What to do today (Mar 20)?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)

- 5.1 Variable selection (Chp 5.1.1-4)
- 5.2 Tools to assess model fit (Chp 5.2)
- 5.3 Examples

To Return Marked Midterm 2 Papers
6. Additional Topics (Chp 6)

5D. Model Selection and Evaluation: in loglinear regression

e.g. loglinear model for three-way contingency tables:

Recall that

- how to establish the association of the cell counts, $N_{i j k} \sim \operatorname{Poisson}\left(\mu_{i j k}\right)$, with X, Y, and Z, three categorical variables?

Saturated Loglinear Model (XYZ) (including all main effects, two factor interactions, three factor interactions: $\mathrm{df}=\mathrm{IJK}$)

$$
\log \mu_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}+\lambda_{i j k}^{X Y Z}
$$

Loglinear Model of Multual Independence ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) (including only main effects: $\mathrm{df}=\mathrm{I}+\mathrm{J}+\mathrm{K}-2$)

$$
\log \mu_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}
$$

Loglinear Model of Homogeneous Association (XY,YZ,XZ) (including all main effects, two factor interactions: assuming $\lambda_{i j k}^{X Y Z}=0$)

$$
\log \mu_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}
$$

Parameter Interpretation for Model ($\mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$): when $\mathrm{I}=\mathrm{J}=2, \mathrm{X}-\mathrm{Y}$ conditional odds ratio at $Z=k$ for any k is

$$
\log \theta_{X Y(k)}=\log \left(\frac{\mu_{11 k} \mu_{22 k}}{\mu_{12 k} \mu_{21 k}}\right)=\left[\lambda_{11}^{X Y}+\lambda_{22}^{X Y}\right]-\left[\lambda_{12}^{X Y}+\lambda_{21}^{X Y}\right]
$$

\Longrightarrow Homogeneous Conditional Association of $X-Y$
Further, if $\lambda_{i j}^{X Y}=0$,

- \Longrightarrow Model (YZ,XZ)
- $\log \theta_{X Y(k)}=0$, for all $k \Longrightarrow X \perp Y \mid Z$

Statistical Inference with (the loglinear (Poisson) regression with 3 categorical predictors):

- Be careful with coding X, Y, Z
- Choice of models: e.g. (X,Y,Z), (X,YZ), (YZ,XZ), (XY,YZ,XZ), (XYZ)
- Variouse inference procedures:
- Estm model parameters; estm $\mu_{i j k}$; estm OR
- Model checking/comparison: Pearson's χ^{2}-test, LRT-test

Example. Alcohol, Cigarette and Marijuana Use

Alcohol	Cigarette		Marijuana Use (M)
Use (A)	Use (C)	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

Source: a survey conducted in 1992 by the Wright State Univ. School of Medicine and the United Health Services in Dayton.
Using read.table to read in data and as.data.frame to form it into R's data format, or

- counts $<-c(911,44,3,2,538,456,43,279)$
- $A<-g l(2,2,8) ; C<-g l(2,1,8) ; M<-g l(2,4,8)$;
$\# \# 1=$ yes, $2=$ no
- ACM.data $<-\operatorname{cbind}(A, C, M$, counts $)$

Run R to fit different models with the data: for example,

- For Model (ACM)

$$
\text { tmp.out }<- \text { glm(counts } \sim A * C * M, \text { family }=\text { poisson }) ;
$$

- For Model (AC,CM,AM)

$$
\text { tmp2.out <-gIm(counts } \sim A * C+C * M+A * M \text {, family = poisson); }
$$

- For Model (CM,AM)

$$
\text { tmp3.out }<- \text { gIm(counts } \sim C * M+A * M \text {, family }=\text { poisson }) ;
$$

- For Model (AC,M)

$$
\text { tmp4.out }<- \text { glm(counts } \sim A * C+M \text {, family }=\text { poisson }) ;
$$

- For Model (A,C,M)

$$
\text { tmp5.out }<- \text { glm(counts } \sim A+C+M, \text { family }=\text { poisson }) ;
$$

Step 1. Fitted Values for Loglinear Models:

- Plug in the estm for the parameters in the models to attain the fitted values, or
- Use "tmp.out\$ fitted", for example

The fit for (AC, AM, CM) is close to the observed data, the same as the fitted values for (ACM).

