
What to do today (Mar 22)?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)
5. Model Selection and Evaluation (Chp 5)

6. Additional Topics (Chp 6)

I 6.1 Exact inference (Chp 6.2)

I 6.2 Revisit to Loglinear and Logistic Models for
Contingency Tables: the Loglinear-Logit Connection
(Supplementary)

I 6.3 Revisit II to GLM and Some Advanced Topics (Chp 5.3,
Chp 6.5)
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6.1A Exact Inference: Introduction

Recall the discussion about estm the prob of success with small
sample in Chp 1

I the “plus-4” approach;

I the exact method for constructing CI

Exact Confidence interval (CI) for π (Clopper-Pearson CI) with confidence
level 1− α:

I By the exact distribution of W ∼ B(n, π), with observation w ,{
π : P(W ≤ w) > α/2 and P(W ≥ w) > α/2

}
I By the relationship between the cumulative binomial distribution and the

beta distribution, the CI is

B(α/2;w , n − w + 1) < π < B(1− α/2;w + 1, n − w)

conservative but applicable ... What other exact inference
procedures?



6.1B Exact Inference: Fisher’s Exact Test

Fisher’s Tea Tasting Experiment (“Lady Tasting Tea”) (RA
Fisher, 1935) Fisher designed an experiment to test if his colleague
could really tell whether milk or tea was added to the cup first.
She was told there were four cups of each type before starting her
try, and the tea cups were presented to her in a random order.

Guess Poured First
Poured First milk tea Total

milk 3 1 4
tea 1 3 4

Total 4 4 8

Did she really tell the difference?
=⇒ is there a strong evidence against that her guess is indpt of
the actual order?



6.1B Fisher’s Exact Test

I formulation.
X=actual order with 2 levels; Y=her guess with 2 levels
=⇒ to test H0 : X ⊥⊥ Y vs H1: otherwise
(Better with H0 : θ = 1 vs θ > 1!)

I data. tabulated as the 2× 2 contingency table
row totals n1., n2. = 4; column totals n.1, n.2 = 4
=⇒ only one not-predetermined cell count, say, N11 [# in
(milk,milk) category]: N11,obs = n11 = 3



6.1B Fisher’s Exact Test

Recall the hypergeometric distribution ... ...

Suppose an urn has n = a + b balls, a red and b blue balls. Draw
randomly k balls from the urn, M = the number of red balls drawn out:

P(M = m) =

(
a
m

)(
b

a−m

)
(

n
k

)

Urn
Color drawn out remaining Total

red m a-m n1+=a
blue k-m b-k+m n2+=b

Total n+1=k n+2=n-k n



6.1B Fisher’s Exact Test

I test statistic. Under H0, N11 ∼ hypergeometric disn:

PH0(N11 = m) =

(
n1+
m

)(
n2+

n+1 −m

)
(

n
n+1

)
I p-value. PH0(N11 ≥ N11,obs) = P(N11 = 3) + P(N11 = 4) =

0.229 + 0.014; or, the mid-p-value= 0.229/2 + 0.014

I conclusion. Association between the actual order and the
guess could not be established.



6.1B Fisher’s Exact Test

I e.g. R: “fisher.test(data, ..., conf.int=TRUE,
conf.level=0.95,...)”;
e.g. other packages such as StatXact; PROC FREQ in SAS

I What if to test for independence with I × J tables?
Under the independence assumption, the prob of having a
specific set of cell counts nij : i = 1, . . . , I ; j = 1, . . . , J with
fixed row and column totals is∏I

i=1 ni+!
∏J

j=1 n+j !

n!
∏I

i=1

∏J
j=1 nij !

=⇒ (Nij : i = 1, . . . , I ; j = 1, . . . , J) with fixed row and
column follows the multiple hypergeometric distribution



6.1C Exact Inference: the Permutation Test for
Independence

When the Pearson’s chi-square test is conducted with a two-way
contingency table for independence, the test statistic

X 2 =
∑ (observed-fitted)2

fitted
∼ χ2((I − 1)(J − 1))

approximately when n >> 1 and nij > 5 in general. When n is small, the
chi-square distn approximation is not good: what is the exact distn of
X 2? Let’s see the following table.

the Fisher’s experiment

M P(M=m) ÔR X 2
obs

0 .0143 0 8
1 .2286 1/9 2
2 .5143 1 0
3 .2286 9 2
4 .0143 ∞ 8



in the Fisher’s experiment

M P(M=m) ÔR X 2
obs prob

0 .0143 0 8 1 out of 70
1 .2286 1/9 2 16 out of 70
2 .5143 1 0 36 out of 70
3 .2286 9 2 16 out of 70
4 .0143 ∞ 8 1 out of 70

p-value=PH0(X 2 ≥ X 2
obs)

=⇒ a general test procedure: permutation test for independence – to

calculate the p-value based on the permutation distribution of the test

statistic X 2



6.1C the Permutation Test for Independence

I It is possible to obtain the permutation distn of the test
statistic directly.

