What to do today (Mar 15)?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)

- ▶ 5.1 Variable selection (Chp 5.1.1-4)
- ▶ 5.2 Tools to assess model fit (Chp 5.2)
- 5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20

6. Additional Topics (Chp 6)

5C. Model Selection and Evaluation: in multiple logistic regression

General Setting:

A binary response Y (e.g. success (1)/failure (0)); several explanatory variables X_1,\ldots,X_K (e.g. width, weight, color): to find out about the function $\pi(x_1,\ldots,x_K)=P(Y=1|X_1=x_1,\ldots,X_K=x_K)$

Multiple Logistic Regression Model:

$$logit[\pi(x_1,\ldots,x_K)] = log\left[\frac{\pi(x_1,\ldots,x_K)}{1-\pi(x_1,\ldots,x_K)}\right] = \alpha + \beta_1 x_1 + \ldots + \beta_K x_K$$

equivalently to
$$\pi(x_1,\ldots,x_K) = \frac{\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}{1+\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}$$
.

Available Data: $\{(y_i, x_{i1}, \dots, x_{iK}) : i = 1, \dots, n\}$ from indpt units.

Statistical inference under the model with the data:

- estimation of $\alpha, \beta_1, \ldots, \beta_K$: *MLE; CI/CR*; testing hypothese about $\alpha, \beta_1, \ldots, \beta_K$; estimation of $\pi(x_1, \ldots, x_K)$: *MLE; CI*
- model checking and variable selection: compare the analysis with the nonparametric one; residuals analysis; model comparison; model/variable selection

5C. Model Selection and Evaluation: in multiple logistic regression

Model Checking:

- inferential methods
 - ▶ after grouping data according to $X_1, ..., X_K$, applications of the Pearson's χ^2 -test and the LRT
 - ▶ applying the LRT for comparing M_0 vs M_1 , $\mathcal{G}^2(M_0|M_1) \sim \chi^2(df)$
- graphical methods: various residual plots
 - Pearson's residual: $e_k = \frac{y_k n_k \hat{\pi}_k}{\sqrt{n_k \hat{\pi}_k (1 \hat{\pi}_k)}}$ $y_k =$ num of successes with n_k trials
 - the standardized (adjusted) Pearson's residual: $e_k^* = \frac{e_k}{\sqrt{1-h_k}}$ h_k is the observation's leverage: the diagonal elements of estimated $\Sigma_{(K+1)\times(K+1)}$

5C. Model Selection and Evaluation: in multiple logistic regression

Variable Selection.

Caution in using multiple regression model about "multi-collinearity":

If there are strong correlations in X_1, \ldots, X_K , none of them could seem important in the presence of the others in the model.

Criteria for Variable Selection:

- classical criterion selecting/keeping only predictors according to a pre-specified significance level
- Information criteria: e.g. to achieve the min AIC, or corrected AIC or BIC

Example. Female Horseshoe Crabs and their Satellites: Revisit II. multiple logistic regression analysis

- ▶ Using Color and Width Predictors X₁ = width, X₂ = color: (a surrogate for age) light (not sampled), medium light, medium, medium dark, dark:
 - $X_{21} = 1$ for medium, $X_{21} = 0$ otherwise
 - $ightharpoonup X_{22} = 1$ for medium dark, = 0 otherwise
 - $X_{23} = 1$ for dark, $X_{23} = 0$ otherwise
- Consider $logit(\pi) = \alpha + \beta_1 x_1 + \beta_{21} x_{21} + \beta_{22} x_{22} + \beta_{23} x_{23}$

```
tmpy<-ifelse(ex.crab[,5]>0,1,0)

tmpx1<-ex.crab[,3]

tmpx2<-ex.crab[,1]

tmpout<-glm(tmpy^tmpx1+as.factor(tmpx2), family=binomial)

summary(tmpout)
```

------R Output ------

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1124 -0.9848 0.5243 0.8513 2.1413

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.38519 2.87346 -3.962 7.43e-05 ***

tmpx1 0.46796 0.10554 4.434 9.26e-06 ***

as.factor(tmpx2)2 0.07242 0.73989 0.098 0.922

as.factor(tmpx2)3 -0.22380 0.77708 -0.288 0.773

as.factor(tmpx2)4 -1.32992 0.85252 -1.560 0.119

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 187.46 on 168 degrees of freedom

AIC: 197.46

Revisit II.1: a multiple logistic regression analysis – goodness-of-fit? Inferential Procedures

- Compared to other models
 - ▶ to the null model $(M_0 : \pi = \frac{e^{\alpha}}{1+e^{\alpha}})$ $\mathcal{G}^2(M_0|M_1)_{obs} = 225.76 - 187.46$ with df = 5 - 1 = [173 - 1] - [173 - 5] $\implies p - value < .001$, a significant improvement
 - to the simple logistic model with width only $(M_0: \pi = \frac{e^{\alpha + \beta_1 x_1}}{1 + e^{\alpha + \beta_1 x_1}})$ $\mathcal{G}^2(M_0|M_1)_{obs} = 194.45 187.46 \text{ with } df = 5 2 = [173 2] [173 5]$ $\implies p value = .072, \text{ a marginal improvement } \text{ (the reduced model has the advantage of simpler interpretations)}$

