �B� E- �/.�� 
 � ) � � �
except on an event whose probability tends to � . On �(� , the remainder satisfies

� 
 � � 8 � � ��& � � � � � � � 0 � � � � � � � 0 � ! �
Conditions (7), (10), (A2.3) and calculation of the mean show

� E� .�� 
 � + � < � � in probability
and therefore � � ��� ��� � <�� .

The first conclusion of Lemma 1 now follows. The proof of the lemma is finished by using
conditions (10) and (11) to permit application of the central limit theorem to conclude that

� � D #
�

� E- � .�� � � � �� � )
�

E- �/.�� � �� ' �
�

E- �/.�� � � �  � � � � � � � � )�! �
Proof of Lemma 2. Write

' � D?D �4�-! � � � �-! D/� � � �-! � � D/� � � � �-!� ' �
��� D%� � � �-! � �< � � � (28)
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where now � � > � � �-! � � �� � � > � �4� � ��� � ! � � � > � � �-! � � �� + � �
and

� � � D/� � +-< . The last term in (28) is � � � < ! , from the proof of Lemma 1. Note that� � ) ����� �,)�! . Routine Taylor expansions and (25) (details are in Chen, Lockhart & Stephens
2001) show that� � �-! D � � � �-! � � � �-! D � � � �-! ��� � �4< ! and � D � � � � � �-!�' � � � �
! � � � � � < ! �

Thus we find ' � D?D � �
! � � � �-!�D%� � �4�-! � � D/� � � �4�-! �%� � �4< ! . We need then only show

� � �
! D � � � �
! � )
�
4 ��� � � ! D � ��� � � ! � �

E- �/.�� � �� � <;� 6 � ' )�! 9 � ��� � < ! (29)

and � D � � � � �
! � < 6 � + � � E- �/.�� � �� ��� � �4< ! � (30)

Assertions (29) and (30) can be established by moment calculations. �

Proof of Lemma 3. Statement (26) follows by Taylor expansion from (27). In what follows, we
write 6 � � � ! for 6 � � � �-! and let superscript D denote differentiation with respect to

�
. Since

' � D?D � � ! � 6 � � � !�D/� 6 D?D� � � !6 � � � ! D � 6 � � � !,+-< � 6 D� � � !�D%� 6 D� � � !6 � � � ! D � 6 � � � !,+-< ' )< 4 6 D� � � ! D/� 6 � � � !6 � � � ! D � 6 � � � !�+
< 9 � �
the lemma follows easily from the following convergences:

��� 	   	 � ��� E 4 



 )< 6 � � � ! D � 6 � � � !�' ) 



 9 � � � ��)�!
)< � ��� 	   	 � � � E ( 

 � 6 D� � � ! D � 6 � � � ! � � ' � 6 D� �4�-! D � 6 � � �
! � � 

 + � � � ��)�!

)< ��� 	   	 � � � E ( � 6 D?D� � � ! D � 6 � � � !�' 6 D?D� � �
! D � 6 � �4�-! � + � � � ��)�! (31)

)< ��� 	   	 � ��� E ( � 6 D� � � ! D � 6 D� � � ! ' 6 D� � �
! D � 6 D� �4�-! � + � � � ��)�! �
These assertions all have similar proofs; we do only (31). We use Taylor expansion and the

elementary inequality, valid for any < -vectors � and � ,
� � D � �(' � D � � � 8 � � ' � ! D � � � ' � ! � �

� � � �(' � ! D � � �(' � ! � � � D � � ! � (32)

Let
� � be the event

� � � � � + � < 8 )�+�� and
� � � � � . Use (10) and the fact 6 �  � to see

that ��� � ! � ) . On
�

, if �
� � 8 � + � < we have � 6 D� > � � � !�' 6 D� > � �4�-! � 8 � � � � � � + � < . Hence

��� 	   	 � � � E � � 6 D� � � !;' 6 D� �4�-! � D � � 6 D� � � !�' 6 D� � �
! � � 8 � <
E- � .�� ��� �� � � �� ! � � � �4< ! � (33)

Noting that 6 D� � �
! � � � �-! we see, as in the proof of Lemma 1, that6 D� � �-! D � 6 D� �4�-! � � � �4< ! �
Combining this with (33) and (32), we get (31).
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Proof of Theorem 2. Recall that �4<9' � ' )�! ��B��� � !,+-� � � 6 � � � �-! D�� 6 � � � �-! . A Taylor expansion
and (25) establish

��� 	   	 � � � E ( � 6 � � � �-!�' 6 � � � �-! � D � � 6 � � � �-! ' 6 �4� � �-! � + � � � ��)�! ���	@ � � < � �
Expand 6 � � � � �-!�' 6 � �4� � �-! as

� �"��
�

� � � � > � � � ��� � > � � �-!�� ��� � (34)

where �C�	> � and � � >?� are bounded on the event � � �
. It follows, using �!� � � , that6 � � � �-! D � � 6 � � � �-!�' 6 �4� � �-! � � � � D � � � � � 
 �

Use Cauchy–Schwarz to see that

��� 	   	 � � � E � 
 � 8 � � ��)�! � � � ��� � <�� ��� ��� � <�� �
The mean of � D � � � � is E- �/.�� � �2� � � � '

E- �/.�� � � � � ���
its variance is � � < ! . Since






E- �/.�� � �2� � � 



 � 8 �

E- �/.�� � ��2� � �
E- �/.�� � �� � 8 � E- �/.�� � �� �

we see that � D � � � � � � � � �5<�� � � ��� � < � �
Thus

��� 	   	 � � � E � � � D � � � � � ��� ��� � � � � ����� � < � �
Hence

��� 	   	 � � � E 4 



 �� � � � !,+-� � ' � D/� �
< ' � '*) 



 9 � ��� � )�+ � < � �

from which (13) follows.
We now expand 6 as in(34) to yield, for any < -vector � ,

� D �� � � !,+-� � � D �/� D � � � ! & � � D � ( � � �=� �� � �1� � � � � ��� � �A� � � ! � � � 
 � � � � 
 � + � (35)

where the remainder vectors

 � , 
 � have � 
 � > � � 8 ��� � � � � � � � � � � � ! for � � ) � � . The Cauchy–

Schwarz inequality implies that

� � D �/� D � � � ! & � � D � 
 � � � 8 � D �$� D � � � ! & �
�

E- �/.�� 
 �� > � �
Since

� E�/.�� �1� �� � � �� ! � � � � < ! , the remainder in (35) is

� � D �/� D � � � ! & �
� � ��� � < � 4 � � � )< � � � � � �� < � 9 � � � D �/� D � � � ! & �

� ��� �,)�! �
The quantity �
D4�/� D � � � ! & � �7D� � � � has mean � and variance 6 � �
D �$�7D� � � !'& �

� . Hence

� � D �/� D � � � ! & � � D � � � � � � � D �/� D � � � ! & �
� � ��� )�+ � < � �



2002 BOX–COX TRANSFORMATIONS IN LINEAR MODELS 23

The term � D �/� D � � � ! & � �7D� ����� � ! has mean � and variance
� � �� � �� , where �*� �
D �$�7D� � � !'& � �7D� .

This variance is bounded above by

��� ���	5�
	 E �1� �� !�� E- �/.�� � �� � � �4< ! ( � D �$� D � � � ! & �
� + �

It follows that � � D �$� D � � � ! & � � D � �1��� � ! � � � D �$�7D� � � ! & �
� � � ��)�! �

Now assemble the pieces to get

� D �� � � !�+
� � � D � � � D �$� D � � � ! & � � D � � � �� � � D �/� D � � � ! & � � D � � � � � � � D �/� D � � � ! & �
� ��� ��)�! �

Notice that the term � D �/� D � � � ! & � � D � � has variance � D �/� D � � � ! & �
� , so that the last term is negli-

gible relative to the other terms. This establishes (14).
The expansion (15) of � D �� is an easy consequence of (13) and (14).

Derivation of equation (16). We have�� ' � � �/� D � � � ! & � � D � � 6 � �� � �-!�' 6 �4� � �-! � � �/� D � � � ! & � � D � �
and

� �� ' � ! D � D � � � � �� ' � ! 8
� ��� 6 � �� � �-! ' 6 � � � �-! � D " � � 6 � �� � �-!�' 6 � � � �-! � � � D " � � � �
The second term on the right-hand side of this inequality has expectation � . The first is bounded
by

� �� ��� �
E- �/.�� � �� � E- � .�� � �� � ��� � �,)�! �

Statement (16) follows.

Proof of Theorem 3. We will prove only the first statement as an illustration of the general tactics.
Note first that E- �/.�� �� �� '

E- �/.�� � �� � E- � .�� � �� � ' � � ! � � �
E- �/.�� � � � �� � '#� � ! �

The first term on the right is simply

� �� ' � ! D � D � � � � �� ' � ! � � @ � �5! ��� � � < !
using Theorem 2. Apply Cauchy–Schwarz to 



� � � � �� � ' � � ! 

 to get, on the event � � �
, the

bound

�
���� � �

E- � .�� � �� � ��� � � < ! �
Next, write

� �� � � ! D � � �� � � !�'*�1� � � ! D � �1� � � ! � � � � � � � � � � �
� ��� � � � � �

where

� � � � � ��('#��! � � � D � � � �� '#��! � � � �
� � � � ����� ��('#��! � D � � ����� �� ' ��! � �
� �

� � ����� ��('#��! � D � � � �� ' ��! � � � �
� � � � � ��('#��! � � � D � �1� � � ! �

and
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� � � � ����� ��('#��! � D � �1� � � ! �
Apply the Cauchy–Schwarz inequality to conclude that

� �� 8 � � � � � � �� 8 � <
� � � and � �� 8 � <
� � �
This reduces the lemma to the claims � � ����� � < ! and � � � ��� �4< ! . We give details for � � .

Note that

� � 8
E- �/.�� � �� � '#� � ! � � E- �/.�� � � � � �� ' � ! � � �

Apply (24) to get, on � � �
,

� � � � �� ' � ! � � 8 � �	> � � � �� ' � ! D � D � � � � �� ' � ! 8 � � �	> � � � �
Since � 8 � � > �2� 8 ) , we find

� � 8 ��� �
E- �/.�� � �	> �2� � ��� � ��� � < ! �

and the proof is complete. �

APPENDIX B: PROOF OF THEOREM 4

The fitted residuals have the form
�� � � �� � + � �� +-� ! , where

�� � � � � 6 � �� � �-! D � 6 � �� � �-!�+ �4<�':� ' )�!
and �� � � 6 � �� � �-! . Write

�� E � � ! � �� E � � E � � ! � � � < � � E � � !�' � � �
where

�� E � � ! � )� <
E- �/.�� � ) � � � �� � ! 8 � � ' � �

and � E � � ! ����� �� � & � � � !,+-� � . Our proof uses Taylor expansions of
�� E and of � E . We prove

the theorem via several lemmas whose proofs are postponed. All lemmas tacitly assume the
hypotheses of Theorem 4. We work throughout on the event � � �

, where � is defined in the
proof of Lemma 1 and

�
is defined below (32).

First we study
�� E near 0 and 1.

LEMMA 4. Let
� E � � < & � � � � )�'A< & � � � � . Then ��� 	�� ���� � � �� E � � ! �-����� ��)�! .

Finally, we expand
�� E when

�
is not too close to 0 or 1. Define

� �4� �	� ! � � ) � � � �A� ! � � � � � 0�� 	 ' )� � � �B��� & � � � ! � � � � � � � �	�

and
� � � � � � � � �
� ! � ��� � � � � � � � � � � � !�' � � � �

When ) � � � � �-! � � 8 � , extend the definition of � � by putting � � � � if � � � �-! � � and
� �B� ) if � � � �-!  � . Then

� � ���� ! 8 ��� � � ��� ! 8 � � � � � �� � �� � 6 � �� � �-! � �
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where �� � �/� D � � � ! & � � D � � 6 � �� � �-! ' � � and 6 � � � �-! � )<
E- �/.�� 6 � � � � �-! �

Hence we can write �� E � � ! � � � > E � � ! � � � > E � � ! � � � > E � � ! �
where

� �	> E � � ! � )� <
E- �/.�� � ) ��� � � � ! 8 � � ' � � �

� � > E � � ! � )� <
E- �/.�� � � � � � � �� � �� � �6 � �� � �-! � ' � � �

� � > E � � ! � )� <
E- �/.�� � ) ��� � �� � ! 8 � � '*) ��� � � � !�8 � � ' � � � � � �� � �� � 6 � �� � �-! � � � �

We expand � � > E and show that � � > E is negligible in the following two lemmas.

LEMMA 5. The process � � > E admits a Taylor expansion

� � > E � � ! � )� <
E- � .�� � ���  � � � !;' $ �  � � � !,+ � � �� +
< ! � � 
 � > E � � ! � (36)

the remainder term

 � > E satisfies ��� 	 � ��� � � 
 � > E � � ! ������� �,)�! .

