What to do today (Mar 15)?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)
» 5.1 Variable selection (Chp 5.1.1-4)
» 5.2 Tools to assess model fit (Chp 5.2)
» 5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20

6. Additional Topics (Chp 6)

X. Joan Hu: STAT-475/675 Department of Statistics and Actuarial Science Simon Fraser University



5C. Model Selection and Evaluation: in multiple

logistic regression
General Setting:
A binary response Y (e.g. success (1)/failure (0)); several explanatory
variables Xi, ..., Xk (e.g. width, weight, color): to find out about the
function m(x,...,xk) = P(Y =1|X1 = x1,..., Xk = xk)
Multiple Logistic Regression Model:

m(x1, ..., Xk)
177T(X1,...,XK)

/ogit[w(xl,...,xK)] :Iog{ } =a+ Bixy + ...+ Brxk

exp(atBixi+...+Bkxk)
1+exp(a+Bixi+...+Bkxk)

Available Data: {(y,-,x,-l, ceaXik)ii=1000, n} from indpt units.
Statistical inference under the model with the data:

equivalently to 7(xy,...,xk) =

> estimation of a, f1,...,8k: MLE; Cl/CR; testing hypothese about
a, P, ..., Pk; estimation of 7(xi,...,xk): MLE; Cl

» model checking and variable selection: compare the analysis with
the nonparametric one; residuals analysis; model comparison;
model/variable selection



5C. Model Selection and Evaluation: in multiple
logistic regression

Model Checking:
» inferential methods
» after grouping data according to Xi, ..., Xk, applications of
the Pearson’s y?-test and the LRT
» applying the LRT for comparing My vs My,
G?(Mo| M) ~ x?(df)

» graphical methods: various residual plots
Yk — Nk Tk

» Pearson's residual: e, = - -
\/nk‘n'k(l—ﬂ'k)

yxk=num of successes with ny trials
. . 1 H . _ €
» the standardized (adjusted) Pearson's residual: e} = i
hy is the observation's leverage: the diagonal elements of
estimated Z(K+1)><(K+1)




5C. Model Selection and Evaluation: in multiple
logistic regression
» Variable Selection.

Caution in using multiple regression model about
“multi-collinearity” :

If there are strong correlations in Xi, ..., Xk, none of them
could seem important in the presence of the others in the
model.

» Criteria for Variable Selection:

» classical criterion selecting/keeping only predictors according
to a pre-specified significance level

» Information criteria: e.g. to achieve the min AIC, or
corrected AIC or BIC



Example. Female Horseshoe Crabs and their Satellites: Revisit Il.
multiple logistic regression analysis

> Using Color and Width Predictors — X; = width, X, = color: (a
surrogate for age) light (not sampled), medium light, medium,
medium dark, dark:

» X>1 = 1 for medium, = 0 otherwise
» X, = 1 for medium dark, = 0 otherwise
» X3 = 1 for dark, = 0 otherwise

> Consider logit(m) = a + B1x1 + Parxo1 + Baoxan + Bazxos

R Codes
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpx1<-ex.crab[,3]
tmpx2<-ex.crabl[,1]
tmpout<-glm(tmpy~tmpx1+as.factor(tmpx2), family=binomial)

summary(tmpout)



R Output

Deviance Residuals:
Min  1Q Median 3Q Max

-2.1124 -0.9848 0.5243 0.8513 2.1413
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.38519 2.87346 -3.962 7.43e-05 ***
tmpx1 0.46796 0.10554 4.4349.26e-06 ***
as.factor(tmpx2)2 0.07242 0.73989 0.098 0.922
as.factor(tmpx2)3 -0.22380 0.77708 -0.288 0.773
as.factor(tmpx2)4 -1.32992 0.85252 -1.560 0.119
Signif. codes: 0 ‘“*** 0.001 **’ 0.01 ‘*'0.05°"0.1°"1
Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.46 on 168 degrees of freedom

AIC: 197.46
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Revisit 11.1: a multiple logistic regression analysis —
goodness-of-fit? Inferential Procedures
» Compared to other models
> to the null model (Mo : m = 1527)
G2(Mo|My)ops = 225.76 — 187.46 with
df =5—1=[173— 1] — [173 — 5]
—> p — value < .001, a significant improvement