Revisit II.2: multiple logistic regression analysis – To add in more predictors? How about two predictors' interactions? Model selection (Backward Elimination)

Consider the multiple logistic regression with different sets of predictors:

					Models	Deviance
Model	predictors	Deviance	df	AIC	Compared	Difference
1	CS + CW + SW	173.7	155	209.7	-	-
2	C + S + W	186.6	166	200.6	(2)- (1)	12.9 (df = 11)
3a	C + S	208.8	167	220.8	(3a)-(2)	22.2 (df = 1)
3b	S + W	194.4	169	202.4	(3b)-(2)	7.8 (df = 3)
3c	C + W	187.5	168	197.5	(3c)-(2)	0.9 (df = 2)
4a	C	212.1	169	220.1	(4a)-(3c)	24.6 (df = 1)
4b	W	194.5	171	198.5	(4b)-(3c)	7.0 (df = 3)
5	(C = dark) + W	188.0	170	194.0	(5)-(3c)	0.5 (df = 2)
6	None	225.8	172	227.8	(6)-(5)	37.8 (df = 2)

C=color; S=spine condition; W=width.

Note: A strong linear correlation between width and weight: sample corr=0.887. So weight is not included.

Revisit II.2: Model selection (Backward Elimination)

My variable selection by R

```
Using R function step(): a stepwise algorithm. step(object, direction = c("both", "backward", "forward"))
```

```
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpx1<-ex.crab[,3]
tmpx2<-as.factor(ex.crab[,1])
tmpx3<-as.factor(ex.crab[,2])
tmpout3<-glm(tmpy~tmpx1*tmpx2*tmpx3, family=binomial)
step(tmpout3)</pre>
```

```
-----R Output ------
Step: AIC=199.08
tmpy ~ tmpx1 + tmpx2 + tmpx1:tmpx2
           Df Deviance AIC
- tmpx1:tmpx2 3 187.46 197.46
<none> 183.08 199.08
Step: AIC=197.46
tmpv \sim tmpx1 + tmpx2
      Df Deviance AIC
<none> 187.46 197.46
- tmpx2 3 194.45 198.45
- tmpx1 1 212.06 220.06
Call: glm(formula = tmpy ~ tmpx1 + tmpx2, family = binomial)
```

Coefficients:

(Intercept) tmpx1 tmpx22 tmpx23 tmpx24 -11.38519 0.46796 0.07242 -0.22380 -1.32992

Degrees of Freedom: 172 Total (i.e. Null); 168 Residual Null Deviance: 225.8

Residual Deviance: 187.5 ATC: 197.5

5D. Model Selection and Evaluation: in loglinear regression

e.g. loglinear model for three-way contingency tables: Recall that

▶ how to establish the association of the cell counts, $N_{ijk} \sim Poisson(\mu_{ijk})$, with X, Y, and Z, three categorical variables?

Saturated Loglinear Model (XYZ) (including all main effects, two factor interactions, three factor interactions: df=IJK)

$$\log \mu_{ijk} = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{jk}^{YZ} + \lambda_{ik}^{XZ} + \lambda_{ijk}^{XYZ}$$

Loglinear Model of Multual Independence (X,Y,Z) (including only main effects: df = I + J + K - 2)

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z$$

Loglinear Model of Homogeneous Association (XY,YZ,XZ) (including all main effects, two factor interactions: assuming $\lambda_{ijk}^{XYZ}=0$)

$$\log \mu_{ijk} = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{ik}^{YZ} + \lambda_{ik}^{XZ}$$

Parameter Interpretation for Model (XY,YZ,XZ): when I=J=2, X-Y conditional odds ratio at Z=k for any k is

$$\log \theta_{XY(k)} = \log \left(\frac{\mu_{11k}\mu_{22k}}{\mu_{12k}\mu_{21k}}\right) = \left[\lambda_{11}^{XY} + \lambda_{22}^{XY}\right] - \left[\lambda_{12}^{XY} + \lambda_{21}^{XY}\right]$$

 \implies Homogeneous Conditional Association of X-Y Further, if $\lambda_{ij}^{XY}=0$,

- ▶ ⇒ Model (YZ,XZ)
- ▶ $\log \theta_{XY(k)} = 0$, for all $k \Longrightarrow X \bot Y | Z$

Statistical Inference with (the loglinear (Poisson) regression with 3 categorical predictors):

- \triangleright Be careful with coding X, Y, Z
- ► Choice of models: e.g. (X,Y,Z), (X,YZ), (YZ,XZ), (XY,YZ,XZ), (XYZ)
- Variouse inference procedures:
 - **E**stm model parameters; estm μ_{iik} ; estm OR
 - ▶ Model checking/comparison: Pearson's χ^2 -test, LRT-test

Example. Alcohol, Cigarette and Marijuana Use

Alcohol	Cigarette	Marijuana Use (M)		
Use (A)	Use (C)	Yes	No	
Yes	Yes	911	538	
	No	44	456	
No	Yes	3	43	
	No	2	279	

Source: a survey conducted in 1992 by the Wright State Univ. School of Medicine and the United Health Services in Dayton.