LEMMA 6. We have ��� 	 � � � � � � � > E � � ! ����� � ��)�! .
Put

�� �E � � ! � )� <
E- �/.�� � ) � � � � � ! 8 � � ' � � � �  � � � !�' $ �  � � � !�+ � � �� +-< ! � �

Since  � and  � vanish at 0 and 1, standard weak convergence methods lead to

��� 	� ���
�
� �� �E � � ! �
����� �,)�! �

With Lemmas 5 and 6, this shows

��� 	� 	 � 	�� � �� E � � ! ' �� �E � � ! ����� � ��)�! �
It is then standard to check that

�� E converges weakly in
��� � � ) � to a centered, continuous

Gaussian process
�� with covariance

�� �	� � � ! � � ��
 �	� � � !�' � � '  � �	��!� � � � !�' )
� �  � �	��!� � � � ! �

Next, use (13) to show that
��� 	� 	 � 	�� � 
 E � � ! ����� � ��)�!

in the expansion

� < � � E � � !�' � � � )
� � < - � � �� '*)�!� � � � ! � 
 E � � ! �
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Use this expansion, the weak convergence of
�� E and Lemma 4 to check that the pro-

cess � �� EB� � < � � E � � ! ' � � � is tight in
��� � � ) � � ��� � � )�� . The Lindeberg central limit theo-

rem shows the finite-dimensional distributions of that process to be asymptotically Gaussian
with zero mean. The asymptotic covariance matrix between � �� E �	��! � � < � � E �	��!(' � � � and� �� E � � ! � � < � � E � � ! ' � � � is

� �� ��� � � ! �� ��  � ����!� � � � ! � �
Hence � �� E � � < � � E � � !�' � � ! converges weakly in

��� � � ) � � ��� � � ) � to a continuous centered
Gaussian process with this covariance function. The theorem now follows from the usual time
transform argument (see Billingsley 1968, p. 145). �

Proof of Lemma 4. It evidently suffices to show that

)� <
E- �/.�� ) ( � �� � � � � � & � � < & � � � ! � + � � � �,)�! � (37)

Write �� � � � 6 � �� � �-!�' 6 �4� � �-! � �A� and bound (37) by the sum of the following two terms:

)� <
E- �/.�� ) ( � � � � � � � & � �4< & � � 
 ! � + (38)

and )� <
E- �/.�� ) � 

 � � � 6 � �� � �-!�' 6 �4� � �-! � � � 

 � 

 � & � � < & � � � ! ' � & � �4< & � � 
 ! 

 � � (39)

Since the ��� are normal the expectation of (38) is �-+-< � � 
 � � . For� E � � � & � � < & � � � !�' � & � � < & � � 
 ! � �
we have � E � � andE- � .�� ) � 

 � � � 6 � �� � �-!�' 6 � � � �-! � � � 

 � �	E � 8 � E� .�� � � � 6 � �� � �-!�' 6 �4� � �-! ��� ��� �E

� � 6 � �� � �-!�' 6 �4� � �-! � D � � 6 � �� � �-!�' 6 � � � �-! �� �E �
That (39) converges to � can now be seen from the proof of (13) in Theorem 2. �

Proof of Lemma 5. The function
�

, in the definition of � � , has a power series expansion over� �4� �	� ! � � � � � �  ) � and a Taylor expansion of the form
� � � � � ! � )(' � +�� � � � � �"! � � �

� � � � � � !�� � , where � � and � � are bounded over the set � � � 8 )�+�� , � � � 8 )�+�� , � � �*� � 8 )�+�� . In
order to apply this smoothness of

�
to carry out a Taylor expansion, we need to establish that the

arguments of
�

are not too far from � . We do this in the two following lemmas.

LEMMA 7. For each
�  � ,

��� 	   	 � ��� E 

 �6 � � � !�' ��=� �� � � ) � � � � 

 � � � �,)�! �
Furthermore, for each

� � � , there is a constant � such that

�
( � 6 � � �� ! � 8 �(+ � <�+ 8 � �

Fix
� � � . Let � � be the set of pairs � � � � ! such that � D/� D � � � � 8 � � and � < � � � 8 �

.
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LEMMA 8. We have

� � � � � )� < � ��� 	����� �
�
� � ���	5�
	 E ( � � & � � � ! � � � � � � � � � � � � � � � � + � � �

In particular,

� � � �	� )� < � ��� 	� ���
�
� � ���	5�
	 E ( � � & � � � ! ��� � � � � � � � � �� � � � 6 � � �� ! � + ��� � �,)�! �

The lemma permits us to place a uniform bound on all derivatives of
�

occurring in what
follows. As in Appendix A, we use � as a generic constant which may change from place to
place but does not depend on < or any parameter value.

Expand � about � & � � � ! to obtain, for a suitable
� � ,E- �/.�� � � � � � � � � � � � !"' � � � E- �/.�� ( � � � � � � ��� � � � !�'#� � ' � & � � � !�+  � � � ! (40)

� )
�

E- �/.�� ( � � � � � � �	� � � � ! ' � � ' � & � � � !�+ �  � � � � ! � (41)

Expand
�

to bound (41) by

� 4 E- �/.�� � �(� � � � ! � � � �
E- � .�� � �� 9 �

which is no more than

� 4 < � � � � D � D � � � � � � � & � � � ! � � � � � � )<
E- �/.�� � � � � ! � � )<

E- � .�� � �� 9 �
Let � denote the set of triples � � � � �
� ! such that � < � � �  �

and � � � � ! � � � . Using Lemma 7
and Theorem 2, we see that (10) implies that the supremum over � � � E of (41) is � ��� � <�� .

Write the right-hand side of (40) as

)� <  � � � !
E- �/.�� ( � � � � � ' �� � � �� � � � � �� � � � � � � ! � � � � �� � � � � � � � � � � !�+ �

If )� < ��� 	��� �
�

4 � � E- �/.�� � � �� �C� � � � � ! � � � � � �
E- �/.�� � � �� � � � � � �	� � � � ! � 9 ��� ��)�! (42)

and )� < ��� 	��� �
�





�

E- �/.�� � � �� '#� �� ' � � & � � � ! � � � 




��� ��)�! � (43)

then the fact
� � � � � � will establish that, uniformly over

� � � � � � � , the right-hand side of (40)
is, )� <  � � � ! � < � ' � �

� E- � .�� � �� � < ��� & � � � ! � �	� � ��� ��)�! �
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Replace � by 6 � � � �-! and apply the expansion in Lemma 7 to get

)� <
E- � .�� � � � � � � � � � � 6 � � � �-! � ' � �

�  � � � !� < �
E- �/.�� � � � < � � ��) � � � !�' � �

� E- � .�� � �� � < ��� & � � � ! � � � � ��� � ��)�!
�  � � � !� < �

E- �/.�� ��� ' < �
�
� ��� & � � � ! � � ' ) � � ����� �,)�! �

Finally, replace
�

by
��

and apply the expansion given in Theorem 1 to get (36).

It remains to establish the claims (42) and (43). To establish (42), we boundE- �/.�� � � � � � 8 � 4 < � � � � � < 




� & � � )< � 





� � E- �/.�� � � � � � � � E- �/.�� � � � � � 9 �
Use (24) to see that for # � � , we haveE- �/.�� � � � � � � 8

E- �/.�� � � � �� > �2� � � D � D � � � � ! � � � 8 �B� � D � D � � � � ! � � � � (44)

Apply Lemma 7, the fact that � � & � � < & � ! �
� � ( � 021-3 �4< ! + , (44) and (16) to show that

��� 	 4 E- �/.�� � � � � � 9 � � � < 0 1
3 � � � � < ! � �
Hence (42) is

� � )� < � 4 � � )< � � � � � )� < � 9 � � < 021
3 � � � � < ! � ��� ��)�! �
To establish (43), we square out � �� and getE- �/.�� � � �� '#� �� ' ��� & � � � ! � � � � � D � D � � � � � < � � � �-< � � & � � � ! � � � D � D � � � � �
Bound the first term using Theorem 3, the second using Lemma 7, and the third using Lemma 7
and � � & � � � ! �
� � ( � 0 1
3 #�� < ! + . For the last term, use the Cauchy–Schwarz inequality to get






E- � .�� � � � � � 



 � 8

E- � .�� � �� � D � D � � � � 8 � <
� �
Apply (10) to get (43). �

Proof of Lemma 6. We follow Loynes (1980), as adapted in Chen & Lockhart (2001); more
details are in Chen, Lockhart & Stephens (2001). Our proof uses chaining (see Pollard 1984).
Define


 � � � � � � � �
� ! � ) ( � � ��� ! 8 � � � � � � � � �
� ! + ' ) ��� � ��� ! 8 � � ' � � � � � � � � �
� ! � � �
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Let
�

denote the event that � �� � �� � 6 � �� � �-! � � � . For any
� � � if

�
is chosen sufficiently large

we have, by Theorem 1, (13), (16) and Lemma 7 that � � � ! � ) ' � +�� . We work on the event� � � � �
with � and

�
as before; for all < sufficiently large, � � � � � � � ! � ) ' �

.
Define


 � � � � � � �
� ! � )� <
E- �/.�� 
 � � � � � � � � � ! �

On the event
�

, we have

��� 	� � �
�
� � > E � � ! 8 
 & � ��� 	� ���

�
> �  > � > � 	 � � 
 � � � � � � � � ! �

We need only prove that

 & ����� ��)�! (and omit the parallel argument for the infimum).

For � � � , the covering number
� � � ! is the smallest integer � for which there exist� � �������,� ��� such that � D �$�7D� � � ! � 8 � � implies the existence of an integer � such that

� � ' ��� ! D �/� D � � � ! � � ' ��� !  � � (45)

Let � � denote the set of � in � satisfying (45). As in Chen & Lockhart (2001), we assume
without loss ��� � � � for each � . We take � � )�+ � � 021-3 < ! .

Let �
� � � � < 021-3 �4< ! � � �

 � � � < 021-3 � � � �4< ! � � and
� � � � � < � �

Put �
� � � � � & � �4< & � � � ! � + � � � � �(��� � � � ! � �
	 � � � � & � � � + �  �

and � � � � � + � � < � � � . We study


 � > � > 	 > � � ��� 	��� 	 � 	 ���� � > � � ��� > �� 	  	 �� � � > ��� 	�� 	���� � � 
 � � � � � � �
� ! �
Note that

� � 
 & � � !  -
� � 
 � > � > 	 > � � � ! �

where the sum is over ' � � 8 �&8 �
� 'A) , ' �  8 � 8 �

 'A) , ' � � 8 � 8 � � 'A) and � for
which � � is not empty. There are no more than "

�
�
�

� � � � � ! terms in this sum.

Fix � � � � � � � . If � � � � ,
� 	 8 � 8 � 	 0�� , � � 8 � 8 � � 0�� and

� � 8 � 8 � � 0�� , then


 � � � � � � � � � ! � ) ( � � ��� ! 8 � � � � � � � � � � ! + ' ) � � � ��� ! 8 � � ' � � � � � � � � �
� ! � �
8 ) ( � � � � ! 8 � � � � � 0�� � �
	 � � D� � �
� � 0�� ! + ' ) � � � � � ! 8 � � � (46)' � � � � � � �
	 0�� � � D?D� � � � � ! � � � 0�� �

where � D�4> � maximizes � � � over � � and � D?D�4> � minimizes the same quantity. [Remark: the map���� ��� � � � � � � � � ! ' � � is increasing for all � , � , � and � for which ) � � � � �-! � � � while
the map

� �� ��� � � � � � � � � !�' � � is decreasing in the same circumstances.] This eliminates� � � � � � � from the bound. Let

� �4> � > � > 	 > � � � � � � � 0�� � �
	 � � D� � �
� � 0�� !;' � � � � ��� �
	 0�� � � D?D� � �
� � ! � � � 0�� ' � ���
As in Loynes (1980), write the right-hand side of (46) as

�;�4> � > � > 	 > � �� �4> � > � > 	 > � ' � �4> � > � > 	 > � ! � � �4> � > � > 	 > � �
where � �4> � > � > 	 > � is the Bernoulli variable 

 ) ��� � ��� ! 8 � � � � � � � � �
� ! � '�) � � � ��� ! 8 � � 

 ,� �4> � > � > 	 > � � � ��� �4> � > � > 	 > � ! and �;�4> � > � > 	 > � is the sign of � � � � � 0���� � 	 0���� � D� � �
� � 0�� !�' � � .
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LEMMA 9. We have )� < � � �� > � > 	 > � - � � �4> � > � > 	 > � � � �
Put � � > � > 	 > � � E- �/.�� � �4> � > � > 	 > � �,) ' � �4> � > � > 	 > � ! �

LEMMA 10. There is a � with ��� � �4> � > � > 	 > � � � > � > 	 > � 8 � �
� � < � � � � 021-3 < � � � � .