Fitted Values for Loglinear Models:

			Loglinear Model				
A	C	M	$(\mathrm{A}, \mathrm{C}, \mathrm{M})$	$(\mathrm{AC}, \mathrm{M})$	$(\mathrm{AM}, \mathrm{CM})$	$(\mathrm{AC}, \mathrm{AM}, \mathrm{CM})$	(ACM)
Yes	Yes	Yes	540.0	611.2	909.24	910.4	911
		No	740.2	837.8	438.84	538.6	538
	No	Yes	282.1	210.9	45.76	44.6	44
		No	386.7	289.1	555.16	455.4	456
No	Yes	Yes	90.6	19.4	4.76	3.6	3
		No	124.2	26.6	142.16	42.4	43
	No	Yes	47.3	118.5	0.24	1.4	2
		No	64.9	162.5	179.84	279.6	279

Step 2．To obtain estimates for what needed based on the analyses
－using the analysis outputs：the estms for the model parameters and their estimated standard errors
－using the fitted counts when applicable
e．g．the OR of alcohol use（A yes vs not）between cigarette use or not（C yes vs not）
－conditional on marijuana use（ $\mathrm{M}=\mathrm{yes}$ or not）
－marginal（regardless of M）

Step 3. Chi-Squared Goodness-of-Fit Tests: Loglinear Residuals

- $G^{2}[(A C, A M, C M)]=2 \sum n_{i j k} \log \left(\frac{n_{j k k}}{\hat{\mu}_{i j k}}\right)$
- $X^{2}[(A M, C M)]=\sum \frac{\left(n_{i j k}-\hat{\mu}_{j i k}\right)^{2}}{\hat{\mu}_{i j k}}$.
- e.g. the Pearson's residuals: $e_{i j k}=\frac{n_{i j k}-\hat{\mu}_{i j k}}{\sqrt{\hat{\mu}_{i j k}}}$
- residual plots: e.g. scatter plot of $e_{i j k}$ vs A

Step 4. Model Selection: (backward elimination)

Start: AIC $=65.04$ counts \sim ACM			
	Df	Deviance	AIC
- A:C:M	1	0.37399	63.417
< none >		0.00000	65.043
Step: $\mathrm{AIC}=63.42$ counts $\sim A+C+M+A C+A M+C M$			
	Df	Deviance	AIC
< none >		0.37	63.42
- A:M	1	92.02	153.06
- A:C	1	187.75	248.80
- C:M	1	497.37	558.41

Part V.2.2D for Three-Way Contingency Tables

Step 5. Tests about Partial Associations:

- The test statistic for testing $\lambda^{A C}=0$ in (AC, $\left.A M, C M\right)$ is

$$
\begin{aligned}
G^{2}[(A M, C M) \mid(A C, A M, C M)] & =G^{2}(A M, C M)-G^{2}(A C, A M, C M) \\
& =187.8-0.04
\end{aligned}
$$

$\mathrm{df}=2-1$
$\Longrightarrow p<0.001$: strong evidence against the null hypothesis and in favor of an A-C partial association.

What to study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)
5. Model Selection and Evaluation (Chp 5)
6. Additional Topics (Chp 6)

- 6.1 Exact inference (Chp 6.2)
- 6.2 Revisit to Loglinear and Logistic Models for Contingency Tables: the Loglinear-Logit Connection (Supplementary)
- 6.3 Revisit II to GLM and Some Advanced Topics (Chp 5.3, Chp 6.5)

