What to do today (Mar 27)?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)
5. Model Selection and Evaluation (Chp 5)
6. Additional Topics (Chp 6)

- 6.1 Exact inference (Chp 6.2)
- 6.2 Revisit to Loglinear and Logistic Models for Contingency Tables: the Loglinear-Logit Connection (Supplementary)
- 6.3 Revisit III to GLM and Some Advanced Topics (Chp 5.3, Chp 6.5)
- 6.3.1 Revisit III to GLM
- 6.3.2 Marginal Modeling
- 6.3.3 Mixed Ect Models for Correlated Data

6．3．1 Revisit III to GLM

GOAL：to study how $Y \leftarrow X_{1}, \ldots, X_{K}$ ？
Generalized Linear Models：
－Random Component．response r．v．Y follows a distn with $\mu\left(x_{1}, \ldots, x_{k}\right)=E\left(Y \mid x_{1}, \ldots, x_{k}\right)$ to be examined
－Systematic Component．$\alpha+\beta_{1} x_{1}+\ldots+\beta_{K} x_{K}$ Some x_{k} can be based on others：e．g．$x_{3}=x_{1} x_{2}$ ．
－Link Function．$g(\mu)=\alpha+\beta_{1} x_{1}+\ldots+\beta_{K} x_{K}$
The link function $g(\cdot)$ links the random componet through its mean and the systematic component．

Recall the g / m function in R to conduct a GLM analysis：

$$
\text { R: tmp.out }<-g / m\left(Y \sim X^{*} Z, \text { family }\right)
$$

family（object，．．．）in R for function g / m ，for example
－binomial（link＝＂logit＂）
－poisson（link＝＂log＂）
－gaussian（link $=$＂identity＂$) \Longrightarrow$ R：e．g． $\operatorname{Im}\left(Y \sim X^{*} Z\right)$
－and some others，such as quasipoisson（link $=$＂log＂）to be studied

6.3.1B Revisit III to GLM: Additional Examples

To study $Y \leftarrow X, Z$? with binary response $Y=1$, or 0 and explanatory variables X, Z :

- Recall the Logistic Regression Model (Logit):
- Randome Component. r.v. $Y \sim$ Bernoulli (π) with $\mu(x, z)=$ $E(Y \mid X=x, Z=z)=P(Y=1 \mid X=x, Z=z)=\pi(x, z)$ and $V(Y \mid X=x, Z=z)=\pi(x, z)[1-\pi(x, z)]$
- Systematic Component. $h(x, z)=\alpha+\beta x+\gamma z+\eta x z$, a linear function of $x, z, x z$
- Link Function. $g: \mu \rightarrow \operatorname{logit}(\mu)$:

$$
\begin{aligned}
& \operatorname{logit}[\mu(x, z)]=\operatorname{logit}[\pi(x, z)]=h(x, z) \\
& \Leftrightarrow \pi(x, z)=\frac{\exp (h(x, z))}{1+\exp (h(x, z))} .
\end{aligned}
$$

Any alternative model?

Probit Regression Model.

To study $Y \leftarrow X, Z$? with binary response $Y=1$, or 0 and explanatory variables X, Z :

- the Probit Regression Model (Probit):
- Randome Component. r.v. $Y \sim \operatorname{Bernoulli}(\pi)$ with $\mu(x, z)=$ $E(Y \mid X=x, Z=z)=P(Y=1 \mid X=x, Z=z)=\pi(x, z)$ and $V(Y \mid X=x, Z=z)=\pi(x, z)[1-\pi(x, z)]$
- Systematic Component. $h(x, z)=\alpha+\beta x+\gamma z+\eta x z$, a linear function of $x, z, x z$
- Link Function. $g: \mu \rightarrow \operatorname{probit}(\mu)$: $\operatorname{probit}[\mu(x, z)]=\operatorname{probit}[\pi(x, z)]=h(x, z)$ $\Leftrightarrow \pi(x, z)=\Phi(h(x, z))$
$\Phi(\cdot)$ the cumulative distn of $N(0,1)$: e.g. $\Phi(-1.645)=0.05$ and $\Phi(1.96)=1-0.025$

6.3.1B Revisit II to GLM: Additional Examples

Poisson Regression Model To study $Y \leftarrow X, Z$? with count response Y and predictors X, Z :

- Recall Loglinear Regression Models (Poisson Regression):
- Randome Component. r.v. Y $\sim \operatorname{Poisson}(\mu)$ with

$$
\begin{aligned}
& \mu(x, z)=E(Y \mid X=x, Z=z) \text { and } \\
& V(Y \mid X=x, Z=z)=\mu(x, z)
\end{aligned}
$$