As in Chen & Lockhart (2001), use Lemmas 9 and 10 to show

� � 
 & � � !  " � � �  � � � � � ! ���
	 ( ' < � � + � " � � � � < � + � ! + �
Chen & Lockhart (2001) show

� � � ! 8 � ) � � � � �"+ � � @ . Take � � )�+ ��� 0 1
3 < ! ; for all large< , we have
� � � ! 8 � � � �"� 021-3 �4< ! � @ � � . Combining these, we obtain

021-3 � � � 
 & � � ! � 8 � � 021
3 � � � �  � � ! � � 021-3 � � � �"� 021-3 �4< ! �
�

� ' < � �" � � � � < � + �� � � <� �

� � �
0 1
3 � � � �  � � !< � � � � 021
3 � � � �5� 021
3 � < ! �

�-< ' � �" � � < � + � � � � ! � �
Our conditions imply < + � � � � . The quantity in square brackets converges to ' � ��+ "  � .
Hence

021-3 � � � 
 & � � ! � � ' � , thereby completing the proof of the theorem. �

Proof of Lemma 7. The second statement follows from Theorem 1 and the first statement. Write6 � � � � �-! � � �5� � � �� +�� � 
 �,�
where on � � �

(defined as in Appendix A), we have

� 
 � � 8 ��� � � � � � � � ! � � � � � � � � � � � � ! �
Thus )� <

E- �/.�� � 
 � � 8 � � � �< � � �� < � � � ��)�! ����� ��)�! �
The lemma follows fromE- � .�� � �� � �

E- � .�� � �� � �
E- �/.�� � � � � � E- �/.�� � �� � � E- �/.�� � �� � � ��� � < � � < � � ��� � < � � �

Proof of Lemma 8. The lemma is an easy consequence of our conditions, Theorem 2, and
Lemma 7 except for handling � � � � � . We have � � � � � � 8 � E

� .�� � � � � � � � � D�� D � � � � 8 � �
which, divided by < or multiplied by �
� converges to � . �

Proof of Lemma 9. First

� � � � � � 0�� ' � � � 8 � � � � � � � 0�� ' �
� � 8 �

021-3 � < !< �
Write � �4>?� � �

� 0�� � � � 0�� � � � � � � � � and � � > � � �
�9� � � � � � � � � � � . Let � D� denote � �4>?�

with ��� replaced by � D�4> � and � D?D� denote � �4> � with ��� replaced by � D?D�4> � . Consider nowE- �/.�� ( � � � � � 0���� � 	 � � D� � �
� � 0�� !�' � � � � � � � 	 0���� � D?D� � �
� � !�+ � � � � � � � �
�

� � � �
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where

� � � E- �/.�� � � ( � D� � � � � D� � �
	 � D� !�' � � + ' � ( � �4>?� � � � � �4>?� � �
	 � �4>?� !�'#� � + � �
� � � E- �/.�� � � ( � �4>?� � � � � �4>?� � �
	 � �4>?� !�'#� � + ' � ( � �4> � � � � � �4> � � �
	 � �4> � !;' � � + � �
�
�

� E- �/.�� � � ( � �4> � � � � � �4> � � � 	 � �4> � !�'#� � +(' � ( � �4> � � � � � �4> � � � 	 0�� � �4> � !;' � � + � �
� � � E- �/.�� � � ( � �4> � � � � � �4> � � �
	 0�� � �4> � !�'#� � + ' � ( � D?D� � � � � D?D� � �
	 0�� � D?D� !�'#� � + � �

We bound each
� � by Taylor expansion. For brevity, we do only

� � . The map � ��
��� � � � � � � � � ! '#� � has, by Lemma 8, a derivative which is bounded over all : , � , � ,

�
, and � .

Hence
� � � � 8 �

E- �/.�� � � D� ' � �4>?� � 8 �
E- �/.�� � � � � � D� � ' ��� ! � �

From (24), we have � � � � � D� � ' ��� ! � �98 � �	> �2� � � D� � ' ��� !�D�� D � � � � � D� � ' � � ! 8 � �	> �2� � , so that

� � � �
� < 8 �

� �
<

E- � .�� � � � > �2� 8 � � � � � �� 021-3 < � �

Proof of Lemma 10. We have

� � > � > 	 > � � E- � .�� � � > � > � > 	 > � ��) ' � �4> � > � > 	 > � ! 8
E- � .�� � � > � > � > 	 > � �

where� �4> � > � > 	 > � � 

 ��� � D� � � � � D� � � � � D� !�'#� � � ' � � � � ! 

8 

 ��� � D� � � � � D� � � � � D� !�'#� � � ' � � � D� ' � � ! 

 � 

 � � � D� ' � � !�' � � � � ! 

 �
The first term in the above bound is less than

� � D� �� < 8 �� < ( � �� 0�� � �4� � � � � ! � � � �� 0�� � � �� + �
The second term is bounded above by � � � � � 0�� ' �

� ��� � � � � � � ��� � � � 0�� � ! . Sum these bounds
over : . Apply Lemma 7 and the inequalities �

�
� � 8 � � 021
3 � < ! and �

�
� 0�� ' �

� � 8 � � 021-3 � < ! + � �
to get � � > � > 	 > � 8 � 4 � < 021-3 �4< ! � )� <

E- �/.�� � � � � � � ! � � E- �/.�� � � � � � � � 9 �
Now � � � � � � � 8 � � � � � � � ' ��� ! ��� � � � ��� � and � � � � � � !,� 8 � ��� � � � � � � ' ��� ! � � � � � � � � !�� � . Use
(24) and (45) to see that

� E�/.�� � � � � � � � ' ��� ! � �98 � �/� )�+ 021-3 � < ! and4 E- �/.�� � � � � � � � ' ��� ! � 9 � 8 <
E- �/.�� � � � � � � � ' ��� ! � � 8 <021-3 � < ! �

We have
� E�/.�� � � � � � !,� � � D� �7D� � � � � 8 � � and, by the Cauchy–Schwarz inequality,

�
E- �/.�� � � � � � � � � 8 <

E- �/.�� � � � � � ! � 8 � <
� �
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Hence
� E�/.�� � � � � � � � 8 � � <
� � � < + 021-3 �4< ! and

� E�/.�� �4� � � � � !,�(8
� � � � � )�+ 021-3 �4< ! � giving� � > � > 	 > � 8 � ( � < 021-3 < � � <
� + � �
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Discussion1

Comment 1: Karim Maher ABADIR

I would like to congratulate the authors for a very well-written paper on an important subject. I
have a few queries, mostly relating to interpretation, which I hope may lead to further insights
into their new parameterizations and expansions.

The case of � � � can lead to difficulties which may not be present in other parameteriza-
tions. The limit � � � can arise from two observationally equivalent models, the logarithmic
model or the small- � asymptotics of Kadane, Bickel and Doksum. Should an investigator find�
� 	*� , what is the next step and how can the Type I error of inference be bounded if a sequential
procedure is adopted?

The current parameterization can lead to another type of identification issue, namely the sin-
gularity of the information matrix (with respect to

�
and

�
) at a particular point in the parameter

space; see, e.g., Davies (1977) and the subsequent literature, and Rothenberg (1971), Catch-
pole & Morgan (1997). How relevant would this problem be for typical hypotheses of interest?
The joint (as opposed to marginal) expansions of

��
and

��
may provide an answer to this question.

Wald tests or intervals are not invariant to nonlinear transformations of the parameter space.
Dagenais & Dufour (1991) have illustrated the problems that arise from this in a related (but
different) Box–Cox model, and Critchley, Marriott & Salmon (1996) have provided differential-
geometric insight into this problem. The use of such intervals for � in Section 4.1 would give
results that are different from the ones obtained by using intervals for

�
than inferring the corre-

sponding ones for the parameter of interest � . Given the invariance of likelihoods, wouldn’t it be
preferable to use other types of intervals based on

� � �� ! or
�

?
An interesting extension of the plots in Figure 1 would be to include � � � . Would the � +
�

parameterization still be the preferred one, or would a more general form emerge? Box–Cox
transformations are a special case of hypergeometric functions, which can be used to estimate
more general nonlinear transformations of the dependent variate; see Abadir (1999) and Law-
ford (2001). It would be interesting to see how far the intuition gained from this paper, on
stabilizing parameterizations, can be extended to the more general case.

Karim Maher ABADIR: kma4@york.ac.uk

Department of Mathematics and Department of Economics
University of York, Heslington
York YO10 5DD, England, UK

1These comments reflect the discussion of the paper which occurred after its public reading at the Centre
de recherches mathématiques de Montréal on March 22, 2002. / Ces commentaires reflètent les débats qui
ont suivi la présentation de cet article au Centre de recherches mathématiques de Montréal le 22 mars 2002.
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Comment 2: Nancy M. REID

The authors are to be congratulated for the formidable asymptotic analysis presented here and
for the original and careful attention to testing for goodness of fit.

The Box–Cox model is very useful for the theory of statistics, as a moderately anomalous
model in the sense that blind application of conventional theory leads to absurd results. Early
attempts to fix this seemed somewhat ad hoc, but there are now several different arguments that
lead to essentially the same conclusion, and in this light it seems very clear that the regression
parameter � has no meaningful interpretation in this model. The common conclusion is that
the meaningful parameter is

� � � +-� ; the most incisive (and intimidating) of the arguments is
provided in recent work by McCullagh, the simplest is the development of parameters orthogonal
to � in Cox & Reid (1987).

Cox & Reid (1987) suggested using orthogonal parameters to construct an adjusted profile
likelihood, one motivation being that the resulting confidence intervals based on the adjusted
likelihood would allow for the fact that the regression parameters had been estimated. With large
numbers of nuisance parameters, this adjustment is relatively more important. In the notation of
Chen, Lockhart & Stephens, the adjusted log-profile likelihood is

� �
� �4�5! � ' � < ':�

� � 021-3 � � �"! D � � ' � ! �7�4�5! � � � 021
3 � �"� � < ' �5! 021
3 � ':� 021-3 � ) D ��� �"! � �
whereas Chen, Lockhart and Stephens use the log-profile likelihood

� ��� � �"! � ' � <
� � 0 1
3 �7� �"! D � � ' � ! �7�4�5! � � � 021-3 � � �

Presumably the most important difference between these two expressions is the degrees of free-
dom adjustment to the residual sums of squares. It would be interesting to know if this adjustment
goes some way to making estimation of � “more nearly consistent”.

One of the attractions of the Box–Cox model is that it provides a mathematical formulation
of a strategy that seems clearly useful and is much used in applied work. In the context of
applications, the strategy that the authors call “snap-to-the-grid” seems the most sensible, and
likely the most widely used. In this light, the observation in the examples that there is very little
variance inflation due to the estimation of � seems potentially very important, and some further
investigation of this would be very interesting. The estimation of the variance relies on sample
moments up to order six, and I thought it was nearly axiomatic in applied statistics that these
estimates, while consistent, are so variable that they are almost useless. As a final comment,
if snap-to-the-grid turns out to be theoretically (nearly) correct, as well as sensible, then it is
less clear whether tests of fit for the full model are needed, instead of simply using the usual
diagnostics for the transformed data.

Nancy M. REID: reid@utstat.utoronto.edu

Department of Statistics, University of Toronto

100 Saint George Street, Toronto, Ontario, Canada M5S 3G3
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Comment 3: Peter McCULLAGH

Roughly 25 years ago, when I first read the Box–Cox paper as a graduate student, I tried to
replicate numerically the analysis of one of their data sets to convince myself that I understood
exactly what they were saying. Naturally, I proceeded to substitute the value

�� and to analyse the
data as if that were the true value. When that failed to reproduce the values reported in the paper,
I checked my calculations but I could find no error. Fortunately I was at Imperial College, so I
knew who to ask and I did so at the next opportunity. Following that brief lesson and a closer
reading of the paper, I can say with some assurance that the Box–Cox paper does not contain
a recommendation, or even a suggestion, “that

�� be treated as the true value for the purpose of
further analysis”.

The emphasis on the family of power transformations in applied statistics deserves a deeper
explanation than convenience and monotonicity. The following argument, based on consistency
under aggregation, shows that the power transformation is inevitable. Consider a field experiment
in which each plot is two meters square, ��� �"! is the yield on plot � and 6 � �"! � � � � � �"! � is the
vector of mean values. It is natural to consider a linear model of the form � � 6 ! � � in which the
link function � ���4� � � ! � IR acts componentwise, and � � IR

E
is a linear subspace containing

the subspace ) of constant functions. For example, � might be the subspace consisting of
functions of the form ��� �"! � � � ��� ��� 	 � � � ��� 	 , where 	 � �"! is the variety and

� � �"! is the
treatment in plot � . Thus, the systematic component of the model is

� � 6 � � ! � � � � � � � � �
Consider also a second experiment of the same type in which the plots are two by four meters.