> to the simple logistic model with width only
) o +HA1xL
(Mo : = W)
G%(Mo| M) obs = 194.45 — 187.46 with
df =5—-2=[173 - 2] — [173 - 5]
=—> p — value = .072, a marginal improvement
(the reduced model has the advantage of simpler
interpretations)



Revisit 11.2: multiple logistic regression analysis — To add in
more predictors? How about two predictors’ interactions?
Model selection (Backward Elimination)

Consider the multiple logistic regression with different sets of predictors:

Models Deviance
Model  predictors Deviance df AIC Compared  Difference
1 CS+CW+SW 1737 155 209.7 - -
2 C+S+W 186.6 166 200.6 (2)-(1) 12.9 (df = 11)
3a C+S 208.8 167 220.8 (3a)-(2) 222 (df = 1)
3b S+ W 194.4 169 202.4 (3b)-(2) 7.8 (df = 3)
3c C+WwW 187.5 168 1975 (3¢)-(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)-(3¢) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)-(3¢c) 7.0 (df = 3)
5 (C = dark) + W 188.0 170 194.0 (5)-(3¢) 0.5 (df = 2)
6 None 225.8 172 2278 (6)-(5) 37.8 (df = 2)

C=color; S=spine condition; W=width.
Note: A strong linear correlation between width and weight: sample corr=0.887.
So weight is not included.



Revisit 11.2: Model selection (Backward Elimination)
My variable selection by R ... ...

Using R function step(): a stepwise algorithm.
step(object, direction = c(" both",” backward" " forward"))

tmpy<-ifelse(ex.crab[,5]>0,1,0)

tmpxl<-ex.crab[, 3]

tmpx2<-as.factor (ex.crab[,1])
tmpx3<-as.factor(ex.crabl,2])

tmpout3<-glm (tmpy~tmpxl*tmpx2*tmpx3, family=binomial)
step (tmpout3)



Step: AIC=199.08
tmpy ~ tmpxl + tmpx2 + tmpxl:tmpx2

Df Deviance AIC
- tmpxl:tmpx2 3 187.46 197.46
<none> 183.08 199.08

Step: AIC=197.46
tmpy ~ tmpxl + tmpx2

Df Deviance AIC
<none> 187.46 197.46
- tmpx2 3 194.45 198.45
- tmpxl 1 212.06 220.06

Call: glm(formula = tmpy ~ tmpxl + tmpx2, family = binomial)

Coefficients:
(Intercept) tmpx1 tmpx22 tmpx23 tmpx24
-11.38519 0.46796 0.07242 -0.22380 -1.32992

Degrees of Freedom: 172 Total (i.e. Null); 168 Residual
Null Deviance: 225.8
Residual Deviance: 187.5 AIC: 197.5



5D. Model Selection and Evaluation: in loglinear

regression

e.g. loglinear model for three-way contingency tables:
Recall that

> how to establish the association of the cell counts, N ~ Poisson(fuj),
with X, Y, and Z, three categorical variables?

Saturated Loglinear Model (XYZ) (including all main effects, two factor
interactions, three factor interactions: df=I1JK)
log sk = X+ AX + N M+ N NE A N

Loglinear Model of Multual Independence (X,Y,Z) (including only main
effects: df =I4+-J+K-2)

log 1Lk :A+A?<+AJY+AE

Loglinear Model of Homogeneous Association (XY,YZ,XZ) (including all
main effects, two factor interactions: assuming )\Z-(,?/Z =0)

log puik = A+ A+ N + M+ A N F A



Parameter Interpretation for Model (XY,YZ,XZ): when 1=J=2, X-Y conditional
odds ratio at Z = k for any k is

log Oxy (k) = log (%) = [Aﬁy + >\§(2Y - [)\i(zy + )\g(ly

= Homogeneous Conditional Association of X-Y
Further, if A" =0,

> — Model (YZ,XZ)
> |0g0)(y(k) =0, forall k = XLY|Z

Statistical Inference with (the loglinear (Poisson) regression with 3 categorical
predictors):

» Be careful with coding X,Y,Z
> Choice of models: e.g. (X,Y,Z), (X,YZ), (YZ,XZ), (XY,YZ,XZ), (XYZ)
» Variouse inference procedures:

» Estm model parameters; estm pj; estm OR
» Model checking/comparison: Pearson’s x?-test, LRT-test



Example. Alcohol, Cigarette and Marijuana Use

Alcohol  Cigarette Marijuana Use (M)
Use (A) Use (C) Yes No
Yes Yes 911 538
No 44 456
No Yes 3 43
No 2 279

Source: a survey conducted in 1992 by the Wright State Univ.
School of Medicine and the United Health Services in Dayton.