- Systematic Component. $h(x, z)=\alpha+\beta x+\gamma z+\eta x z$, a linear function of $x, z, x z$
- Link Function. $g: \mu \rightarrow \log (\mu)$:

$$
\begin{aligned}
& \log [\mu(x, z)]=h(x, z) \\
& \Leftrightarrow \mu(x, z)=\exp (h(x, z))
\end{aligned}
$$

What if $\mu(x, z)=E(Y \mid X=x, Z=z)$ but
$V(Y \mid X=x, Z=z)>\mu(x, z)$: greater variability than expected \leftarrow overdispersion? \Longrightarrow to study the following ...

6.3.1B Revisit III to GLM: Additional Examples

To study $Y \leftarrow X, Z$? with count response Y and predictors X, Z :
Quasi-Poisson Regression:

- Randome Component. r.v. Y with

$$
\begin{aligned}
& \mu(x, z)=E(Y \mid X=x, Z=z) \text { and } \\
& V(Y \mid X=x, Z=z)=\rho \mu(x, z)
\end{aligned}
$$

- Systematic Component. $h(x, z)=\alpha+\beta x+\gamma z+\eta x z$, a linear function of $x, z, x z$
- Link Function. $g: \mu \rightarrow \log (\mu)$:
$\log [\mu(x, z)]=h(x, z)$
$\Leftrightarrow \mu(x, z)=\exp (h(x, z))$

6.3.1C Revisit III to GLM: Final visit to the Horseshoe Crab Study

Data Description.

Obstn	C	S	W	Wt	Sa
1	2	3	28.3	3.05	8
2	3	3	22.5	1.55	0
3	1	1	26.0	2.30	9

- who? $n=173$ female horseshoe crabs selected by a study
- what?
- $\mathrm{C}=$ color: 1,2,3,4 for light med, medium, dark med and dark (with the distn: $12,95,44,22$)
- $S=$ spine: $1,2,3$ for both good, one or both worn/broken (with the distn: $37,15,121$)
- W=width: ranging 21.0 to 33.5 cm (with mean, sd: $26.4,2.1$)
- $\mathrm{Wt}=$ weight: ranging 1.2 kg to 5.2 kg (with mean, sd: 2.44 , 0.58)
- Sa=number of satellites (ranging from 0 to 19)
- why? to explore the association of Sa with other variables
- when and where?

Conduct Regression Analyses

A. Regression with Binary Response

Preparation
C < -as.factor(ex.crab[, 1]); S <-as.factor(ex.crab[, 2]);
W <-ex.crab[, 3]; Wt <-ex.crab[, 4];
tmpy $A<-$ ifelse $(S a>0,1,0)$

- A. 1 Logistic Regression
- A. 2 Probit Regression
- A. 3 Comparisons

$R:$ tmp.outA1a $<-\mathrm{glm}($ tmpy $A \sim C+S+W+W t$, family $=$ binomial $)$					
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-8.06501	3.92855	-2.053	0.0401	
C2	-0.10290	0.78259	-0.131	0.8954	
C3	-0.48886	0.85312	-0.573	0.5666	
C4	-1.60867	0.93553	-1.720	0.0855	
S2	-0.09598	0.70337	-0.136	0.8915	
S3	0.40029	0.50270	0.796	0.4259	
W	0.26313	0.19530	1.347	0.1779	
Wt	0.82578	0.70383	1.173	0.2407	

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 185.20 on 165 degrees of freedom
AIC: 201.2
surprising analysis results about the effects of the predictors!
\Longrightarrow the investigation on the possible collinearity ...
Are W and Wt closely correlated?
\Longrightarrow removing Wt from the list of predictors ...

$R:$ tmp.outA1b $<-\mathrm{g} / \mathrm{m}($ tmpy $A \sim C+S+W$, family $=$ binomial $)$					
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-11.09953	2.97706	-3.728	0.000193	***
C2	-0.14340	0.77838	-0.184	0.853830	
C3	-0.52405	0.84685	-0.619	0.536030	
C4	-1.66833	0.93285	-1.788	0.073706	
S2	-0.05782	0.70308	-0.082	0.934453	
S3	0.37703	0.50191	0.751	0.452540	
W	0.45624	0.10779	4.233	$2.31 \mathrm{e}-05$	*
Null deviance: 225.76 on 172 degrees of freedom					
Residual deviance: 186.61 on 166 degrees of freedom					

AIC: 200.61
Is it the model to use?

