
What to do today (Mar 27)?
1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)
5. Model Selection and Evaluation (Chp 5)

6. Additional Topics (Chp 6)

I 6.1 Exact inference (Chp 6.2)

I 6.2 Revisit to Loglinear and Logistic Models for Contingency
Tables: the Loglinear-Logit Connection (Supplementary)

I 6.3 Revisit III to GLM and Some Advanced Topics (Chp
5.3, Chp 6.5)

I 6.3.1 Revisit III to GLM
I 6.3.2 Marginal Modeling
I 6.3.3 Mixed Ect Models for Correlated Data

X. Joan Hu: STAT-475/675 Department of Statistics and Actuarial Science Simon Fraser University



6.3.1 Revisit III to GLM

GOAL: to study how Y ← X1, . . . ,XK?

Generalized Linear Models:

I Random Component. response r.v. Y follows a distn with
µ(x1, . . . , xk) = E (Y |x1, . . . , xk) to be examined

I Systematic Component. α + β1x1 + . . .+ βKxK

Some xk can be based on others: e.g. x3 = x1x2.

I Link Function. g(µ) = α + β1x1 + . . .+ βKxK

The link function g(·) links the random componet through its mean
and the systematic component.



Recall the glm function in R to conduct a GLM analysis:
R: tmp.out< −glm(Y∼X*Z,family)

family(object,...) in R for function glm, for example

I binomial(link = “logit”)

I poisson(link = “log”)

I gaussian(link = “identity”) =⇒ R: e.g. lm(Y∼X*Z)
I and some others, such as quasipoisson(link = “log”) to be

studied



6.3.1B Revisit III to GLM: Additional Examples

To study Y ← X ,Z? with binary response Y = 1, or 0 and
explanatory variables X ,Z :

I Recall the Logistic Regression Model (Logit):
I Randome Component. r.v. Y ∼ Bernoulli(π) with µ(x , z) =

E (Y |X = x ,Z = z) = P(Y = 1|X = x ,Z = z) = π(x , z) and
V (Y |X = x ,Z = z) = π(x , z)[1− π(x , z)]

I Systematic Component. h(x , z) = α + βx + γz + ηxz , a linear
function of x , z , xz

I Link Function. g : µ→ logit(µ):
logit

[
µ(x , z)

]
= logit

[
π(x , z)

]
= h(x , z)

⇔ π(x , z) = exp(h(x,z))
1+exp(h(x,z)) .

Any alternative model?



Probit Regression Model.

To study Y ← X ,Z? with binary response Y = 1, or 0 and
explanatory variables X ,Z :

I the Probit Regression Model (Probit):
I Randome Component. r.v. Y ∼ Bernoulli(π) with µ(x , z) =

E (Y |X = x ,Z = z) = P(Y = 1|X = x ,Z = z) = π(x , z) and
V (Y |X = x ,Z = z) = π(x , z)[1− π(x , z)]

I Systematic Component. h(x , z) = α + βx + γz + ηxz , a linear
function of x , z , xz

I Link Function. g : µ→ probit(µ):
probit

[
µ(x , z)

]
= probit

[
π(x , z)

]
= h(x , z)

⇔ π(x , z) = Φ(h(x , z))

Φ(·) the cumulative distn of N(0, 1): e.g. Φ(−1.645) = 0.05 and
Φ(1.96) = 1− 0.025



6.3.1B Revisit III to GLM: Additional Examples

Poisson Regression Model To study Y ← X ,Z? with count
response Y and predictors X ,Z :

I Recall Loglinear Regression Models (Poisson Regression):
I Randome Component. r.v. Y ∼ Poisson(µ) with
µ(x , z) = E (Y |X = x ,Z = z) and
V (Y |X = x ,Z = z) = µ(x , z)

I Systematic Component. h(x , z) = α + βx + γz + ηxz , a linear
function of x , z , xz

I Link Function. g : µ→ log(µ):
log

[
µ(x , z)

]
= h(x , z)

⇔ µ(x , z) = exp(h(x , z))

What if µ(x , z) = E (Y |X = x ,Z = z) but
V (Y |X = x ,Z = z) > µ(x , z): greater variability than expected
← overdispersion? =⇒ to study the following ...



6.3.1B Revisit III to GLM: Additional Examples

To study Y ← X ,Z? with count response Y and predictors X ,Z :

Quasi-Poisson Regression:

I Randome Component. r.v. Y with
µ(x , z) = E (Y |X = x ,Z = z) and
V (Y |X = x ,Z = z) = ρµ(x , z)

I Systematic Component. h(x , z) = α+ βx + γz + ηxz , a linear
function of x , z , xz

I Link Function. g : µ→ log(µ):
log

[
µ(x , z)

]
= h(x , z)

⇔ µ(x , z) = exp(h(x , z))



6.3.1C Revisit III to GLM: Final visit to the
Horseshoe Crab Study

Data Description.
Obstn C S W Wt Sa
1 2 3 28.3 3.05 8
2 3 3 22.5 1.55 0
3 1 1 26.0 2.30 9

I who? n = 173 female horseshoe crabs selected by a study

I what?
I C=color: 1,2,3,4 for light med, medium, dark med and dark

(with the distn: 12, 95, 44, 22)
I S=spine: 1, 2,3 for both good, one or both worn/broken (with

the distn: 37, 15, 121)
I W=width: ranging 21.0 to 33.5cm (with mean, sd: 26.4, 2.1)
I Wt=weight: ranging 1.2kg to 5.2kg (with mean, sd: 2.44,

0.58)
I Sa=number of satellites (ranging from 0 to 19)

I why? to explore the association of Sa with other variables

I when and where?