The same reasoning leads us to consider a model

� � 6 D� � ! � � D � � D� � � D�
in which 6 D � � D �,� D � � D are the parameters relevant to the larger plots. Additivity of yields implies
that 6 D� �B� � 6 � � , which leads naturally to the compatibility condition

� ( 6 � � � � ! + ��� � � 6 � � ! � � � � ! � � � � � ! � � � � � !
for plots of area � . In other words, � � �"! � � implies � � � �"! � � for all � � � and for each
subspace � containing 1. It is easy to see that this condition is satisfied by all transformations
of the form � � �"! � ��� % � � or � 0 1
3 � �"! � � , and no others. The induced transformation on the
parameters is � � � � ! � � % � � ��)�! for � .� � , which makes it clear how inference is possible for
treatment effects on plots of arbitrary size.

In the Box–Cox version, the transformation is applied to the random variable rather than to
the mean value, which is a major complication. Thus, aggregation is a linear transformation
� � IR

E � IR
�

, applied to the untransformed yields on replicate plots only. In general, � %��
� E �1� E � � � � E ! is incompatible with the aggregated version � � � ! %�� � � ��� � � �"D � � � ! , where� E � IR

E
and � � � IR

�
are the corresponding model subspaces. In practice, if ��� is small,

the model is approximately compatible under aggregation.
Chen, Lockhart and Stephens describe the ratio parameter

� � � +
� in the Box–Cox model
as “physically meaningful”. As a discussant, it is hard to disagree with them, for they do not
provide a definition of the term. I do not want to suggest that they are the first to use this term
without definition: it may even occur in the Box–Cox paper! By implication, neither � nor � is
physically meaningful. But what about the pair � ��� � ! or the pair � ��� �5! , or the scalar � & � 021-3 � ?
How are we to tell which functions are physically meaningful and which are not?

The discussion of physical units in Section 1.2 suggests to me that the authors’ usage of the
term coincides with the notion in algebra of a natural transformation, or what I call a natural
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sub-parameter (McCullagh 2002). Many statistical models have the property that they are closed
under a group, or semi-group, of transformations. I have in mind a simple group action such as a
change in the response scale � �� � � from, say, liters into gallons or miles into kilometers, so that
the group is the set of positive scalar multiples � � � . There may also be a second group acting
on the covariate scale, but I will ignore this for simplicity in the present discussion. Invariably
there is an induced action

� �� � � � on the parameter space. In the case of the Box–Cox model,
it is convenient to write � � � � 6�� � � � �5! �
for each component, meaning that � % � � � 6�� � � ! in the conventional notation. If there is
concern over negative values, � % may be interpreted as � � � � % maintaining the sign of � . This
is different from the authors’ parameterization, but it is more convenient for studying the induced
group action. Evidently,

� % � � � 6�� � � ! � � �
�&! % � � � � % 6�� � � % � � ! �
or �
� � � � � % 6�� � � % � � � �"! , so that the induced action on the parameter space is

� � ��� 6�� � � � �5! �� � � % 6�� � � % � � � �"! �
which is a homomorphism of the group by transformations

� � �
on the parameter space.

A sub-parameter
� � � � � ! is called natural if the value of

�
relevant to the transformed

response �
� , i.e., � � � � � ! , can be determined from the pair � � � � ! . This definition can be stated
more accurately in terms of commutative diagrams, but the preceding version suffices for present
purposes, and helps to explain why the concept might be relevant. If we are told the value of

�
in liters, can we determine the corresponding value in gallons? If

�
is “physically meaningful”,

the answer must surely be yes, and that is how I propose to interpret the term.
In the case of the Box–Cox model with the indicated group of scalar multiples acting on the

response, the parameter 6 is not natural because the value � % 6 on the transformed scale cannot be
determined from the pair � � ��6 ! alone, as the definition requires. However, � , � & � 021-3 6 and 6 +
�
are natural, as are the pairs � 6�� �"! and �4� � � �"! , and also ratios � � + ��� of regression coefficients
in the case of a multiple regression model 6 � � � . It should be self-evident that inference is
possible only for natural sub-parameters, in which case the complications discussed by Bickel
and Doksum do not seem to arise. But at first sight, it would seem that � & � 021-3 6 , or 6 � � % , might
be a more useful parameter than 6 +-� . Is there a compelling reason to prefer one over the other?

In view of these examples, I ask the authors if their concept of the term “physically mean-
ingful” is the same as that of a natural sub-parameter? If not, what is the distinction? If they are
equivalent, the concept is purely algebraic. Any connection with statistical variability, stability,
consistency, large samples, or even epistemology, would appear to be largely fortuitous.

Peter MCCULLAGH: pmcc@galton.uchicago.edu

Department of Statistics, University of Chicago
5734 South University Avenue, Chicago, IL 60637, USA
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Comment 4: Peter J. BICKEL

Chen, Lockhart and Stephens return to the problem of analyzing the behaviour of parameters
defined on the Box–Cox (1969) transformation models some twenty years after Bickel & Dok-
sum (1981) initiated a flurry of activities in the early 1980s. The same model is the subject of an
example in the paper “What is a statistical model?” by McCullagh (2002) which is contempora-
neous with this one.

Chen, Lockhart & Stephens argue that the appropriate asymptotics for this problem is as the
parameter � � �"� + �,) � � 6 ! � � and < � � and that the relevant parameter to estimate
is
� � � +-� . They argue on the grounds that this asymptotics is stable in that the limit is a

continuous function of
�

not exhibiting a discontinuity at
� � � , whereas the asymptotics of

Bickel and Doksum letting � � � keeping � fixed does exhibit such a discontinuity.
Stability is a desirable property and as we stressed also, there is no need to limit oneself to

the classical < � � asymptotics. The interpretation of � � � is a little difficult, however. With� tending to � at a known rate, we could at least state what the order of magnitude of the errors
in relation to < should be. Also, asymptotic theories requiring errors which have the first six
moments the same as the Gaussian leave me somewhat uncomfortable.

Having said this, I am entirely in favour of considering
�

as the relevant parameter. This
parameter, mentioned in connection with a number of people by Chen, Lockhart and Stephens,
arises in an entirely natural way if one extends the Box–Cox model to the natural semiparametric
model

�"� ��! �*� � � ���
where � is an unknown monotone transformation rather than just a power and � independent of
� has � � 6�� � ��! distribution. It is immediate that under these assumptions, � is not identifiable
but � +
� is. As expected, � is identifiable up to a linear transformation. Methods for fitting this
model are suggested in Bickel & Ritov (1997), among others.

Incidentally consideration of
� � � +
� deviates from (alleviates?) the need for specifying

knowledge of the rate at which � � � in our asymptotics.
I’d like to make a comment about the tests for normality of the distribution of � . In a paper

recently submitted to The Annals of Statistics, Ritov, Ryden and I argue that in the context of the
usual < � � asymptotics, we should tailor tests of goodness of fit to have power in directions
which we deem are important and set critical values by simulation using the parametric bootstrap
for instance. This may also be feasible in this case, but it is not immediately clear how the
consistency of the bootstrap would be affected by � � � .

Chen, Lockhart and Stephens point out that under their asymptotic theory the interpretable
parameter � +
� is not subject to variance inflation for � � � or various symmetric designs. It
would be interesting to know to what extent this conclusion remains valid in the more general
transformation model (1).

In conclusion, I enjoyed the delicate asymptotics of this approach, though I am not entirely
persuaded of its applicability.

Peter J. BICKEL: bickel@stat.berkeley.edu

Department of Statistics, University of California
Berkeley, CA 94720-4735, USA
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Comment 5: Richard A. JOHNSON & Kjell A. DOKSUM

Chen, Lockhart and Stephens (CLS) have developed an asymptotic theory for the linear Box–
Cox transformation model where the regression parameters are relatively stable as a function
of the transformation parameter. Further, the limit is continuous at the zero value of the vector
regression parameter. This is in part an improvement in the asymptotic approach of Bickel &
Doksum (1981). By considering asymptotic distributions for certain sequences of parameters,
CLS have managed to obtain results that, because of their relative simplicity, shed light on the
properties of estimators and tests in the Box–Cox model.

However, the CLS formulation and results have some disconcerting elements. For instance,
the transformation parameter is not consistently estimated. Thus, CLS provide more stable scaled
regression coefficients, but at the price of knowing less about the transformation scale on which
these coefficients are computed. Thus it makes sense to consider an alternative approach to a
rigorous asymptotic theory where all of the parameters are fixed but unknown. Such a theory has
been provided by Cho, Yeo, Johnson & Loh (2001a). While the Box–Cox transformation cannot
produce exactly normal errors, except possibly for � � � , one can maximize the likelihood
obtained by assuming that the transformed response � � % 	 satisfies the linear model

� � % 	 � ��� ���
with independent and identically distributed mean zero normal errors. The large sample theory
allows for a nonnormal but mean zero distribution for the errors. Conditions are placed on the
densities and consistency is established by first obtaining a uniform strong law of large numbers.

CLS only address parameter estimation and testing, so the search for stable parameters may
have some merit. However, if forecasting is the primary purpose of the regression, the quality
of the forecast is the proper criterion. Cho, Yeo, Johnson & Loh (2001b) show that asymptotic
coverage of the forecast interval attains the nominal level of significance in the fixed parameter
setting. A small simulation is included. How does the CLS approach do with forecasting?

One of the reasons CLS consider the framework where � � � is that for this case (see
Section 1.1), where the probability tends to zero that the right-hand side of the Box–Cox model
equation takes values that are not possible on the left-hand side. However, an alternative approach
would be to extend the Box–Cox transformation so that its domain and range are the whole real
line. Such an extension, which preserves convexity �4� � )�! and concavity ( �  ) ), is provided
by Yeo & Johnson (2000).

CLS argue successfully that
� � � +-� is more stable than � as a function of � . However,

we can use arguments similar to Brillinger (1983) and Stoker (1986) to argue that when �  � ,� + � � � , where ��� � the Euclidean norm, is perhaps a more stable parameter. Brillinger (1983)
asked how stable the least squares estimate

�� ��� for the linear model

� �B� � � � D � �5� � ���
would be for the semi-parametric single index model

� �B��� � �7� � D � � ! � ��� � (1)

where ��� � � � � ! , : � ) ��������� < , are i.i.d. as �� � ��! , � � IR
@
, � � IR, ��� , : � ) ������� � < , are i.i.d.

as � ,
� � � ! � � ,

� � � ��! � ) , � and � are independent, and � is an unknown function. He found
that if � has a multivariate normal distribution, then

�� ��� is consistent for �	� for some constant �

depending on � . Thus for the model (1) with � � � � 6�� � ! , �� ��� + � �� ��� � converges in probability
to � + � � � , which does not depend on � . He also found that in this framework,

� < � �� ��� ' �	� ! � � �4� � � ��� ! �
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with
� ��� � � � � & � � � & � � ( � �� ��� ! ���' 6 ! ��� ' 6 ! D + � & �

where � � �� ! � �5�� !9' � � �"��� ! � and �"�� ! � � � � � � D � !(' �	� D�� . Note that the first
term in

� � � is the usual linear model covariance matrix and the second term represents extra
variability due to the extra unknown parameter � . Brillinger developed extensions of his results
to non-Gaussian as well as fixed (nonrandom) � .

Stoker (1986) extended Brillinger’s results to the more general index model where

� � � � � ! ��� � � � � D � ! (2)

for some unknown function � . This model includes the transformation model
� �$�&! � �7� � D � � � � �

unknown, increasing

where � and � are independent. Moreover, Stoker introduced the average derivative approach
which is based on the parameter vector � � � � � D �� ! � , where � ��� ! � � � � � � ! and � D���� !
denotes the vector of partial derivatives

� � ��� !�+ � � � , � � ) �������	� � . Note that whether or not �
is Gaussian in model (2), � � �	� for �9� � � � D � ��� � D � ! � , and �-+ � � �
��� + � � � . Thus �-+ � � � is a
stable parameter in model (2).

By using integration by parts and the iterated expectation theorem, we find immediately that
under regularity conditions (see Stoker 1986),

� � � � � D �� ! � � �
� D �4�5! �B�4�5!���� � ' �

� �4�5! � D � �"!���� ��� 1 � � � � � �� ! � � (3)

where
� �� ! � ' � D���� !,+ ����� ! is the location score vector of ����� ! . Note that both � and �

have “disappeared” in the expression � ��� 1 � � � � � �� ! � and that when � � � � 6�� � ! , then� ��� ! � � & � ��� ' 6 ! and

� � � � � � ��� ! � � � & � � � �7��� ' 6 ! � � � & � ����� � 0�� � �� ��� � (4)

where the limit is in probability. Thus Brillinger’s result, which he connected to Stein’s identity,
follows immediately from (3) and holds in the general index model (2). Note that if we introduce
the vector �-�$� ! � � ��� � �&! , then by (4) and the iterated expectation theorem,

� � � � 6�� � ! � � ��� 1 � � � � �-�$� ! �
and we have connected � to inverse sliced regression (Li 1991).