Model Selection (Variable Selection):

```
tmp.outA1c < -g/m(tmpyA ~ C*S*W, family = binomial)
step(tmp.outA1c)
Start: AIC=212.44
tmpyA~C*S*W
    Df Deviance
- C:S:W 3 173.67 209.67
< none > 170.44 212.44
Step: AIC=209.67
tmpyA~C+S +W + C:S C C:W + S:W
```

Call : glm(formula $=$ tmpy $A \sim C+W$, family $=$ binomial(link $=$ "logit" $))$ Coefficients:

(Intercept)	C2	C3	C4	W
-11.38519	0.07242	-0.22380	-1.32992	0.46796
Degrees of Freedom: 172	Total (i.e. Null); 168 Residual			
Null Deviance: 225.8				
Residual Deviance: 187.5	AIC: 197.5			

Alternative ways of using the color variable?

- $C=1,2,3,4$ as an ordinal variable?

glm	(formula $=$	tmpy $A \sim$	$t m p C+W$, family $=$ binomial $)$		
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-10.0708	2.8068	-3.588	0.000333	$* * *$
tmpC	-0.5090	0.2237	-2.276	0.022860	$*$
W	0.4583	0.1040	4.406	$1.05 \mathrm{e}-05$	$* * *$

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 189.12 on 170 degrees of freedom
AIC: 195.12

- Group the categories of color into two: dark vs lighter color?

\[

\]

AIC: 193.96

Report the Regression with logit $[\pi(i, w)]=\alpha+\beta_{i}^{C}+\gamma w: i=1,2$ for lighter, dark color.

- The fitted model:
$\operatorname{logit}[\hat{\pi}(i, w)]=\left\{\begin{array}{lr}-11.68+0.48 w & \text { for } \mathrm{i}=1 \text { (lighter color) } \\ -11.68-1.30+0.48 w & \text { for } \mathrm{i}=2 \text { (dark color) }\end{array}\right.$
or $\operatorname{logit}[\hat{\pi}(x, w)]=-11.68-1.30 x+0.48 w$ if using the dummy variable $x=0,1$ for lighter, dark color.
- Is YesSa positively associated with W in the presence of C ?

To conduct a test on $H_{0}: \gamma=0$ vs $H_{1}: \gamma>0$:
$Z=\frac{\hat{\gamma}}{S E_{\hat{\gamma}}} ; Z_{o b s}=4.59 ; p=4.39 e-06 / 2$
An alternative: to compare $M_{0}: \operatorname{tmp} A \sim \operatorname{Logit}(t m p C b)$ vs
$M_{1}: \operatorname{tmpA} \sim \operatorname{Logit}(t m p C b, W)$
This can only test on $H_{0}: \gamma=0$ vs $H_{1}: \gamma \neq 0$: (i) fit both M_{0} and M_{1}, (ii) obtain their $G\left(M_{0} \mid M_{s}\right)=214.79$ with $\mathrm{df}=171, G\left(M_{1} \mid M_{s}\right)=187.96$ with $\mathrm{df}=170 \Rightarrow$ $G(M 0 \mid M 1)=214.79-187.96 ; d f=1 ; p=1-\operatorname{pchisq}(26.83,1)<0.001$

Report the Regression with logit $[\pi(i, w)]=\alpha+\beta_{i}^{C}+\gamma w: i=1,2$ for lighter, dark color.

- What is the OR of YesSa comparing ligther vs dark color crab adjusting for W ? Give its MLE and an $95 \% \mathrm{Cl}$.
$\log O R=\beta_{1}^{C}-\beta_{2}^{C}$: its MLE is $0-\hat{\beta}_{2}^{C}=1.30$ with $S E_{\hat{\beta}_{2}^{c}}=0.526$
\Longrightarrow OR's MLE 3.67 and $95 \% \mathrm{Cl}(1.31,10.29)$
- Give estimates of the probability of YesSa with lighter and dark colored crabs if their width $=26.3 \mathrm{~cm}$ (the mean width of the observed crabs') and width $=35 \mathrm{~cm}: \pi(i, w)=\frac{\exp \left(\alpha+\beta_{i}^{c}+\gamma w\right)}{1+\exp \left(\alpha+\beta_{i}^{c}+\gamma w\right)}$

	width=26.3cm		width=35.0cm	
Estimates	lighter $(\mathrm{i}=1)$	dark $(\mathrm{i}=2)$	lighter $(\mathrm{i}=1)$	dark $(\mathrm{i}=2)$
$\hat{\alpha}+\hat{\beta}_{i}^{C}+\hat{\gamma} w$	0.90	-0.40	5.06	3.76
(SE)	(0.20)	(0.49)	(0.98)	(1.08)
$95 \% \mathrm{Cl}$	$(0.51,1.29)$	$(-1.37,1.86)$	$(3.14,6.98)$	$(1.64,7.18)$
$\hat{\pi}(i, w)$	0.71	0.40	0.99	0.98
$95 \% \mathrm{Cl}$	$(0.62,0.78)$	$(0.20,0.87)$	$(0.96,1.00)$	$(0.84,1.00)$