I The permutation distn can be estimated by simulation.
e.g. In Fisher’s experiment,

I (i) randomly permute the ”guess” of the lady (e.g. using
sample(..., replace = FALSE ) in R) and obtain the evaluation
of X 2;

I (ii) repeat (i) B (>> 1) times and have X 2
b : b = 1, . . . ,B;

I (iii) calculate [#{X 2
b ≥ X 2

obs}]
/
B and use it as an

approximated p-value

I e.g. Use the R function
chisq.test(x , simulat.p.value = TRUE ,B) to implement



6.2A Correspondence between Logit and Loglinear
Models

In general, there are following correspondence with 3 categorical
variables X ,Y ,Z :

I Saturated:
Loglinear(XYZ) ⇔ Y∼ Logit(XZ) or Y∼ Multi-Logit(XZ)

I Homogeneous Association I:
Loglinear(XY,YZ,XZ) ⇔
Y∼ Logit(X,Z) or Y∼ Multi-Logit(X,Z)

I XZ association term in loglinear model is cancelled out in the
logit models

I Logit models don’t have description about relationship
between predictors but only about how X,Z, and XZ affect Y.

I Caution with collinearity

I Homogeneous Association II (conditional indpt of X⊥Z |Y ):
Loglinear(XY,YZ) ⇔ Y∼ Logit(X,Z) or Y∼ Multi-logit(X,Z)



6.2B Example for Logit-Loglinear Connection

Example. The table below summarizes admissions to the graduate school at
UC-Berkeley in 1973: it cross-classifies the admission decisions by gender of
applicant and type of department. Answer the following questions based on the
table.

Table. Graduate School Admission
department whether admitted (Y )

type gender Male Female
(Z) (X ) Yes Not Yes Not Total

A 865 520 106 27 1518
B 258 484 333 635 1710
C 75 489 118 616 1298

Total 1198 1493 557 1278 4526

I the sample marginal odds ratio (OR) of admission between male and
female applicants: 1.84

I the sample conditional odds ratio (OR) of admission between male and
female applicants for departments of types A,B and C: 0.43, 1.02, and
0.80



Data with Fitted Counts

observed gender admt dept LL(X,Y,Z) LL(XY,XZ,YZ) LL(XYZ)

27 0 0 1 376.8 43.2 27
635 0 0 2 424.5 617.0 635
616 0 0 3 322.2 617.9 616
520 1 0 1 552.6 503.8 520
484 1 0 2 622.5 502.0 484
489 1 0 3 472.5 487.1 489
106 0 1 1 238.6 89.8 106
333 0 1 2 268.8 351.0 333
118 0 1 3 204.1 116.1 118
865 1 1 1 350.0 881.2 865
258 1 1 2 394.2 240.0 258
75 1 1 3 299.3 76.9 75

How to obtain the fitted counts?



Step 3. Logistic Regression:
Y ∼ 1; Y ∼ X , Y ∼ Z ; Y ∼ X + Z ; Y ∼ X ∗ Z

I Read in Data:
I n=4526;
I 1755, 2771 admitted, not;
I 2691, 1835 male, female;
I 1518, 1710,1298 deptA, deptB, deptC



1>glm ( admt ˜ gender , f am i l y = b i nom i a l )
2 Ca l l :
3 glm ( fo rmu la = admt ˜ gender , f am i l y = b i nom i a l )
4 C o e f f i c i e n t s :
5 Est imate Std . E r r o r z v a l u e Pr (>| z | )
6 ( I n t e r c e p t ) −0.83049 0.05077 −16.357 <2e−16 ∗∗∗
7 gender1 0 .61035 0.06389 9 .553 <2e−16 ∗∗∗
8−−−
9 Nu l l d e v i a n c e : 6044 .3 on 4525 deg r e e s o f f reedom

