Quiz 2. [10 points] A clinical trial observed 41 successes from Treatment A group with size 60, and 42 failures from Treatment B group with size 80.

Q1.[4 points] Present the data using Table 1.

Q2.[6 points] Suggest two regression models for an analysis to establish how an individual's outcome is associated with his/her treatment.

Table 1.		
treatment	outcome (Y)	
(X)	Failure	Success
A		
В		

[10 points] A clinical trial observed 31 successes from Treatment A group with size 50, and 62 failures from Treatment B group with size 80.

Q1.[4 points] Present the data using Table 1.

Table 1.

treatment	outcome (Y)		
(X)	Failure	Success	total
A	19(60-41)	41	60
В	42	38(80-42)	80

- How to estimate the OR of success for treatments A vs B?
 - the sample OR? a CI?

$$\widehat{OR} = 2.385$$

95% CI of
$$log(OR)$$
:

$$\log \widehat{OR} \pm (1.96)ASE_{\log \widehat{OR}} = \log(2.385) \pm (1.96) * (.357)$$

$$ightharpoonup \implies 95\% \text{ CI of } OR: (1.186, 4.796) =$$

$$(\exp\{\log \widehat{OR} - (1.96)ASE_{\log \widehat{OR}}\}, \exp\{\log \widehat{OR} + (1.96)ASE_{\log \widehat{OR}}\})$$

Q2.[6 points] Suggest two regression models for an analysis to establish how an individual's outcome is associated with his/her treatment.

Q2.1 A logistic regression model: binary response $Y \sim X$?

- ▶ $logit(\pi(x)) = \beta_0 + \beta_1 x$ with $\pi(x) = P(Y = 1 | X = x)$: Y = 1, 0 for success, failure; X = 0, 1 for treatments A, B.
- ▶ alternatively $logit(\pi(i)) = \beta_0 + \beta_i^X$ with i = 1, 2 for treatments A, B: $\beta_1^X = 0$.
- \triangleright β_1 or β_2^X ? is it $\log(OR)$?
- the fitted model? how to use it?

Q2.2 A loglinear regression model: cell count (response) $V \sim X, Y$?

- Model of independence. $\log (\mu(x,y)) = \lambda_0 + \lambda_1 x + \lambda_2 y$ with $\mu(x,y) = E(V|X=x,Y=y)$: Y=1,0 for success, failure; X=0,1 for treatments A, B.
- ▶ alternatively, $\log (\mu(i,j)) = \lambda_0 + \lambda_i^X + \lambda_j^Y$ with $\mu(i,j) = E(V|X=i,Y=j)$: $\lambda_0^Y = 0$ with j=1,0 for success, failure; $\lambda_0^X = 0$ with i=0,1 for treatments A, B.

```
counts <-c(19,42,41,38)
outcome <- gl(2,2,4)
\beta treatment <- gl(2,1,4)
 _{\parallel}glmout_{\parallel}b<-glm_{\parallel}counts _{\parallel}outcome _{\parallel} treatment, family _{\parallel}
      poisson())
summary(glmout1b)
 Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.2636
                         0.1610 20.272 <2e 16 ***
           0.2586
10 outcome 2
                         0.1704 1.517 0.1293
1 treatment 2 0.2877
                              0.1708 1.684
                                                  0.0921
```