What to do today (Mar 27)?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analysis with Count Variables (Chp 4)
- 5. Model Selection and Evaluation (Chp 5)

6. Additional Topics (Chp 6)

- ▶ 6.1 Exact inference (Chp 6.2)
- 6.2 Revisit to Loglinear and Logistic Models for Contingency Tables: the Loglinear-Logit Connection (Supplementary)
- ▶ 6.3 Revisit III to GLM and Some Advanced Topics (Chp 5.3, Chp 6.5)
 - 6.3.1 Revisit III to GLM
 - ► 6.3.2 Marginal Modeling
 - ► 6.3.3 Mixed Ect Models for Correlated Data

6.3.1 Revisit III to GLM

GOAL: to study how $Y \leftarrow X_1, \ldots, X_K$?

Generalized Linear Models:

- **Random Component.** response r.v. *Y* follows a distn with $\mu(x_1, \ldots, x_k) = E(Y|x_1, \ldots, x_k)$ to be examined
- Systematic Component. α + β₁x₁ + ... + β_Kx_K Some x_k can be based on others: e.g. x₃ = x₁x₂.
- Link Function. g(μ) = α + β₁x₁ + ... + β_Kx_K
 The link function g(·) links the *random componet* through its mean and the *systematic component*.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall the *glm* function in R to conduct a GLM analysis: $R: tmp.out < -glm(Y \sim X^*Z, family)$

family(object,...) in R for function glm, for example

- binomial(link = "logit")
- poisson(link = "log")
- gaussian(link = "identity") \implies R: e.g. $Im(Y \sim X^*Z)$
- and some others, such as quasipoisson(link = "log") to be studied

6.3.1B Revisit III to GLM: Additional Examples

To study $Y \leftarrow X, Z$? with binary response Y = 1, or 0 and explanatory variables X, Z:

- Recall the Logistic Regression Model (Logit):
 - *Randome Component.* r.v. $Y \sim Bernoulli(\pi)$ with $\mu(x, z) = E(Y|X = x, Z = z) = P(Y = 1|X = x, Z = z) = \pi(x, z)$ and $V(Y|X = x, Z = z) = \pi(x, z)[1 \pi(x, z)]$
 - Systematic Component. h(x, z) = α + βx + γz + ηxz, a linear function of x, z, xz

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

► Link Function.
$$g : \mu \to logit(\mu)$$
:
 $logit[\mu(x, z)] = logit[\pi(x, z)] = h(x, z)$
 $\Leftrightarrow \pi(x, z) = \frac{\exp(h(x, z))}{1 + \exp(h(x, z))}.$

Any alternative model?

Probit Regression Model.

To study $Y \leftarrow X, Z$? with binary response Y = 1, or 0 and explanatory variables X, Z:

- the Probit Regression Model (Probit):
 - Randome Component. r.v. $Y \sim Bernoulli(\pi)$ with $\mu(x, z) = E(Y|X = x, Z = z) = P(Y = 1|X = x, Z = z) = \pi(x, z)$ and $V(Y|X = x, Z = z) = \pi(x, z)[1 \pi(x, z)]$
 - Systematic Component. h(x, z) = α + βx + γz + ηxz, a linear function of x, z, xz

• Link Function.
$$g: \mu \to probit(\mu)$$
:
 $probit[\mu(x, z)] = probit[\pi(x, z)] = h(x, z)$
 $\Leftrightarrow \pi(x, z) = \Phi(h(x, z))$

 $\Phi(\cdot)$ the cumulative distn of N(0,1): e.g. $\Phi(-1.645) = 0.05$ and $\Phi(1.96) = 1 - 0.025$

6.3.1B Revisit III to GLM: Additional Examples

Poisson Regression Model To study $Y \leftarrow X, Z$? with count response Y and predictors X, Z:

- ▶ Recall Loglinear Regression Models (Poisson Regression):
 - Randome Component. r.v. $Y \sim Poisson(\mu)$ with $\mu(x, z) = E(Y|X = x, Z = z)$ and $V(Y|X = x, Z = z) = \mu(x, z)$
 - Systematic Component. h(x, z) = α + βx + γz + ηxz, a linear function of x, z, xz

• Link Function.
$$g: \mu \to \log(\mu)$$
:
 $\log [\mu(x, z)] = h(x, z)$
 $\Leftrightarrow \mu(x, z) = \exp(h(x, z))$

What if $\mu(x, z) = E(Y|X = x, Z = z)$ but $V(Y|X = x, Z = z) > \mu(x, z)$: greater variability than expected \leftarrow overdispersion? \Longrightarrow to study the following ...