When � has an unknown distribution, nonparametric estimates
�� D � � ! and

�� � � ! yield the
estimates

�
� � < & � � � � �� D ��� � ! and �� � < & � � � � � � �� ��� � ! , where the � � are weights that down-

weight extreme � � . Härdle & Stoker (1989), among others, presented conditions that imply the
asymptotic normality of � <&� �� ' �-! and � <&� ��B' �-! . Chaudhuri, Doksum & Samarov (1997) con-
sidered estimates obtained by replacing � �� ! with the conditional quantile function � @ ��� ! �
� & �
�  � � �5! , �  �  ) , and they established � < -asymptotic normality of these estimates that

also estimate the direction of � in the model (2).
We next look more closely at the implications of the average derivative approach for the

transformation model and the Box–Cox estimate. Thus suppose the data are generated by the
model

� � � ��! � � � � � � � � � � ��� �
� � �4� � )�! � (5)

where
� � � � � %�� 	 denotes the true transformation. Here � is random and independent of � .

Similar results can be obtained for the case where � is fixed. Suppose that we work with the
wrong, or unknown, transformation

� � % 	 and with the wrong, or unknown, model
� � % 	 � ��! � � � �"! � � � �4�5! � �;� �"! 
 � (6)
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where � � �4�5! ��� �4�5! � �;�4�5!,! is the probability limit as < � � of the maximum likelihood estimate� �� �4�5! � �� �4�5! � �� � �"!�! for the wrong model (6) with 
 � � �4� � )�! and


 � � � � % 	 � ��!�' ( � � �"! � � � �4�5! + � +-�;�4�5! �
Let � % � � ! � � � % 	 � � & �� � � ! � ; then

� � % 	 �$�&! ��� % � � � � � � � � � � � ! � (7)

By differentiating (7), under regularity conditions, we have

� � � �
� � �

� � % 	 � � ! � � � % �"� � �
where

� � denotes expected value for the model (5) and

� % � � � ( � D% � 6 � � � � � � � � � ! +
does not depend on the index � . Thus, if we set

� � �4�5! � � � � �
� � �

� � % 	 � � ! � �
then

� � �"!
� � � �"! � � �5�

� � � � (8)

and � �4�5!,+ � � � �"! � does not depend on � . This shows that when the true transformation is unknown,
the direction of the true regression parameter is identifiable and can be estimated by estimating
� � �"!�+ � � � �"! � . Moreover, (4) shows that

� � � � 6�� � ! �
�� � �"!
� �� � �"! �

�� �5�
� � � �

and, in the framework of Cho, Yeo, Johnson & Loh (2001a), the Box–Cox estimate
�� � ��5! satisfies�� � ��5!,+ � �� � ��"! � �� � � + � � � � .

Using (6), we find

� � � �"! � ��� � �"! � �;� �"! � � � �
� � � 
 � �

This, together with (8), shows that when
� � � � 
 + � � � ! is relatively small, e.g., when � is close to� � , then � � �"!�+ � � �4�5! � is close to � �4�5!,+ � � � �"! � and thus is a stable parameter.

Chen, Lockhart & Stephens actually consider the stability of the “estimate”
�� �4�5! ��� �4�5!,+ ��;�4�5! rather than

� �4�5! � � � �"!�+
�;� �"! . We can only claim that
�
� � �"!�+ � �� �4�5! � is a more sta-

ble “estimate” than
�� �4�5! for “ < large enough”. A Monte Carlo study is needed to compare�

� � �"!�+ � �� � �"! � , �� � �"!�+ � �� � �"! � , and
�� � �"! for different < . Here we compare them for Example 2 of

Chen, Lockhart & Stephens.

Example 1. We compare the direction vector
�� �4�5! � �� �4�5!,+ � �� � �"! � and the CLS signal to noise

ratio vector
�� �4�5! � �� � �"!�+ ��;� �"! for the Box–Cox textile example (Example 2 in CLS). The result,

given in Figure 1, shows that for this example,
��"�4�5! is much more stable than

�� �4�5! . In order to
determine a reasonable range for � in this example, we generated 500 Monte Carlo samples of
size < � � � from the model

� � %�� 	 �$�&! � � �;� �-
� .�� �5� � � � � � �	��� (9)
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where � � are as in Box & Cox (1964) and � � � � � � �,� � � �,� � � �,� �
�
� � � ! are the fitted values from

Box–Cox (1964). We generated 500 vectors � � � �������,��� �  ! of i.i.d. � � � � )�! variables and com-
puted 500 vectors �$� ���������	� � �  ! using the inverse version of (9). For each of the resulting 500
data sets, we computed the Box–Cox

�� and found that these
�� have a nearly symmetric em-

pirical distribution with range from ' � ��� to � � � and � � � and ��� � � percentiles ' � � ) � and � � � " .
These percentiles nearly agree with the Box–Cox posterior distribution � � � and ��� � � percentiles' � � �-� and � � � " . We found that

�� � � ��"! , � � ) � � ��� , have slightly skew distributions while
�� � �4�5! ,

� � ) � � ��� , have nearly symmetric distributions. Table 5-1 gives the Monte Carlo standard errors
(SE) of

�� � � ��5! and
�� � � ��"! , � � ) � � � � , together with their Monte Carlo skewness coefficients (SC).

Table 5-2 gives the � “known” case.

TABLE 5-1: Standard errors (SE) and skewness coefficients (SC) of �� � � ��  and �� � � ��  , � � ��� � � � .

�� � � ��  � � � ��  �� � � �  �� � � ��  �� � � ��  �� � � �� 
Monte Carlo SE ��� � � � ��� � � � ��� � � � ��� � � � ��� ��� � ��� ��� �
CLS Approximate SE ��� ����� ��� ��� � ��� � � �
SC ��� ��� � �
��� ����� �
��� � � � �
��� � ��� ��� � � � ��� � � �

TABLE 5-2: Monte Carlo standard errors (SE) and skewness coefficients (SC) of �� � � �  and �� � � �  with
� � �
��� ��� , � � ��� � � � .

�� � � �  �� � � �  �� � � �  �� � � �  �� � � �  �� � � � 
SE ��� � � � ��� � � � ��� ��� � ��� � ��� ��� � ��� ��� �����
SC ��� ��� � �
��� ��� � �
��� � ��� �
��� ����� �
��� ����� ��� � ���
CLS Approx. ��� ����� ��� ��� � ��� � � �

These tables show that the CLS approximations are fairly good even though the sample size
is only < � � � . However

�� � � � ! has the advantage of having a nearly symmetric distribution in
addition to being more stable (Figure 5-1).

Next, we point out that by using the rank likelihood, it is possible to construct a 100% stable
estimate of

� � � +-� when the data are generated by the model

� �$� � ! � �7� � D � � � � � � � �
unknown, increasing (10)

where now the vectors � � are non-random, � �C�������	�,� E are i.i.d. and ��� has a density ��� which
does not depend on � � . Let


 � � 
 �$� � ! denote the rank of � � , then


 � � 
 � � � ! � 
 � � � � � ! � � 
 � � D � � � � � ! �
By Hoeffding’s formula, the rank (partial) likelihood based on


 � � 
 ����������� 
 E !�D is

�
� � � ! � ��� 
 � #�! � � 4 E��/.�� � � �	�

� � � 	 ' � D � � !
� � �	� � � � 	 ! 9 �

where � � �
	 8 ����� 8
� � E 	 are the order statistics of a sample from ��� . Now
��

� � argmax
�

� � � !
does not depend on

�
and is 100% stable. Here ��� is specified, and when �

� � �4� � )�! , then (10)
generalizes the Box–Cox model to arbitrary increasing transformations.
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FIGURE 5-1: Stability of �� � �  and ���� �  .
For this model, Doksum (1987) used Monte Carlo methods to compute

� � � � ! and
��

� , and
he considered properties of estimates based on ranks for a model with

� � $ � 4 � � E- � .�� � � D � � ! � 8 � � � � � � � D � � � � � 9 �
where the � � are centered. Note that

$
is a subset of the parameter sequences of CLS. Bickel &

Ritov (1997) established a locally asymptotically normal structure for
� � � � ! that can be used to

construct Monte Carlo methods with better convergence properties than those in Doksum (1987).

ACKNOWLEDGEMENT

The authors are grateful to Richard Bourgon for producing Figure 5-1 and Tables 5-1 and 5-2.

Richard A. JOHNSON: rich@stat.wisc.edu

Department of Statistics, University of Wisconsin
1210 West Dayton Street, Madison, WI 53706-1613, USA

Kjell A. DOKSUM: doksum@stat.berkeley.edu

Department of Statistics, University of California

Berkeley, CA 94720-4735, USA



44 CHEN, LOCKHART & STEPHENS Vol. 30, No. 2

Comment 6: Peter M. HOOPER

Inferential problems associated with the Box–Cox transformation have generated a variety of
proposed solutions in the statistical literature. The issues are both philosophical and technical in
nature. For example: What inferential questions are of scientific interest following estimation of
the transformation parameter � ? What parameters are best suited for addressing such questions?
Are standard tests and confidence intervals still applicable, or are new methods required? How
do we account for the fact that the scale of the transformed response varies with � ? And how
should an asymptotic analysis deal with the truncation effect inherent in power transformations?

Professors Chen, Lockhart, and Stephens employ two key ideas in addressing these issues.
First, they consider inferential questions associated with a parameter vector

� �*� +
� defined so
that its scale remains stable as � varies. Second, they employ an asymptotic framework where
a “truncation effect” parameter � approaches zero as the sample size < becomes large. Most of
my comments concern the appropriateness of

�
as an estimand, but I will begin with a few words

about the asymptotics.
The authors argue that “a good sequence of models should have computable limiting distri-

butions for the estimates and should have finite sample distributions which converge quickly to
their limits”. These are appropriate goals, and the approach adopted by the authors seems to
achieve these goals. I expect that, in most applications, the truncation effect is small enough to
be ignored. An asymptotic framework where � � � as < � � provides a useful formulation of
this underlying expectation. The scope of the asymptotic results is impressive. The variance for-
mulae provide insight about how the estimates

�� and
��

are affected by the linear model structure
(e.g., regression or single-factor ANOVA) and by the error (large or small � , departures from
normality). The tests of normality are another important contribution.

The asymptotic theory is used to construct tests and confidence intervals for linear functions
of
�
. I have serious doubts about the practical relevance of the confidence intervals. I believe the

intervals are technically correct, i.e., coverage probabilities should be close to nominal levels.
My concerns are with (i) a variance inflation effect related to the estimation of � and (ii) the
interpretation of

�
as an estimand.

The authors’ primary motivation for introducing
�

is to reduce the variance in
�� related to its

correlation with
�� . Dividing � by � achieves this aim, nearly eliminating this source of variance

in most applications. Unfortunately, by estimating the denominator � , one introduces another
source of variance, the term � �-< !�& � � � D in the authors’ expression (17) for � � �� ! . This term be-
comes unbounded as � � � with < and � fixed, a situation where one would expect increasingly
narrow confidence intervals for regression coefficients. In typical applications the � �
< !�& � � � D
term can be large compared with ��� D� � � ! & �

, e.g, compare SE � with SE � in the authors’ Tables 4
and 6.

To better understand how the variance of
��

is related to estimation of � and to see that this has
nothing to do with the Box–Cox transformation, I found it helpful to examine the mean square
error of

��
in the much simpler context of a normal-theory linear model with no transformation

of the response. Suppose we have � � � E � 6 ) � � �	��� � � � E ! , where the � columns of � � are
centered and the responses are not necessarily positive. Let � � be the usual unbiased estimator
of � � . We then have

�� and ��� independent,
��
� � @ � ��� � �
����D� � � !'& � ! , and � ��� +
� � � � �� , where

��� < ' � ' ) . Express
�� ' �

as a sum of two uncorrelated random vectors,
�� ' � � � & � � �� ' � ! � ��� & � ' � & � ! ��� (11)

Using the moments of the Gamma distribution, one may then calculate

� ( � �� ' � ! � �� ' � ! D + � �

� ' � �� D� � � ! & � � � � � !
� �

� � D � (12)
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where
� � � ! � � � � � '*)�!

� ' � ' � ��� � ' )�!�+��-!
� � � +��
! � � � ! � � � �

Furthermore, � � � ! � ) as � ��� , and the asymptotic bias of
��

is � � + � � � ! . For fixed < � � and
� � , the variance of � D �� remains fixed as � D � varies, but the variance of � D �� increases with � � D � !��
at a rate proportional to � � D � !�� .