Conduct Regression Analyses

A. Regression with Binary Response

Preparation ... ...
C < −as.factor(ex .crab[, 1]); S < −as.factor(ex .crab[, 2]);
W < −ex .crab[, 3];Wt < −ex .crab[, 4];

tmpyA < −ifelse(Sa > 0, 1, 0)

I A.1 Logistic Regression

I A.2 Probit Regression

I A.3 Comparisons



R : tmp.outA1a < −glm(tmpyA ∼ C + S + W + Wt, family = binomial)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -8.06501 3.92855 -2.053 0.0401 *
C2 -0.10290 0.78259 -0.131 0.8954
C3 -0.48886 0.85312 -0.573 0.5666
C4 -1.60867 0.93553 -1.720 0.0855 .
S2 -0.09598 0.70337 -0.136 0.8915
S3 0.40029 0.50270 0.796 0.4259
W 0.26313 0.19530 1.347 0.1779
Wt 0.82578 0.70383 1.173 0.2407

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 185.20 on 165 degrees of freedom

AIC: 201.2

surprising analysis results about the effects of the predictors!
=⇒ the investigation on the possible collinearity ...

Are W and Wt closely correlated?



=⇒ removing Wt from the list of predictors ...

R : tmp.outA1b < −glm(tmpyA ∼ C + S + W , family = binomial)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -11.09953 2.97706 -3.728 0.000193 ***
C2 -0.14340 0.77838 -0.184 0.853830
C3 -0.52405 0.84685 -0.619 0.536030
C4 -1.66833 0.93285 -1.788 0.073706 .
S2 -0.05782 0.70308 -0.082 0.934453
S3 0.37703 0.50191 0.751 0.452540
W 0.45624 0.10779 4.233 2.31e-05 ***

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 186.61 on 166 degrees of freedom

AIC: 200.61

Is it the model to use?



Model Selection (Variable Selection):

tmp.outA1c < −glm(tmpyA ∼ C ∗ S ∗W , family = binomial)
step(tmp.outA1c)
Start: AIC=212.44
tmpyA ∼ C ∗ S ∗W

Df Deviance AIC
- C:S:W 3 173.67 209.67
< none > 170.44 212.44
Step: AIC=209.67
tmpyA ∼ C + S + W + C : S + C : W + S : W
...

...
...

...

Call : glm(formula = tmpyA ∼ C + W , family = binomial(link = “logit”))
Coefficients:
(Intercept) C2 C3 C4 W
-11.38519 0.07242 -0.22380 -1.32992 0.46796
Degrees of Freedom: 172 Total (i.e. Null); 168 Residual
Null Deviance: 225.8
Residual Deviance: 187.5 AIC: 197.5

Alternative ways of using the color variable?



I C=1,2,3,4 as an ordinal variable?

glm(formula = tmpyA ∼ tmpC + W , family = binomial)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -10.0708 2.8068 -3.588 0.000333 ***
tmpC -0.5090 0.2237 -2.276 0.022860 *
W 0.4583 0.1040 4.406 1.05e-05 ***

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 189.12 on 170 degrees of freedom

AIC: 195.12

I Group the categories of color into two: dark vs lighter color?

glm(formula = tmpyA ∼ tmpCb + W , family = binomial)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -11.6790 2.6925 -4.338 1.44e-05 ***
tmpCb2 -1.3005 0.5259 -2.473 0.0134 *
W 0.4782 0.1041 4.592 4.39e-06 ***

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.96 on 170 degrees of freedom

AIC: 193.96



Report the Regression with logit
[
π(i ,w)

]
= α + βC

i + γw : i = 1, 2 for
lighter, dark color.

I The fitted model:

logit
[
π̂(i ,w)

]
=

{
−11.68 + 0.48w for i=1 (lighter color)
−11.68− 1.30 + 0.48w for i=2 (dark color)

or logit
[
π̂(x ,w)

]
= −11.68− 1.30x + 0.48w if using the dummy

variable x = 0, 1 for lighter, dark color.

I Is YesSa positively associated with W in the presence of C?