6.3.1B Revisit III to GLM: Additional Examples

To study $Y \leftarrow X, Z$? with count response Y and predictors X, Z:

Quasi-Poisson Regression:

- Randome Component. r.v. Y with $\mu(x, z) = E(Y|X = x, Z = z)$ and $V(Y|X = x, Z = z) = \rho\mu(x, z)$
- Systematic Component. h(x, z) = α + βx + γz + ηxz, a linear function of x, z, xz

(日) (四) (코) (코) (코) (코)

► Link Function.
$$g: \mu \to \log(\mu)$$
:
 $\log [\mu(x, z)] = h(x, z)$
 $\Leftrightarrow \mu(x, z) = \exp(h(x, z))$

6.3.1C Revisit III to GLM: Final visit to the Horseshoe Crab Study

Data Description.

Obstn	С	S	W	Wt	Sa
1	2	3	28.3	3.05	8
2	3	3	22.5	1.55	0
3	1	1	26.0	2.30	9

- who? n = 173 female horseshoe crabs selected by a study
- what?
 - C=color: 1,2,3,4 for light med, medium, dark med and dark (with the distn: 12, 95, 44, 22)
 - S=spine: 1, 2,3 for both good, one or both worn/broken (with the distn: 37, 15, 121)
 - ▶ W=width: ranging 21.0 to 33.5cm (with mean, sd: 26.4, 2.1)
 - ► Wt=weight: ranging 1.2kg to 5.2kg (with mean, sd: 2.44, 0.58)
 - Sa=number of satellites (ranging from 0 to 19)
- why? to explore the association of Sa with other variables
- when and where?

Conduct Regression Analyses

A. Regression with Binary Response

Preparation C < -as.factor(ex.crab[, 1]); S < -as.factor(ex.crab[, 2]); W < -ex.crab[, 3]; Wt < -ex.crab[, 4];tmpyA < -ifelse(Sa > 0, 1, 0)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- A.1 Logistic Regression
- A.2 Probit Regression
- A.3 Comparisons

$R: tmp.outA1a < -glm(tmpyA \sim C + S + W + Wt, family = binomial)$						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-8.06501	3.92855	-2.053	0.0401	*	
C2	-0.10290	0.78259	-0.131	0.8954		
C3	-0.48886	0.85312	-0.573	0.5666		
C4	-1.60867	0.93553	-1.720	0.0855		
S2	-0.09598	0.70337	-0.136	0.8915		
S3	0.40029	0.50270	0.796	0.4259		
W	0.26313	0.19530	1.347	0.1779		
Wt	0.82578	0.70383	1.173	0.2407		
		Null deviance:	225.76 on	172 degrees o	of freedom	
	Resi	dual deviance:	185.20 on	165 degrees c	of freedom	
ALC 001 0						

AIC: 201.2

surprising analysis results about the effects of the predictors! \implies the investigation on the possible collinearity ...

Are W and Wt closely correlated?

 \implies removing Wt from the list of predictors ...

$R: tmp.outA1b < -glm(tmpyA \sim C + S + W, family = binomial)$						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-11.09953	2.97706	-3.728	0.000193	***	
C2	-0.14340	0.77838	-0.184	0.853830		
C3	-0.52405	0.84685	-0.619	0.536030		
C4	-1.66833	0.93285	-1.788	0.073706		
S2	-0.05782	0.70308	-0.082	0.934453		
S3	0.37703	0.50191	0.751	0.452540		
W	0.45624	0.10779	4.233	2.31e-05	***	
	Null de	eviance: 225.76	on 172	degrees of fre	edom	
	Residual de	eviance: 186.61	on 166	degrees of fre	edom	
AIC: 200.61						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Is it the model to use?