The interpretationof
�

also presents difficulties. The regression coefficient vector � quantifies
the rate of change in

� � � �4�5! � associated with changes in the predictors. The interpretation of
this rate depends on the scale of both � �4�5! and the predictors. Since the scale of �7� �"! depends
on � , the scientific relevance of � is unclear because � is unknown. Working with the scaled
coefficient vector

�
appears to avoid this problem. The estimates

�� and ��;� �� ! vary together so
that �7� �"!�+ ���� �"! remains stable under variation in � . Changes in the scaled transformed response
can thus be interpreted as if � � �� . Unfortunately, a new problem arises. The scaled esti-
mand describes the rate of change of the transformed response proportional to the error standard
deviation � . Again, the scientific relevance of

�
is unclear because � is unknown. It is diffi-

cult to evaluate “interpretation” or “scientific relevance” mentioned in the abstract. The reader
may wish to recall real applications of linear models from his/her own experience and consider
whether the estimation of

�
seems useful in those contexts. I can think of no application from

my own experience where I would want to estimate
�
.

One may contrast inference for
�

with a well-known data-based scaling technique. Box &
Cox (1964) suggested that effects be analysed in terms of an approximate linear model for the
scaled transformed responses �7� �"!�+��� % & �

, where �� is the geometric mean. The scaled coefficient
estimates

���� � �"!�+��� % & �
are usually stable with respect to changes in � (Duan 1993) and hence can

be interpreted as if � � �� . The scale factor �� �% & �
provides a known reference for interpreting the

scaled coefficients.
My own preference when analysing regression data is to regard transformation of the re-

sponse as model selection and to condition the definition of the regression coefficients on the
model selected. This approach is investigated in Hooper & Yang (1997). Following Co-
hen & Sackrowitz (1987), we applied a least squares criterion to define the function � � � ! �����D� � � !'& � ��D� � � �7� � ! � for all possible values

�
of � . We thus have � � �"! � � for the true � .

Our estimand � � �� ! is easily interpreted since the scale of �7� ��"! is known. Our estimand is not
equivalent to

� � ���� �� ! , although our point of view is similar to that of Hinkley & Runger (1984).
Variation in

�� ' � � ���! is not subject to the variance inflation affecting
�� ' � � �"! , and standard

confidence intervals (ignoring estimation of � ) are applicable. The situation is simplest when �
is large, � is small, and

�� is determined primarily by the deterministic component of the model
(see Section 3.1 in our paper). Here

�� ' � behaves much like an estimated regression coeffi-
cient for an additional predictor—Atkinson (1985, Section 6.4) describes inferential techniques
based on this idea—and the conditional (given

�� ) coverage probability of a confidence interval
for �
D � � �� ! is typically close to the nominal level. By contrast, this is a situation where � D �� is
strongly affected by variance inflation.

My critique of
�

as an estimand does not apply to its use in tests of null hypotheses. Tests
of linear hypotheses of the form � � � � � � � are equivalent to corresponding hypotheses about� , so there are no problems with interpretation. Variance inflation is also not a problem because� � � D � D vanishes (under the null hypothesis). The asymptotic distribution theory for

��
provides

a rigorous foundation for tests of linear hypotheses.

Peter M. HOOPER: hooper@math.ualberta.ca

Department of Mathematical Sciences, The University of Alberta
Edmonton, Alberta, Canada T6G 2G1
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Comment 7: Zhenlin YANG

1. INTRODUCTION

The effect of estimating a transformation on the subsequent inferences is an important issue in
the applications of the Box–Cox transformation method. Many have made their contributions
to this issue, directly or indirectly. Those include, among others, Bickel & Doksum (1981),
Carroll & Ruppert (1981), Carroll (1982), Doksum & Wong (1983), Hinkley & Runger (1984),
Taylor (1989), Duan (1993) and Yang (1999).

The present authors have studied this issue by concentrating on the ratio of the regression
slope and the error standard deviation and provide important results to show that the estimation
of this scaled slope is much more stable than the estimation of the slope itself with respect to
the transformation estimation. Making use of some of the results of Yang (1999), I am able to
provide some similar results under a slightly different set-up. Also, I carry out some Monte Carlo
experiments to investigate the finite sample effect of transformation estimation. Both reinforce
the authors’ findings.

2. THE GENERAL RESULTS

First, I introduce some different notation to reflect the changes in the set-up: � �4� � ! � � � � �� �	� , � �B� � D� �5� and � �;� � � � � + ��) � � � � � ! . Thus �"� , and hence
� � �5� +-� � , includes the intercept

parameter and the definition of � � incorporates the values of the regressors. Let � � � � � D� � � �-� � � !
and let

�
� be an M-estimator of � � that solves the following estimating equation

)<
E- �/.�� � � � � � � �� ! � � � @�0 � 	 � � �

where the function
� � is partitioned according to � � , � � , and � � . Define

� � )<
E- �/.�� � � � � � � � � ! �

and � � � � � �� + � � � ! , both partitioned accordingly. The elements of
�

are denoted by
� � ,: � ) � � ��� , and the elements of � by � � � , : � � � ) � � ��� . Let �� and �� be, respectively, the

M-estimate of �"� and � � when � � is known. Assume that the conditions C1, C2, C3, and C5 of
Yang (1999) are satisfied. Following Taylor expansions on the estimating equation, we find

�� ' � � � '�� & ��	� � � '�� & ��	� � � � � �� 'A� � ! � � @ � < & � ! � (13)
���'A� � � '�� & �

���
�
� '�� & �

��� � � � � �� 'A� � ! � � @ � < & � ! � (14)
���' � � � � � '�� � � � & �

���
�
� '�� � � � & ��	� � �

� � � � & �� � � � � '�� �	� � � � � � & �
��� � � �

� � @ �4< & � ! � (15)

Equating
�� to � � in (1) and (2) gives

�� ' �5� � '�� & �� � � �B� � � � < & � !
and

���'A� � � '�� & �
���
�
�

� � � � < & � ! �
Now, considering

�� & �
as a function of

�� , a first-order Taylor expansion around �� gives

�� & � � �� & � ' � & �� � ���' �� ! � � @ �4< & � ! � �� & � � � & �� � & �
� � � � � � �� ' � � ! � � @ � < & � ! � (16)
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Writing (1) as
�� � �� ' � & ��	� � � � � �� 'A� � ! � � @ � < & � ! and combining this with (4), we find

�� � �� � � � � & �
��� � � � '�� & ��	� � � � ! � �� ' � � !,� & �� � � @ � < & � ! � (17)

The second term in the expansion (5) reflects the effect of the estimating transformation. The
magnitude of this effect can be studied in detail if the estimating function

� � and the transforma-
tion function �7�4�5! are both specified. This result can be compared with the expansion for

�� to
see which quantity is more stable with respect to

�� .

3. THE BOX–COX POWER TRANSFORMATION AND NEAR NORMAL ERRORS

When the Box–Cox power transformation is used and the errors are approximately normal, the
estimating function corresponding to the maximum likelihood estimation takes the form

� � � � � � � � ! �
��� ��
� � � �$� � � � � ! � � & �� � � � � � � � � !�' � D� � � � �
� � � �$� �	� � � ! � 0 1
3 � � ' � & �� � � � � � � !�'A� D� �5� � �� � �4� � ! �
�
�
� �$� �	� � � ! � � & �� � � � �4� � !�' � D� �"� � � ' � & �� �

where

�� � �4� � ! � � � � � � � !,+ � � � � # � & �� � ) � � � � � �4� � ! �B021
3 � � ' � & �� � � � � � ! � � � .� � ��� � 0 1
3 � � !,� � � � � � �
With the Box–Cox power transformation, the exact normality of � � � � � ! is incompatible with

the positivity of � � . Hence there is a truncation effect when the above
� � function is used to

approximate to the true likelihood estimating function. However, this truncation effect is small if
� � � ��� � � � � � is small, which is achievable when (i) � � is small, (ii) � � is small, or (iii) � ��
 � � � �
is large.

Assuming that the truncation effect is small and using the
� � function given above, one can

easily evaluate all the quantities involved in (1)–(3) to simplify the expansions. Further, when� � � � , all the expansions can be expressed explicitly in terms of � � and � � � , which allows one
to examine the affecting term in detail as well as to find an explicit expression for the variance
inflation. When � � .� � , however, an approximation to

021
3 � � is necessary. When � � is small, we
have, � � 021
3 � � � 021-3 �,) � � � � � ! � � �4��� ' �� � �� � �� � � @ � � �� ! � (18)

I use � � to mean � � �� ! E � � , etc. Thus,

�� � � � ! � �� � �� �1��� � � ��� � �=� � �� � ��! � � � � � �
)�"�� � ��� � � � ��!�� � � � � �

� � � � �=� � �
�
� � ��� � � ' � �

�-� � �-� � � � � � @ � � � ! � � � .� � �
By assuming the first six moments of � � are the same as those of a standard normal random

variable and making use of the above approximations, Yang (1999) derived the following explicit
expansions:
�� ' � �

� � � ' �� �1�!����! D � 'A� � �1� ' �� � ! D � � � �� � �� � D4� ��� ' � � !�� ���!� � � � � �-� �� ��� ' �� � � � � � � < � �� � � @ � < & � ! � � � � � �
�� ' � �

� � � ' � �
& �
� � � �� �-! D/� � '*� � ' �� ! D � � � �� � ��� ' � � !

��� � � & � � � � �� �-! � � � � � � ' �� � � � � � � � � � �
� � @ �4< & � ! � � @ � � �� ! � � � .� � �

where
� � 021-3 ��) � � � ��! and � � � denotes the Euclidean norm. These lead immediately to the

approximations to the variance of
�� for large < and small � � ,� � � � � ! � � � � � �� !
	 � �� ( �

� ���!� � � � � �
� �� ��� ' �� � � � � � � < � �� + & � � � � � � �� � � � � ! � � � � � �� !
	 � �� ( ��� � � & �
� � � �� �-! � � � � � � ' �� � � � � � � � � � � + & � � � � .� � �
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Now,

� �	�=� ' )< � �� � D � � � � � � )< � �� � D � � �� � � � ! � � � ���
� ' �� �� � � � � � �< � �� � ��� D ��A�4� � ! � �

With the approximation (6) and the explicit expansion for
�� , the expansion (5) becomes

�� � �� � 	 � � � ! � �� ' � � !,� & �� � � @ � < & � ! � � @ � � �� ! � (19)

where

	 � � � ! � # �� � D��:& � �7D ( �1� ' �� � !�� ' � ���� 'A� �� !'� + � � � � � �
� & �� �7D�� & � �7D ( � & �� ��� � � � ��!�� � ' � ) � �� ' � � �

� � ��� � �� � � � + � � � .� � �
Finally, considering �� & �

as a function of �� � and Taylor expanding it around �B�� give

�� & � � � & �� � )
�-� �� � �� � 'A� �� ! � � @ � < & � ! � � & �� � )< � �

E- � .�� � � �� ' )�! � �=@ � < & � ! �
This, combined with

�� � �5� '�� & ��	� � � � �=@ � < & � ! � �5� � � � � D � & � � D �=� �=@ � < & � !
gives

�� � � � �$� D � ! & � � D �=� �
<

E- �/.�� � � �� ' )�! � � @ � < & � !
These lead to approximations for the variances of

��
and �� when < is large and � � is small

� � �� ! 	 �$� D � ! & � � )
�-< � � D � )� �� 	 � � � ! 	 � � � ! D � � � � � !

and � � �� ! 	 �$�7D�� ! & � � �� E � � D . Similarly, one obtains the expansions for
�� and its variance,

namely �� � ��7� � � � � ! � �� ' � � ! � � @ �4< & � !
and

� � �� ! 	 � �� �/� D ��! & � � � � � � ! � � � � ! D � � � � � ! �
where

� � � � ! � # �� �/� D�� !'& � � D �1��� � � �� � ! � � � � � �
�/�7D���!'& � �7D ( � & �� �*� � � � � !�� � ' � & �� � � �� � � � & �� � + � � � .� � �

The expansions for the � � � � case are the same as those given by the authors, except that
the intercept parameter is also included here. The effect of estimating the transformation on the
estimation of

�
is governed by 	 � � � ! , and that on the estimation of � � is governed by � � � � ! .

A close examination of the two quantities for the case of � � � � reveals that there are many
cases in which the component of 	 � � � ! corresponding to the slope parameters vanishes (see the
detailed discussions provided by the authors), but no such cases exist for � � � ! . In the case of� � .� � , the two quantities behave similarly to the case of � �9� � . This means that the effect on
the estimation of

�
can be zero or small, but the effect on the estimation of � � is generally large.