Using *read.table* to read in data and *as.data.frame* to form it into R's data format, or

- ightharpoonup counts < -c(911, 44, 3, 2, 538, 456, 43, 279)
- ► A < -gl(2,2,8); C < -gl(2,1,8); M < -gl(2,4,8); ##1 = yes, 2 = no
- ► ACM.data < -cbind(A, C, M, counts)

Run R to fit different models with the data: for example,

For Model (ACM)

$$tmp.out < -glm(counts \sim A * C * M, family = poisson);$$

For Model (AC,CM,AM)

$$tmp2.out < -gIm(counts \sim A * C + C * M + A * M, family = poisson);$$

For Model (CM,AM)

$$tmp3.out < -glm(counts \sim C * M + A * M, family = poisson);$$

For Model (AC,M)

$$tmp4.out < -glm(counts \sim A * C + M, family = poisson);$$

For Model (A,C,M)

$$tmp5.out < -glm(counts \sim A + C + M, family = poisson);$$

Step 1. Fitted Values for Loglinear Models:

- Plug in the estm for the parameters in the models to attain the fitted values, or
- ▶ Use "tmp.out\$fitted", for example

The fit for (AC,AM,CM) is close to the observed data, the same as the fitted values for (ACM).

Fitted	Values	for	Loglinear	Models:
I ILLEU	values	101	LUZIIIICAI	Models.

					1 1: 14	1.1	
			Loglinear Model				
Α	C	M	(A,C,M)	(AC,M)	(AM,CM)	(AC,AM,CM)	(ACM)
Yes	Yes	Yes	540.0	611.2	909.24	910.4	911
		No	740.2	837.8	438.84	538.6	538
	No	Yes	282.1	210.9	45.76	44.6	44
		No	386.7	289.1	555.16	455.4	456
No	Yes	Yes	90.6	19.4	4.76	3.6	3
		No	124.2	26.6	142.16	42.4	43
	No	Yes	47.3	118.5	0.24	1.4	2
		No	64.9	162.5	179.84	279.6	279

Step 2. To obtain estimates for what needed based on the analyses

- using the analysis outputs: the estms for the model parameters and their estimated standard errors
- using the fitted counts when applicable
- e.g. the OR of alcohol use (A yes vs not) between cigarette use or not (C yes vs not)
 - conditional on marijuana use (M=yes or not)
 - marginal (regardless of M)

Step 3. Chi-Squared Goodness-of-Fit Tests: Loglinear Residuals

•
$$G^2[(AC, AM, CM)] = 2 \sum n_{ijk} \log(\frac{n_{ijk}}{\hat{\mu}_{ijk}})$$

•
$$X^2[(AM, CM)] = \sum \frac{(n_{ijk} - \hat{\mu}_{ijk})^2}{\hat{\mu}_{ijk}}$$
.

- ightharpoonup e.g. the Pearson's residuals: $e_{ijk} = rac{n_{ijk} \hat{\mu}_{ijk}}{\sqrt{\hat{\mu}_{ijk}}}$
- residual plots: e.g. scatter plot of e_{ijk} vs A

Step 4. Model Selection: (backward elimination)

Start: AIC=65.04 counts \sim ACM					
	Df	Deviance	AIC		
- A:C:M	1	0.37399	63.417		
< none >		0.00000	65.043		
Step: AIC=63.42 counts $\sim A + C + M + AC + AM + CM$					
	Df	Deviance	AIC		
< none >		0.37	63.42		
- A:M	1	92.02	153.06		
- A:C	1	187.75	248.80		
- C:M	1	497.37	558.41		

Part V.2.2D for Three-Way Contingency Tables

Step 5. Tests about Partial Associations:

ullet The test statistic for testing $\lambda^{AC}=0$ in (AC,AM,CM) is

$$G^{2}[(AM, CM)|(AC, AM, CM)] = G^{2}(AM, CM) - G^{2}(AC, AM, CM)$$

= 187.8 - 0.04,

df=2-1

 \implies p < 0.001: strong evidence against the null hypothesis and in favor of an A-C partial association.

What will we study next?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analsyis with Count Response (Chp 4)
- 5. Model Selection and Evaluation (Chp 5)
 - ▶ 5.1 Variable selection (Chp 5.1.1-4)
 - ▶ 5.2 Tools to assess model fit (Chp 5.2)
 - 5.3 Examples
- 6. Additional Topics (Chp 6)