Model Selection (Variable Selection):

Call : $glm(formula = tmpyA \sim C + W, family = binomial(link = "logit"))$ Coefficients:

 C2
 C3
 C4
 W

 -11.38519
 0.07242
 -0.22380
 -1.32992
 0.46796

 Degrees of Freedom:
 172 Total (i.e. Null); 168 Residual
 Null Deviance:
 225.8

 Residual Deviance:
 187.5
 AIC:
 197.5

Alternative ways of using the color variable?

C=1,2,3,4 as an ordinal variable?

glm(formula =	= tmpyA ~	J tmpC + W,	family = bino	mial)	
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.0708	2.8068	-3.588	0.000333	***
tmpC	-0.5090	0.2237	-2.276	0.022860	*
W	0.4583	0.1040	4.406	1.05e-05	***
		Null deviance:	225.76 on 172	degrees of	freedom
	Resid	dual deviance:	189.12 on 170	degrees of	freedom
AIC: 195.12					

Group the categories of color into two: dark vs lighter color?

$glm(formula = tmpyA \sim tmpCb + W, family = binomial)$						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-11.6790	2.6925	-4.338	1.44e-05	***	
tmpCb2	-1.3005	0.5259	-2.473	0.0134	*	
W	0.4782	0.1041	4.592	4.39e-06	***	
	Null de	viance: 225.76	ô on 172	degrees of fre	eedom	
	Residual de	viance: 187.96	5 on 170	degrees of fre	eedom	
AIC: 193.96						

Report the Regression with $logit[\pi(i, w)] = \alpha + \beta_i^C + \gamma w$: i = 1, 2 for lighter, dark color.

The fitted model:

$$logit[\hat{\pi}(i,w)] = \begin{cases} -11.68 + 0.48w & \text{for } i=1 \text{ (lighter color)} \\ -11.68 - 1.30 + 0.48w & \text{for } i=2 \text{ (dark color)} \end{cases}$$

or $logit[\hat{\pi}(x, w)] = -11.68 - 1.30x + 0.48w$ if using the dummy variable x = 0, 1 for lighter, dark color.

► Is YesSa positively associated with W in the presence of C? To conduct a test on $H_0: \gamma = 0$ vs $H_1: \gamma > 0:$ $Z = \frac{\hat{\gamma}}{SE_{\hat{\gamma}}}; Z_{obs} = 4.59; p = 4.39e - 06/2$

An alternative: to compare M_0 : $tmpA \sim Logit(tmpCb)$ vs M_1 : $tmpA \sim Logit(tmpCb, W)$

This can only test on $H_0: \gamma = 0$ vs $H_1: \gamma \neq 0$: (i) fit both M_0 and M_1 , (ii) obtain their $G(M_0|M_s) = 214.79$ with df=171, $G(M_1|M_s) = 187.96$ with df=170 \Rightarrow G(M0|M1) = 214.79 - 187.96; df = 1; p = 1 - pchisq(26.83, 1) < 0.001 **Report the Regression** with $logit[\pi(i, w)] = \alpha + \beta_i^C + \gamma w$: i = 1, 2 for lighter, dark color.

- What is the OR of YesSa comparing lighter vs dark color crab adjusting for W? Give its MLE and an 95% CI.
 log OR = β₁^C − β₂^C: its MLE is 0 − β̂₂^C = 1.30 with SE_{β̂₂^C} = 0.526 ⇒ OR's MLE 3.67 and 95% CI (1.31, 10.29)
- ► Give estimates of the probability of YesSa with lighter and dark colored crabs if their width= 26.3cm (the mean width of the observed crabs') and width=35cm: $\pi(i, w) = \frac{exp(\alpha+\beta_i^c+\gamma w)}{1+exp(\alpha+\beta_i^c+\gamma w)}$

	width=	26.3cm	width=3	35.0cm
Estimates	lighter (i=1)	dark (i=2)	lighter (i $=1$)	dark (i=2)
$\hat{\alpha} + \hat{\beta}_i^C + \hat{\gamma} w$	0.90	-0.40	5.06	3.76
(SE)	(0.20)	(0.49)	(0.98)	(1.08)
95% CI	(0.51, 1.29)	(-1.37, 1.86)	(3.14, 6.98)	(1.64, 7.18)
$\hat{\pi}(i, w)$	0.71	0.40	0.99	0.98
95% CI	(0.62,0.78)	(0.20, 0.87)	(0.96, 1.00)	(0.84, 1.00)