Note that the effect of the estimating transformation on the estimation of the (scaled) intercept
parameter is not small in general. When the regressors are centered,

�� � 6;� .
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4. MONTE CARLO SIMULATION

I now present some Monte Carlo simulation results to show the finite sample effect of the es-
timating transformation. The model used in the simulation is: � � � � � ! � 6 � ��� � � � � � � � � ,: � ) �������	� < . The � values are centered values of ���
	 � �-:4+-< ! , : � ) ��������� < . I use the relative
bias (RB) and the relative efficiency (REF) to measure the effects. The simulation results are
summarized in Table 7-1. From the results, we see that there is generally a large effect on the
estimation of �"� , but a very small effect on the estimation of � � +-� � . It is interesting to note
that as the sample size increases, the effect on the estimation of � � +-� � reduces significantly, but
the effect on the estimation of � � does not seem to change much. Estimating the transformation
induces extra bias in the estimation of � � +-� � , but only slightly. Additional simulations (not re-
ported here) reveal that the spread in the � values matters. A larger spread gives a smaller effect
on the estimation of � � +-� � . The magnitude of � � +-� � affects the value of MSE, but affects very
little on the relative efficiency.

TABLE 7-1: A summary of simulated RB and REF, where, for example, RB
� ��  � � � � � � �� � �  
 �

and REF
������ ��  ������� � ��  
������ �	��  . The MSE stands for the mean squared error.

Relative bias Relative efficiency


 ��� RB
����  RB

� ��  RB
�	��  RB

� ��  MSE
����  REF

���� � ��  MSE
�	��  REF

�	���� �� 
� � � � , � � � ��� � , � � � ��� �

.25 .05 0.00 0.02 10.18 13.77 .000036 81.14 79.6946 1.28

.1 0.00 0.08 9.63 13.18 .000143 80.52 18.5465 1.32

.5 0.01 4.49 10.11 13.76 .003639 80.07 0.7933 1.30

.0 .05 0.00 0.02 10.40 13.93 .000035 30.23 80.3997 1.29

.1 0.00 0.09 10.09 13.60 .000143 30.26 19.4002 1.27

.5 0.01 2.57 10.08 13.65 .003565 29.34 0.7782 1.28

� � � � , � � � ��� � , � � � ��� �
.25 .05 0.00 0.03 3.64 4.76 .000015 82.74 20.9905 1.11

.1 0.00 0.14 3.73 4.87 .000061 83.14 5.3149 1.11

.5 � 0.03 1.95 3.53 4.72 .001512 76.03 0.2155 1.13

.0 .05 0.00 0.02 3.68 4.80 .000015 31.16 20.8424 1.11

.1 � 0.01 0.04 3.66 4.83 .000060 32.13 5.2787 1.12

.5 0.02 1.05 3.71 4.92 .001494 28.64 0.2202 1.13

� � � � � , � � � ��� � , � � � ��� �
.25 .05 0.00 0.00 1.76 2.29 .000008 85.55 9.1725 1.05

.1 0.00 0.04 1.87 2.41 .000030 87.02 2.3389 1.06

.5 0.02 0.84 1.87 2.42 .000768 73.57 0.0951 1.08

.0 .05 0.00 0.01 1.84 2.37 .000008 31.15 9.3085 1.06

.1 0.00 0.01 1.73 2.28 .000031 32.75 2.2728 1.06

.5 � 0.02 0.59 1.73 2.30 .000769 27.81 0.0942 1.08
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Rejoinder: Gemai CHEN, Richard A. LOCKHART & Michael A. STEPHENS

We should first like to thank “the two Christians”, Professors Léger and Genest, for the excellent
organisation of the read session of this paper in Montréal; and then we thank the discussants for
the care they have given to their remarks, and for the very extensive range of their comments.

Several of the discussants (Professors Reid, Johnson and Doksum, Hooper and Yang) have in
effect suggested alternative formulations of the analysis, and Professors Doksum and Johnson,
and Professor Yang, have given considerable detail. We shall return to these below, but first we
concentrate on replying to specific concerns and criticisms raised by the discussants.

1. Value of � . The first concern is the role played by � , discussed by Professors Abadir, Bickel
and Hooper. For our purposes, the size of � is a guide to when we can apply our analysis to
model (2) of the paper. A small � implies that the chances of finding a value given by the right-
hand side (for any likely values of � and � ) which cannot give a �7� �"! are remote. Suppose, for
simplicity, that all the values of � are actually at their respective means; then an “impossible”
(i.e., negative) � �4�5! requires an �  ' )�+ � � � . For our Example 1, � � � � � ��� and the chance is
less than � � ' )�� ��� ! � � to 20 decimal places; for the Box–Cox textile example, )�+ � � ��� � � � � ,
so that the possibility of negative � is again negligible; on the other hand, if no transformation
is made, )�+ � � ��� ) � � � , giving a probability of � � � � of incompatibility.

Thus, although some discussants have proposed methods of dealing with the possibility of
a negative � , these considerations are unnecessary in practice, for our analysis with our data
sets. Nevertheless, there will be some data sets where one must decide how small is small, and
Professor Abadir raises the question of the impact on hypothesis testing for other parameters if
this step is viewed as a preliminary test. It would be useful to investigate this point further. We
thank Professor Abadir also for the references to the economics literature.

2. Choice of � and subsequent inference. The question of whether or not to allow for estimation
of � in subsequent inference has been central to the controversy surrounding the Box–Cox trans-
formation. We stand chastened by Professor McCullagh’s observation that the Box–Cox paper
“does not contain a recommendation, or even a suggestion that

�� be treated as the true value for
the purpose of further analysis”; this demonstrates that over the 12 years this paper has been in
the works, we did not check enough on the original source. But the check has now been made,
and it is clear that Professors Box and Cox do expect to “fix one, or possibly a small number, of� s and go ahead with the detailed estimation ����� ” (Box & Cox 1964, p. 213, line 15 ff.)—but the
choice will not necessarily be the MLE of � , as we wrote. In fact, Professors Box and Cox, in
both of their examples, use what we have called “snap to the grid” (STG) to decide on the � in the
transformation; that is, to take a “sensible” � from a possible list of values, basing the decision
on scientific grounds, or, as in the Box–Cox toxicity example, on grounds of interpretability.

In this connection, we recall the story of Cavendish, who was investigating the law of at-
traction between magnetic poles. (We shall update the story to fit the present context). Thus we
suppose his graduate student did the work and reported that the MLE of the inverse power of the
distance between the poles was 1.98. The distinguished scientist replied that God did not deal
with powers like 1.98, and chose the number 2 instead. The rest, as they say, is history. (This
story has also been credited to Gauss. In Stephens (1975), “God” was changed to “Nature”, as
a referee objected that the original might offend some people’s religious susceptibilities. So far,
Naturalists have not been offended.)

STG as model selection. Suppose that STG is used in the Box–Cox–Cavendish manner, with the
data being regarded as simply “pointing the way” to the (true?) � ; then we feel there is some force
to Professor Hooper’s point of view that the choice is simply model selection. Professor Reid
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also regards the STG technique as “most sensible”, as do we. Then the implication appears to be
that subsequent inference is made as though � were fixed, following Professors Box and Cox (see
their examples). Similarly, tests for normality would take the usual form using the transformed
residuals, as suggested by Professor Reid; that is, the final term in our � ��� � � ! (Section 5.1) will
be omitted, and the test proceeds as described in Stephens (1986, Section 4.8.5).

The Box–Cox transformation more generally. Unfortunately, as we know, it is often the case in
deciding on a model (not necessarily in the Box–Cox context) that several models or distribu-
tions are tried before one is adopted for fitting data, and the conditionality on the final choice is
then paramount, although often not admitted and certainly not accounted for. (For example, a
distribution may be preferred and decided upon after calculating several goodness-of-fit statistics
and choosing one which does not reject). We therefore wonder if Professor Reid’s remark that
STG “will likely be the most widely used” method of choosing � might not be overly optimistic
in these days of canned programs. Surely statisticians often use the transformation without any
idea of using

�� to point the way to a deeper consideration of what might be the correct scientific
model, but for the other reasons offered by Professors Box and Cox—namely, to promote a linear
model, with homoscedasticity and normality of the errors, and hence to justify the usual linear
model inferences. The transformation is then just a mathematical extension of “let’s take logs”
or “let’s take square roots,” but now at least it is clear that a parameter in the original model has
been estimated and should be accounted for.

There is another possibility worth considering. Suppose one uses the data to give the MLE
of � , but finds that, if anything, this value almost contradicts any preferred “scientific” value;
this may happen because of a mixture, for example of effects, or other sources of confusion, and
then the other criteria offered by Box and Cox (homoscedasticity and normality) would again
be persuasive. In the case of our gasoline data, the only “sensible” value would appear to be� � ) , and yet various factors (measurement error, autocorrelation, etc.) have combined to give�� � ) � �� . It then seems sensible to compare the results for at least these two values of � . In
Figure R-2, top panel, the model fits are all “reasonable” for the values of � shown. In the figure
are displayed the data together with fitted regressions transformed back to the original scale for
the list

� � � � � , � � � , ) , ) � � , � and � � � . Of course, one could also argue that the plot should pass
through the origin; in Figure R-2, bottom panel, the model fits are shown with this no-intercept
restriction. (Recall that Professor Yang’s analysis covers this possibility.) The fits again appear
quite good, but we have the disconcerting result that now

�� � ) ����� , with the � ��� likelihood-
ratio confidence interval from 1.08 to 1.79 (not including 1). More than ever this suggests that
the whole model is not correct, because of the sources of error mentioned above. In the Box–Cox
toxicity example, � � ' ) � � is chosen for interpretability, although the MLE gives � � ' � ��� � .
If the ANOVA table using the MLE is constructed, the analysis is hardly changed.

In these more general circumstances, where there is no very strong reason after the event to
choose a � as though we had known it all along, we feel strongly that it should be admitted that
the transformation is being used to make linear model theory more justified. Subsequent analysis
should then take into account the fact that � is part of the model and has been estimated; when
the MLE is used, the analysis should be made using the terms which we provide to calculate
standard errors. In addition, tests for normality of the errors should use the tests and tables given
in our paper. Here, we agree with Professor Abadir’s comments concerning the preference for
confidence bands based on likelihood versus Wald, although, if the transformation is decided on
scientific grounds, and the linear model is assured, the Wald interval after transformation would
surely be the one to use. However, further study is needed on the implications of the STG method
when the final � , say �� , is not the MLE, but is chosen for a reason of convenience and yet has
in some sense been estimated; how then should one correct for this procedure? We feel that
our correction factors, now applied to the model using �� , should give approximate (possibly too
small) standard errors for the parameter estimates, but this has not been investigated fully.
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FIGURE R-2: Fitted curves on the original scale for the gasoline consumption example using
� � ��� � , 0.5, 1, 1.5, 2 and 2.5. Top panel: model as fitted in the paper.
Bottom panel: model fitted without intercept term and without � � � .

3. On the effect of non-normality. In addition to the tests for normality, we have given correction
factors when normality of errors cannot be assumed. For example, confidence bands for � , given
in Section 4.1, reduce to the classical form when errors are normal, but depend on � � and � �!�
when they are not. As an illustration, suppose the errors have a Student

� @ distribution, making
them still symmetric, but longer-tailed than normal. The first six moments of the

� @ distribution
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are needed to calculate � � and � �!� , and then the revised confidence interval may be found from
�

in Section 4.1, as suggested by Professor Abadir. These are shown in Figure 3 for several
� @ error

distributions. The intervals are longer than those based on the normal assumption, indicating that
the true confidence level of the latter is smaller than nominal. Professors Reid and Bickel are
justifiably perturbed that in practice one must estimate the six moments of the errors, and we
agree that the attendant enormous variability is unfortunate. It would be interesting to make a
Monte Carlo study to see how such estimation actually would affect, say, the confidence intervals
for � . For our data set, assuming a symmetric error distribution, and estimating 6 � and 6&� � we
find that the 95% interval using

�
is (0.6,2.6) rather than the interval (0.7,2.4) given by assuming

normality.
The above and similar reasons are why we wanted to give tests for the normal assumption.

Our tests are omnibus tests; Professor Bickel’s suggestion that one might tailor the tests to cover
special alternatives might be covered by considering components of the given statistics (see
Stephens 1986, Section 8.12); we look forward to the forthcoming paper by Professor Bickel
and his co-authors giving tests with bootstrap critical points.
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FIGURE R-3: Effect of heavy-tailed errors on likelihood ratio confidence intervals. The profile likelihood
in Figure 1 of the paper is reproduced. The horizontal lines are the cut-offs using the adjustment

based on statistic
�

for � -distributed errors with the indicated degrees of freedom.

4. On meanings and fortuitous properties. Professor McCullagh provides convincing evidence
that for response variables permitting aggregation (or “extensive variables” as they are called in
Box & Cox 1964, bottom of p. 213) the form of the Box–Cox transformation is forced upon us
(though applied only to the mean). The group-theoretic arguments apply exactly to the mean
structure but only approximately to the error structure, and this error structure plays an impor-
tant role in deriving the form of the estimators, and then again in the approximate distribution
theory for these estimators. Once the approximate nature of the model has been acknowledged
so plainly, it seems to us that an approximate analysis is called for. Algebraic arguments have an
exact nature which diminishes their force considerably in approximate contexts.

