Chap 1. 19 (a)

The sample consists of 16,402 people who are 18-30 years old in the Rayong and
Chon Buri provinces in Thailand. Note that the sample given in the contingency
table has 7 people removed because they had HIV-1 infection at the time the
study began. The population is all 18-30 year old healthy people in the Rayong
and Chon Buri provinces in Thailand. While this is the population for this
study, the hope is the results for this population would extend to the entire
world. Notice that this trial is not focused on people with high risk of HIV
infection. This is what the AALJ community—basedéAi part of the trial means.

Chap 1. 19 (b)

The estimated odds ratio is 0.69, and the corresponding 95% confidence interval
is 0.4805 to 0.9832. The score test p-value is 0.0390 for a two-sided test. The
estimated relative risk is 0.69, and the corresponding 95% confidence interval is
0.4831 to 0.9834. The upper bounds on the two confidence intervals are less than
1 (although quite close to 1) and the p-value is less than I$ = 0.05 (although
quite close to 0.05). Due to these measures being close to their boundaries of
being declared "non-significant,” we are hesitant to make an absolute judgment
that indeed the treatment type affects HIV status. Rather, we would prefer to
say that there is marginal evidence the treatment type affects HIV status. One
could also perform a one-sided test or calculate a one-sided confidence interval.
For example, the one-sided test leads to a p-value of 0.0195 where the alternative
hypothesis is that the vaccine reduces the probability of HIV infection. However,
in a different clinical trial (HVTN 502) a few years prior to this one, the reverse
effect than what was intended (vaccine led to a higher HIV prevalence) occurred,
so two-sided tests and confidence intervals may be better to examine.

Chap 1. 19 (c)
Omitted.

Chap 1. 20 (a)

Intent-to-treat: The population is the same as in the previous problem, but with
the added assumption that they were all HIV-negative prior to the study. Per-
protocol: The population is the same as in the previous problem, but includes
only those individuals who complete all treatments.

Chap 1. 20 (b)
Odds ratios and score tests: The p-values are now greater than = 0.05, and

95 % confidence interval for the odds ratio Two-sided score test p-value
Intent-to-treat (0.52, 1.04) 0.0803
Per-protocol (0.48, 1.14) 0.1694

the intervals contain 1. Using a strict a = 0.05 level, one would conclude there
is not sufficient evidence that the vaccine works. However, with respect to
the intent-to-treat data, our "marginal evidence” conclusion from the previous
problem would not change.



Chap 1. 21 (a)

We conjecture that the results would have been less publicized. It may be
more interesting to read about a success than something which is somewhat
inconclusive.

Chap 1. 21 (b)

Yes, if strict « -levels were used, the conclusions from the clinical trials could
change. For example, using o« = 0.01 would lead to saying "there is not sufficient
evidence to conclude the vaccine is effective.”

Chap 1. 21 (c)

One can only speculate here. A potential reason is that the media prefers to
highlight "significant” results. The intent-to-treat analysis should have received
the same level of coverage as the modified intent-to-treat analysis. We would
not be surprised if many people only saw the original headlines for the modified
intent-to-treat analysis.

Chap 1. 21 (d)
Our previous report would work here as well. The key is to not use a strict
a = 0.05 level when developing conclusions.

> options(continue=" ", prompt=" ", digit = 4)

4 (a) Logistic regression assumes that each response has a binomial distribution,
and independence of trials is required for the binomial (see Chapter 1). Because
three O-rings are on each rocket, there may be dependencies (e.g., installed by
the same workers, failure in one perhaps could lead to failure in another, ...) in
their success or failure.

data = read.csv(""/Documents/stat475/challenger.csv")
fit <- glm(0.ring / Number ~ Temp + Pressure,
family = binomial, data = data, weights = Number)
c = fit$coefficients
¢ = round(c, 4)

log 7 T 925202 + —0.0983Temp -+ 0.0085Pressure

fitl <- glm(0.ring / Number ~ Pressure,
family = binomial, data = data, weights = Number)
fit2 <- glm(0.ring / Number ~ Temp,
family = binomial, data = data, weights
anova(fitl, fit, test="Chisq")

Number)

Analysis of Deviance Table



Model 1: O.ring/Number ~ Pressure
Model 2: 0.ring/Number ~ Temp + Pressure
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 21 21.730
20 16.546 1 5.1838 0.0228 =*
Signif. codes: 0 aA¥***3AZ 0.001 aA¥**sAZ 0.01 sAY+akZ 0.05 ah¥.sAZ 0.1 sAY &AZ 1
anova(fit2,fit, test = "Chisq")

Analysis of Deviance Table

Model 1: 0.ring/Number ~ Temp
Model 2: 0.ring/Number ~ Temp + Pressure
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 21 18.086
20 16.546 1  1.5407 0.2145

4 (c) p-value for Temp is 0.023; p-value for Pressure is 0.21;

4 (d) Because the p-value corresponding to Pressure is large, there is not suffi-
cient evidence to indicate that the variable is important given that Temp is in
the model. A potential problem is that the explanatory variable still may be
important with respect to an interaction term or a transformation. Chapter 5
discusses other potential problems with this model selection approach.

c = fit2$coefficients
¢ = round(c, 4)
5 (a)
log ﬁ = 5.085 + —0.1156 Temp
5 (b)
t = seq(31, 81, by = 1)
y = cl[1] + c[2] =t

pi = exp(y)/ (1 + exp(y))
plot(t,pi, type='1l"')
var = vcov(fit2)

b = fit2$coefficients
b = c(b)
X = cbind(1, t)

var_z = diag(X%x% var %*)% t(X))
hat_z = X ¥*% b
CI_upper = hat_z + 1.96 * var_z ** (1/2)
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CI_lower = hat_z - 1.96 * var_z **x (1/2)
ci_lower = exp(CI_lower)/(1 + exp(CI_lower))
ci_upper = exp(CI_upper) / ( 1 + exp(CI_upper))
lines(t, ci_lower, lty=18)

lines(t, ci_upper, lty=18)
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t = seq(31, 81, by = 1)

y = cl1] + c[2] =t

pi = exp(y)/ (1 + exp(y))
plot(t,6 * pi)
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5 (c) There are fewer observations (or none at alll) for the lower temperatures.
Thus, there is more uncertainty about the estimates which is reflected by having
wider intervals.

5 (d) The estimated probability at 31° is 0.8178, and the CI is [0.1596, 0.9907].

fit3 <- glm(0.ring / Number ~ Pressure+ Temp + I(Temp~2),

family = binomial, data =

anova(fit3, fit, test

Analysis of Deviance Table

data, weights = Number)
"Chisq")

Model 1: O.ring/Number ~ Pressure + Temp + I(Temp~2)
Model 2: 0.ring/Number ~ Temp + Pressure

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 19 16.494

20

fit3 <- glm(0.ring / Number ~

family = binomial, data
anova(fit3, fit, test

16.546 -1 -0.051661

0.8202

data, weights = Number)
"Chisq")

Pressure+ Temp + I(Pressure~2),



Analysis of Deviance Table

Model 1: O.ring/Number ~ Pressure + Temp + I(Pressure~2)
Model 2: O.ring/Number ~ Temp + Pressure
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 19 15.875
20 16.546 -1 -0.6705 0.4129

Because the p-value is large, there is not sufficient evidence of a quadratic rela-
tionship.

6

fit_prob <- glm(0.ring / Number ~ Pressure+ Temp,

family = binomial(link = probit), data = data, weights = Number)
fit_1llog<- glm(0.ring / Number ~ Pressure+ Temp,

family = binomial(link = cloglog), data = data, weights = Number)