$R: tmp.outA2 < -glm(tmpyA \sim tmpCb + W, family = binomial(link = "probit"))$							
	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	-6.98838	1.54195	-4.532	5.84e-06	***		
tmpCb2	-0.76494	0.31341	-2.441	0.0147	*		
W	0.28637	0.05924	4.834	1.34e-06	***		
		Nul	l deviance:	225.76 on	172 degrees of freedom		
		Residua	l deviance:	187.72 on	170 degrees of freedom		
AIC: 193 72							

MLE and 95% CI for the prob of YesSa with lighter colored crabs and width=26.3cm:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $\hat{\pi}(1, 26.3) = pnorm(\hat{\alpha} + \hat{\beta}_1^C + \hat{\gamma}26.3) = 0.706$
- CI: (0.624, 0.779)

B. Regression with Count Response

- B.1 Poisson Regression
- B.2 Quasi-Poisson Regression
- B.3 Comparisons

Preparation

$$C < -as.factor(ex.crab[, 1]); S < -as.factor(ex.crab[, 2]);$$

 $W < -ex.crab[, 3]; Wt < -ex.crab[, 4];$
 $Sa < -round(ex.crab[, 5]); tmpyB < -Sa$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$R: tmp.outB1a < -glm(tmpyB \sim C + S + W, family = poisson)$							
	Estimate	Std. Error	z value	Pr(> z)	,		
(Intercept)	-2.54385	0.62426	-4.075	4.60e-05	***		
C2	-0.22158	0.16789	-1.320	0.1869			
C3	-0.46036	0.19554	-2.354	0.0186	*		
C4	-0.48544	0.22824	-2.127	0.0334	*		
S2	-0.13879	0.21269	-0.653	0.5141			
S3	0.02363	0.11729	0.201	0.8403			
W	0.14596	0.02189	6.669	2.58e-11	***		
	Null de	viance: 632.79) on 172	degrees of fre	edom		
	Residual de	viance ⁻ 558 63	3 on 166	degrees of fre	edom		

AIC: 927.93

Alternative ways of using the color variable?

$R: tmp.outB1c < -glm(tmpyB \sim tmpC + W, family = poisson)$						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-2.51998	0.61063	-4.127	3.68e-05	***	
tmpC	-0.16940	0.06184	-2.739	0.00616	**	
W	0.14957	0.02068	7.233	4.72e-13	***	
	Null de	viance: 632.7	9 on 172	degrees of fr	eedom	
	Residual de	viance: 560.20	0 on 170	degrees of fr	eedom	
AIC: 921.5						

Model Checking: Residual Plots:

500

What if the Poisson assumption is not appropriate?

 $R: tmp.outB2a < -glm(tmpyB \sim tmpC + W, family = quasipoisson(link = "log"))$ Std. Error z value Pr(>|z|)Estimate (Intercept) -2.51998 1.09722 -2.297 0.0229 * tmpC -0.16940 0.11112 -1.524 0.1292 W 0.14957 0.03716 4.025 8.55e-05 *** (Dispersion parameter for quasipoisson family taken to be 3.228764) Null deviance: 632.79 on 172 degrees of freedom Residual deviance: 560.20 on 170 degrees of freedom AIC: NA

(日) (四) (코) (코) (코) (코)

Comparisons between Poisson vs Quasi-Poisson:

- estm for the parameters: the same
- estm for the SE of the parameter estimators: different when the counts are overdispersed
 - Poisson Regression: under-estm the SE

2

What will we study next?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analsyis with Count Response (Chp 4)
- 5. Model Selection and Evaluation (Chp 5)
- 6. Additional Topics (Chp 6)
 - ▶ 6.1 Exact Inference (Chp 6.2)
 - 6.2 Revisit to Loglinear and Logistic Models for Contingency Tables: the Loglinear-Logit Connection
 - ► 6.3 Revisit III to GLM and Advanced Topics (Chp 5.3, Chp 6.5)
 - ▶ 6.3.1 Revisit III to GLM
 - ► 6.3.2 Marginal Modeling: Quasi-Score, Generalized Estimating Equation (GEE)
 - 6.3.3 Mixed Effect Models for Correlated Data