Professor McCullagh challenges us to define “physically meaningful”, and asks if we mean
what he calls a “natural sub-parameter”. “Physical” seems to us a fairly primitive concept and
“meaningful” means “having meaning”. As to “meaning” itself, we follow Good (1950, p. 1):
“The meaning of ‘meaning’ will not be discussed”. Over the years, statisticians have taken a
number of useful English words and, by giving them precise mathematical meaning, abused
their ordinary English meanings. Examples surely include “significant” and “bias”. Perhaps
“natural” is another example? The advantage of precise mathematical definitions is that we
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could now “prove” that
�

is “natural”. But we take note of Wittgenstein (1921): “A proposition
of mathematics does not express a thought”. Despite these caveats, we would regard “physically
meaningful” as meaning what we understand Professor McCullagh to mean by “natural sub-
parameter”, at least in the contexts of our applications. Not only can the parameter, given in
one set of units, be calculated in another, but in particular, the parameter, calculated on the
transformed scale, can be compared with its value if it were known, or even estimated under
the true � scale—there is no danger of comparing apples with oranges, the kind of undesirable
comparison rejected by Professors Box and Cox in their second paper in 1982.

We certainly agree that the pair � ��� �"! , and also �4� � �"! can be regarded as physically mean-
ingful. It is possible to give a confidence band (using standard normal theory and assuming �
known) for these pairs, which might be useful in some circumstances. For our gasoline data
set, these are shown in Figure R-4. Notice that, in principle, these confidence sets are infinite in
extent in the � direction. The sets emphasize that almost the entire uncertainty in, say, � is due
to the uncertainty in � .
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FIGURE R-4: Left: joint 95% confidence set for the pair
� � � �  derived from 95% confidence intervals

for
�

using standard normal theory as if � were known. The band is actually infinite in extent,
running from � � � � to � � � . Right: joint 95% confidence set for the pair

� � � �  derived
from 95% confidence intervals for � using standard normal theory as if � were known.

The band is actually infinite in extent, running from � � � � to � � � .

The work of Professor Johnson and his colleagues (Cho, Yeo, Johnson & Loh 2001a) pro-
vides a classical treatment of the asymptotics, including consistency, of the Box–Cox procedure
making allowances for negative � . Consistency is certainly an attractive property for many
statisticians. In contrast, Professor McCullagh makes the observation that a property such as
consistency or stability is largely fortuitous, and we agree—the consistency property, in general,
might well be over-rated. As we emphasize in the paper, asymptotics are a guide to what will
happen for real situations with a large sample, and, say, confidence bands for � , as given in
Section 4.1, are not less useful because an impossibly large sample would give a band which
includes the “true” value (if such a value can be said to exist) but which does not necessarily
become narrow.
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FIGURE R-5: Joint 95% confidence set for the pair
� � � �  derived from approximate 95% confidence

interval for
�
. The band is actually infinite in extent, running from � � � to � � � .

5. The parameter
�
. Professor Bickel gives good reasons, other than stability, for considering

�
as the relevant parameter, particularly if one considers a more general transformation than Box–
Cox. However, Professor Hooper doubts the interpretability of

�
in practice. It is true that

�
is less informative if one regards � � as giving the change in the (transformed) response caused
by a unit change in � �

� , as of course is reasonable when one is sure that the � �

� ’s in multiple
regression are not highly correlated. However, consider the case of random covariates, i.e., where� ��������� � � E are a sample from some population (univariate for simplicity of discussion). If the
relation between the �C� and � � is a simple linear regression, then a common summary statistic
is the sample Pearson correlation coefficient # . In the Box–Cox context, our model (2) would
specify, approximately, the conditional distribution of the responses � � given the covariates. For
a given � , we could then consider the behaviour of the fitted correlation # between the values of� � transformed using � and the � � . It is elementary that

# � �� � � + � ) � � �� � � ! � �

where now � � is the sample standard deviation of the � � values, but where both
�� (used in

��
) and

� � have been calculated by dividing by < (and not < ' � and < '7) , respectively). The calculations
in our paper then give, by Taylor expansion, standard errors for the true correlation conditional
on the � � values. Unconditional standard errors may also be derived by further expansion but
will depend, in general, on the second and fourth moments of the � population. In Figure R-6,
we show that # is reasonably stable.
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FIGURE R-6: Plot of the Pearson correlation � against � for the gasoline data in the paper.

When the covariate values are determined by the experimenter (as is actually the case for
our gasoline data), the experimenter can control # by controlling � � . The standardized slope,
however, cannot be so controlled. In view of the relation

�� � #
� � � ) '%# � �

statistic
��

may have potential as a replacement for # in designed experiments.

6. The parameter � . However, if it is � that the applied worker wants inference about, as Pro-
fessor Hooper challenges, then we have to say that it is fortuitously a pity that the estimate of
this parameter is unstable—but there it is. We remind ourselves that our first goal was to give a
large-sample model which would describe the plots in Figure 1 of the paper, plots which arose
from real data, whether or not we like them!

Professor Doksum draws our attention to the stability of
�� + � �� � , and we are grateful to note

the connections he makes to other work. When � � ) (as for the gasoline data), this quantity
is extremely stable; its value is ) for all � . Of course it is intended for use only for �  � but
there, as Professor Doksum notes, it is just one summary of

��
since

�� + � �� � � �� + � �� � . Again,
large-sample theory is available for this quantity away from

� � � in our framework. Professor
Doksum’s tables and graphs show that this normalized

�
is more stable than

�
itself, but at the

price of losing information about each component. This would seem to be a serious drawback.

7. Other model formulations. We now make some brief remarks on other possible models.
Professor Reid asks if use of the adjusted likelihood

� �
� � �"! might make the estimate of �

“more nearly consistent”. As she hints, to the order of approximation studied here, and under
our conditions, maximization of

� �
� leads to the same normal approximations for the estimator.

It does seem useful to us to ask what higher order expansions, retaining some terms in � for
instance—as does Professor Yang—might tell us. We remark that our calculations permit � to
grow somewhat with < and that our earlier draft of this paper showed that our results remain
valid when �

� � grows with < .
Professor Hooper suggests consideration of the parameter function

� � �"! � � % � � �� � �"! � � � �4� � � �
�,6B�����"�-� � � � � ! �
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where we use the function � simply to emphasize the dependence, under the model, on both the
true values of the parameters � �,� , and � (denoted by the subscript � ) and on an assumed value
of � , as well as on the current design points � . He would treat � � �� ! as a parameter and get
confidence intervals for � � �� � � ���,6B�����"�-� � ��� � ! from the distribution of

�� ' � � �� ! , where
��*��� � ��5! is the MLE of � as used in our paper. Professor Hooper is in good company in considering

a data-dependent parameter; the Box–Cox device of dividing by the geometric mean of the �
values effectively makes � � �� ! data-dependent. We have some concern about the interpretation
of this “parameter”, but note that our asymptotic framework can provide some insight into the
behaviour of the procedure. Put

� � � � � '*� � !�+
� � , corresponding to
�

in our paper, and set� + � � � . Then

�� � � !�' � � � ! � �� � � !�' � % � � �� � � ! � � ��) � � � 6B� ! � � �� � � !�' � % � � �� � � ! ��� �
The expansions in our Theorem 2 give approximately (passing expectations through expansions)

� % � � �� � � ! � �*��� �;��� D� � � ! & � � D� � � � � �*�7� � 	 � +��
in our notation. Professor Hooper is thus estimating roughly

��) � � � 6 � ! � � � � � � � 	 � +��
! �
We find that �� ' � � �� ! � ��) � � � 6B� ! � � � �� D� � � ! & � � D� �
approximately. If

�� � �� + � � � ��/' � � !�+-� � � � � ��)�! , then, as Professor Hooper says, the
asymptotic variance of

�� ' � � �� ! is � �� ����D� � � !'& �
, i.e., the usual variance of ordinary least squares;

there is no variance inflation. If, however, � � � +
� � does not tend to infinity (and it need not under
our conditions), then the factor �,) � � � 6B� ! �

inflates the variability of
�� ' � � �� ! and also makes

the distribution of this difference not normal.
Fortunately, however, confidence intervals for � D � � �� ! are based on the distribution of

�
D � �� ' � � �� ! ��� � � D ��� D� � � ! & �
�

which, under our set-up converges in law to � �4� � )�! . Thus, even in our framework, and in spite
of the variation inflation in

�� ' � � �� ! , standard regression intervals are valid (even for � near � ).

If � � �� ! is a valid estimand, we would expect that tests of � � � �
D � � �� ! � � would make
sense. But this would appear to test, approximately, the hypothesis that

� D � � � �-� � � D 	 � �� ' �"!�+ � �-� � ! � �
or equivalently

� D � � � �-� � �
D 	 � �� 'A�5!
� ��) � � �	6B� ! � � �

We find this hypothesis difficult to interpret since ��D � � � � does not guarantee � D 	 � � .
Professor Yang’s model, as he says, is closely related to ours; one difference is that he puts the

intercept 6 in with the usual � ’s, so that his formulas are slightly different from ours. However,
the important quantity � , which first appeared in the doctoral dissertation of the first author
(Chen 1991) is parallelled in the denominator of his expansions for �4��' � � !,+-� � . As our paper
came to fruition we were not aware of Yang (1999), where the model formulation is similar to
his discussion. Another related paper, Yang (2002), appears also in this issue of The Canadian
Journal of Statistics.
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We have appreciated all the suggestions made on alternative ways to examine the Box–Cox
transformation which have made the discussion so interesting. It would be interesting to inves-
tigate and compare these alternatives, particularly as applied to specific data sets. However, this
would take weeks if not months, so for now we merely point out that the fundamental paper of
Professors Box and Cox, and all the possibilities stemming from it, will surely provide grist to
the Ph. D. mill for decades to come.

ADDITIONAL REFERENCES USED IN THE DISCUSSION

K. M. Abadir (1999). An introduction to hypergeometric functions for economists. Econometric Reviews,
18, 287–330.

A. C. Atkinson (1985). Plots, Transformations, and Regression: an Introduction to Graphical Methods of
Diagnostic Regression Analysis. Oxford University Press, New York.

P. J. Bickel & Y. Ritov (1997). LAN of ranks and covariates in the transformation models. In Festschrift
for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgersen & G. Yang,
eds). Springer-Verlag, New York, pp. ???–???.

P. J. Bickel, Y. Ritov & ?. Ryden (200?). Submitted for publication in The Annals of Statistics.
P. J. Bickel, Y. Ritov & T. Stoker (2001). Tailor made tests of goodness-of-fit for semiparametric hypothe-

ses. Mimeo.
D. R. Brillinger (1983). A generalized linear model with “Gaussian” regressor variables. Festschrift for

Erich L. Lehmann (P. J. Bickel, K. A. Doksum & J. L. Hodges, Jr., eds), Wadsworth, Belmont, CA, pp.
97–114.

R. J. Carroll & D. Ruppert (1981). Prediction and the power transformation family. Biometrika, 68, 609–
616.

E. A. Catchpole & B. J. T. Morgan (1997). Detecting parameter redundancy. Biometrika, 84, 187–196.
P. Chaudhuri, K. A. Doksum & A. Samarov (1997). On average derivative quantile regression. The Annals

of Statistics, 25, 715–744.
G. Chen (1991). Empirical Process Based on Regression Residuals: Theory and Applications. Unpublished

doctoral dissertation, Department of Mathematics and Statistics, Simon Fraser University, Burnaby,
British Columbia, Canada.

K. Cho, I. Yeo, R. A. Johnson & W.-Y. Loh (2001a). Asymptotic theory for Box–Cox transformations in
linear models. Statistics & Probability Letters, 51, 337–343.

K. Cho, I. Yeo, R. A. Johnson & W.-Y. Loh (2001b). Prediction interval estimation in transformed linear
models. Statistics & Probability Letters, 51, 345–350.

A. Cohen & H. B. Sackrowitz (1987). An approach to inference following model selection with applications
to transformation-based and adaptive inference. Journal of the American Statistical Association, 82,
1123–1130.

F. Critchley, P. Marriott & M. Salmon (1996). On the differential geometry of the Wald test with nonlinear
restrictions. Econometrica, 64, 1213–1222.

M. Dagenais & J.-M. Dufour (1991). Invariance, nonlinear models, and asymptotic tests. Econometrica,
59, 1601–1615.

R. B. Davies (1977). Hypothesis testing when a nuisance parameter is present only under the alternative.
Biometrika, 64, 247–254.

K. Doksum (1987). An extension of partial likelihood methods for proportional hazard models to general
transformation models. The Annals of Statistics, 15, 325–345.

N. Duan (1993). Sensitivity analysis for Box–Cox power transformation model: contrast parameters.
Biometrika, 80, 885–897.

I. J. Good (1950). Probability and the Weighing of Evidence. Griffin, London.
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