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-6.98838	1.54195	-4.532	$5.84 \mathrm{e}-06$	**
tmpCb2	-0.76494	0.31341	-2.441	0.0147	
W	0.28637	0.05924	4.834	$1.34 \mathrm{e}-06$	*
Null deviance: 225.76 on 172 degrees of freedom					

AIC: 193.72

MLE and $95 \% \mathrm{Cl}$ for the prob of YesSa with lighter colored crabs and width $=26.3 \mathrm{~cm}$:

- $\hat{\pi}(1,26.3)=\operatorname{pnorm}\left(\hat{\alpha}+\hat{\beta}_{1}^{C}+\hat{\gamma} 26.3\right)=0.706$
- CI: $(0.624,0.779)$

B. Regression with Count Response

- B. 1 Poisson Regression
- B. 2 Quasi-Poisson Regression
- B. 3 Comparisons

Preparation

C <-as.factor(ex.crab[, 1]); S <-as.factor(ex.crab[, 2]);
W <-ex.crab[, 3]; Wt <-ex.crab[, 4];
Sa $<-\operatorname{round}($ ex.crab[, 5]); tmpy $B<-S a$

R : tmp.outB1a $<-g l m($ tmpy $B \sim C+S+W$, family $=$ poisson $)$					
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-2.54385	0.62426	-4.075	$4.60 \mathrm{e}-05$	$* * *$
C2	-0.22158	0.16789	-1.320	0.1869	
C3	-0.46036	0.19554	-2.354	0.0186	$*$
C4	-0.48544	0.22824	-2.127	0.0334	$*$
S2	-0.13879	0.21269	-0.653	0.5141	
S3	0.02363	0.11729	0.201	0.8403	
W	0.14596	0.02189	6.669	$2.58 \mathrm{e}-11$	$* * *$

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 558.63 on 166 degrees of freedom
AIC: 927.93

Alternative ways of using the color variable?

R : tmp		,			
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-2.51998	0.61063	-4.127	$3.68 \mathrm{e}-05$	**
tmpC	-0.16940	0.06184	-2.739	0.00616	
W	0.14957	0.02068	7.233	$4.72 \mathrm{e}-13$	***
	Null	viance: 632.	on 172	grees of fr	dom
	Residual	ance: 560.	on 17	grees of fr	dom

AIC: 921.5

Model Checking: Residual Plots:

What if the Poisson assumption is not appropriate?

$R:$ tmp.outB2a $<-\mathrm{glm}($ tmpy $B \sim$ tmp $C+W$, family = quasipoisson(link = "log")					
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-2.51998	1.09722	-2.297	0.0229	
tmpC	-0.16940	0.11112	-1.524	0.1292	
W	0.14957	0.03716	4.025	$8.55 \mathrm{e}-05$	***
(Dispersion parameter for quasipoisson family taken to be 3.228764)					
Null deviance: 632.79 on 172 degrees of freedom					
Residual deviance: 560.20 on 170 degrees of freedom					

AIC: NA

Comparisons between Poisson vs Quasi-Poisson:

- estm for the parameters: the same
- estm for the SE of the parameter estimators: different when the counts are overdispersed
- Poisson Regression: under-estm the SE

Quasi-Poisson Regression: Width+Color)

What will we study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)
5. Model Selection and Evaluation (Chp 5)
6. Additional Topics (Chp 6)

- 6.1 Exact Inference (Chp 6.2)
- 6.2 Revisit to Loglinear and Logistic Models for Contingency Tables: the Loglinear-Logit Connection
- 6.3 Revisit III to GLM and Advanced Topics (Chp 5.3, Chp 6.5)
- 6.3.1 Revisit III to GLM
- 6.3.2 Marginal Modeling: Quasi-Score, Generalized Estimating Equation (GEE)
- 6.3.3 Mixed Effect Models for Correlated Data