Using read.table to read in data and as.data.frame to form it into R's
data format, or

> counts < —c(911,44,3,2,538,456,43,279)

> A< —gl(2,2,8); C < —gl(2,1,8); M < —gl(2,4,8),
##1 = yes,2 = no

> ACM.data < —cbind(A, C, M, counts)



Run

R to fit different models with the data: for example,
For Model (ACM)

tmp.out < —glm(counts ~ A x C x M, family = poisson);

For Model (AC,CM,AM)
tmp2.out < —glm(counts ~ Ax C + C x M + A x M, family = poisson);
For Model (CM,AM)
tmp3.out < —glm(counts ~ C x M + A x M, family = poisson);

For Model (AC,M)

tmpé.out < —glm(counts ~ A x C + M, family = poisson);
For Model (A,C,M)

tmp5.out < —glm(counts ~ A+ C + M, family = poisson);



Step 1. Fitted Values for Loglinear Models:

» Plug in the estm for the parameters in the models to attain the fitted
values, or

> Use “tmp.out$fitted”, for example
The fit for (AC,AM,CM) is close to the observed data, the same as the fitted
values for (ACM).
Fitted Values for Loglinear Models:

Loglinear Model

A C M “(ACM) (ACM) (AM,CM) (AC,AM,CM) (ACM)

Yes Yes Yes 540.0 611.2 909.24 910.4 911
No 740.2 837.8 438.84 538.6 538

No Yes 282.1 210.9 45.76 44.6 44

No 386.7 289.1 555.16 455.4 456

No Yes Yes 90.6 19.4 4.76 3.6 3
No 124.2 26.6 142.16 42.4 43

No Yes 47.3 118.5 0.24 1.4 2

No 64.9 162.5 179.84 279.6 279




Step 2. To obtain estimates for what needed based on the analyses

» using the analysis outputs: the estms for the model
parameters and their estimated standard errors

» using the fitted counts when applicable

e.g. the OR of alcohol use (A yes vs not) between cigarette use or
not (C yes vs not)

» conditional on marijuana use (M=yes or not)

» marginal (regardless of M)



Step 3. Chi-Squared Goodness-of-Fit Tests: Loglinear Residuals
* Gz[(AC7 AM, CM)]|=2>" Nijk log( ”ijk)

{Lijk

o X2[(AM, CM)] = X" (kﬂ—ipkuf

1 N — fii
> e.g. the Pearson's residuals: ej = Dk — Pk

» residual plots: e.g. scatter plot of ej vs A



Step 4. Model Selection: (backward elimination)

Start: AIC=65.04 counts ~ ACM

Df Deviance AIC
-A:CM 1 0.37399 63.417
< none > 0.00000 65.043
Step: AlC=63.42 counts ~ A+ C+ M+ AC + AM + CM

Df Deviance AIC
< none > 0.37 63.42
- A:M 1 92.02 153.06
- A:C 1 187.75 248.80

-CGM 1 497.37 558.41




Part V.2.2D for Three-Way Contingency Tables

Step 5. Tests about Partial Associations:
e The test statistic for testing A€ =0 in (AC,AM,CM) is

G?[(AM, CM)|(AC,AM,CM)] = G>*(AM, CM) — G*(AC,AM, CM)
187.8 — 0.04,

df=2-1
= p < 0.001: strong evidence against the null hypothesis and in
favor of an A-C partial association.



What will we study next?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)

5. Model Selection and Evaluation (Chp 5)
» 5.1 Variable selection (Chp 5.1.1-4)
» 5.2 Tools to assess model fit (Chp 5.2)
» 5.3 Examples

6. Additional Topics (Chp 6)