To conduct a test on H0 : γ = 0 vs H1 : γ > 0:
Z = γ̂

SEγ̂
; Zobs = 4.59; p = 4.39e − 06/2

An alternative: to compare M0 : tmpA ∼ Logit(tmpCb) vs
M1 : tmpA ∼ Logit(tmpCb,W )

This can only test on H0 : γ = 0 vs H1 : γ 6= 0: (i) fit both M0 and M1, (ii) obtain

their G(M0|Ms) = 214.79 with df=171, G(M1|Ms) = 187.96 with df=170 ⇒
G(M0|M1) = 214.79− 187.96; df = 1; p = 1− pchisq(26.83, 1) < 0.001



Report the Regression with logit
[
π(i ,w)

]
= α + βC

i + γw : i = 1, 2 for
lighter, dark color.

I What is the OR of YesSa comparing ligther vs dark color crab
adjusting for W? Give its MLE and an 95% CI.

logOR = βC
1 − βC

2 : its MLE is 0− β̂C
2 = 1.30 with SEβ̂C

2
= 0.526

=⇒ OR’s MLE 3.67 and 95% CI (1.31, 10.29)

I Give estimates of the probability of YesSa with lighter and dark
colored crabs if their width= 26.3cm (the mean width of the

observed crabs’) and width=35cm: π(i ,w) =
exp(α+βC

i +γw)

1+exp(α+βC
i +γw)

width=26.3cm width=35.0cm
Estimates lighter (i=1) dark (i=2) lighter (i=1) dark (i=2)

α̂+ β̂C
i + γ̂w 0.90 -0.40 5.06 3.76

(SE) (0.20) (0.49) (0.98) (1.08)
95% CI (0.51,1.29) (-1.37,1.86) (3.14,6.98) (1.64,7.18)
π̂(i ,w) 0.71 0.40 0.99 0.98
95% CI (0.62,0.78) (0.20, 0.87) (0.96,1.00) (0.84,1.00)



R : tmp.outA2 < −glm(tmpyA ∼ tmpCb + W , family = binomial(link = “probit”))
Estimate Std. Error z value Pr(> |z|)

(Intercept) -6.98838 1.54195 -4.532 5.84e-06 ***
tmpCb2 -0.76494 0.31341 -2.441 0.0147 *
W 0.28637 0.05924 4.834 1.34e-06 ***

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.72 on 170 degrees of freedom

AIC: 193.72

MLE and 95% CI for the prob of YesSa with lighter colored crabs and
width=26.3cm:

I π̂(1, 26.3) = pnorm(α̂ + β̂C
1 + γ̂26.3) = 0.706

I CI: (0.624, 0.779)



B. Regression with Count Response

I B.1 Poisson Regression

I B.2 Quasi-Poisson Regression

I B.3 Comparisons

Preparation ... ...
C < −as.factor(ex .crab[, 1]);S < −as.factor(ex .crab[, 2]);
W < −ex .crab[, 3];Wt < −ex .crab[, 4];

Sa < −round(ex .crab[, 5]); tmpyB < −Sa



R : tmp.outB1a < −glm(tmpyB ∼ C + S + W , family = poisson)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.54385 0.62426 -4.075 4.60e-05 ***
C2 -0.22158 0.16789 -1.320 0.1869
C3 -0.46036 0.19554 -2.354 0.0186 *
C4 -0.48544 0.22824 -2.127 0.0334 *
S2 -0.13879 0.21269 -0.653 0.5141
S3 0.02363 0.11729 0.201 0.8403
W 0.14596 0.02189 6.669 2.58e-11 ***

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 558.63 on 166 degrees of freedom

AIC: 927.93

Alternative ways of using the color variable?

R : tmp.outB1c < −glm(tmpyB ∼ tmpC + W , family = poisson)
Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.51998 0.61063 -4.127 3.68e-05 ***
tmpC -0.16940 0.06184 -2.739 0.00616 **
W 0.14957 0.02068 7.233 4.72e-13 ***

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 560.20 on 170 degrees of freedom

AIC: 921.5



Model Checking: Residual Plots:
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What if the Poisson assumption is not appropriate?

R : tmp.outB2a < −glm(tmpyB ∼ tmpC + W , family = quasipoisson(link = “log”))
Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.51998 1.09722 -2.297 0.0229 *
tmpC -0.16940 0.11112 -1.524 0.1292
W 0.14957 0.03716 4.025 8.55e-05 ***

(Dispersion parameter for quasipoisson family taken to be 3.228764)
Null deviance: 632.79 on 172 degrees of freedom

Residual deviance: 560.20 on 170 degrees of freedom
AIC: NA



Comparisons between Poisson vs Quasi-Poisson:
I estm for the parameters: the same
I estm for the SE of the parameter estimators: different when

the counts are overdispersed
I Poisson Regression: under-estm the SE
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What will we study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)
5. Model Selection and Evaluation (Chp 5)
6. Additional Topics (Chp 6)

I 6.1 Exact Inference (Chp 6.2)

I 6.2 Revisit to Loglinear and Logistic Models for Contingency
Tables: the Loglinear-Logit Connection

I 6.3 Revisit III to GLM and Advanced Topics (Chp 5.3,
Chp 6.5)

I 6.3.1 Revisit III to GLM
I 6.3.2 Marginal Modeling: Quasi-Score, Generalized

Estimating Equation (GEE)
I 6.3.3 Mixed Effect Models for Correlated Data