10 Re s i d u a l d e v i an c e : 5950 .9 on 4524 deg r e e s o f f reedom
11AIC : 5954 .9
12

13>glm ( admt ˜ dept , f am i l y = b i nom i a l )
14 Ca l l :
15 glm ( fo rmu la = admt ˜ dept , f am i l y = b i nom i a l )
16 C o e f f i c i e n t s :
17 Est imate Std . E r r o r z v a l u e Pr (>| z | )
18 ( I n t e r c e p t ) 0 .57388 0.05346 10 .73 <2e−16 ∗∗∗
19 dept2 −1.21225 0.07378 −16.43 <2e−16 ∗∗∗
20 dept3 −2.31879 0.09457 −24.52 <2e−16 ∗∗∗
21−−−
22 Nu l l d e v i a n c e : 6044 .3 on 4525 deg r e e s o f f reedom
23 Re s i d u a l d e v i an c e : 5280 .6 on 4523 deg r e e s o f f reedom
24AIC : 5286 .6



1>glm ( admt ˜ gender + dept , f am i l y = b i nom i a l )
2 Ca l l :
3 glm ( fo rmu la = admt ˜ gender + dept , f am i l y = b i nom i a l )
4 C o e f f i c i e n t s :
5 Est imate Std . E r r o r z v a l u e Pr (>| z | )
6 ( I n t e r c e p t ) 0 .73331 0.09000 8 .148 3 .7 e−16 ∗∗∗
7 gender1 −0.17435 0.07897 −2.208 0 .0273 ∗
8 dept2 −1.29720 0.08357 −15.521 < 2e−16 ∗∗∗
9 dept3 −2.40508 0.10289 −23.375 < 2e−16 ∗∗∗

10−−−
11 Nu l l d e v i a n c e : 6044 .3 on 4525 deg r e e s o f f reedom
12 Re s i d u a l d e v i an c e : 5275 .7 on 4522 deg r e e s o f f reedom
13AIC : 5283 .7



1

2>glm ( admt ˜ gender ∗ dept , f am i l y = b i nom i a l )
3 Ca l l :
4 glm ( fo rmu la = admt ˜ gender ∗ dept , f am i l y = b i nom i a l )
5 C o e f f i c i e n t s :
6 Est imate Std . E r r o r z v a l u e Pr (>| z | )
7 ( I n t e r c e p t ) 1 .3676 0 .2156 6 .344 2 .24 e−10 ∗∗∗
8 gender1 −0.8587 0 .2226 −3.858 0.000114 ∗∗∗
9 dept2 −2.0131 0 .2259 −8.910 < 2e−16 ∗∗∗

10 dept3 −3.0202 0 .2378 −12.698 < 2e−16 ∗∗∗
11 gender1 : dept2 0 .8751 0 .2451 3 .570 0.000357 ∗∗∗
12 gender1 : dept3 0 .6364 0 .2739 2 .323 0.020160 ∗
13−−−
14 Nu l l d e v i a n c e : 6044 .3 on 4525 deg r e e s o f f reedom
15 Re s i d u a l d e v i an c e : 5261 .7 on 4520 deg r e e s o f f reedom
16AIC : 5273 .7



Step 4. Loglinear-Logit Connection: e.g. Loglinear(XY,XZ,YZ)
• Loglinear model of homogeneous association in 3-way tables:

logµijk = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk

The corresponding logit model: Admit (Y) as the response and X,Z
explanatory variables

logit(πik) = α + βX
i + βZ

k

Reporting the analysis outcomes ...

I βX
i = λXY

i1 − λXY
i0 = 0,−0.17435 for i = 0, 1;

βZ
l = λYZ

1l − λYZ
0l = 0,−1.29720,−2.40508 for l = 1, 2, 3;

no term of β’s associated with λXZ
ik

I log OR of admission for males and females in deptA, deptB, deptC:

βX
1 − βX

0 = −0.17435 and λXY
11 + λXY

00 − [λXY
01 + λXY

10 ] = −0.17435



What will we study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)
5. Model Selection and Evaluation (Chp 5)
6. Additional Topics (Chp 6)

I 6.1 Exact Inference (Chp 6.2)

I 6.2 Revisit to Loglinear and Logistic Models for Contingency
Tables: the Loglinear-Logit Connection

I 6.3 Revisit III to GLM and Advanced Topics (Chp 5.3,
Chp 6.5)

I 6.3.1 Revisit III to GLM
I 6.3.2 Marginal Modeling: Quasi-Score, Generalized

Estimating Equation (GEE)
I 6.3.3 Mixed Effect Models for Correlated Data


