
What to do today (Mar 13)?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)
I 5.1 Variable selection (Chp 5.1.1-4)

I 5.2 Tools to assess model fit (Chp 5.2)

I 5.3 Examples

6. Additional Topics (Chp 6)

X. Joan Hu: STAT-475/675 Department of Statistics and Actuarial Science Simon Fraser University



5A. Model Selection and Evaluation: Overview

Model selection in regression.

I to identify an appropriate probability model

I to identify an appropriate set of explanatory variables in the
appropriate model: variable selection

Model evalaution in regression.

I residuals: graphical assessment of residuals

I goodness-of-fit

I influence: influence measures such as leverage



5A. Model Selection and Evaluation: Overview

Model comparison criteria.

IC (k) = −2 log
(
L(β̂|data)

)
+ kr

with sample size n and r (non-redundant) parameters.

I Akaike’s Information Criterion (AIC):

AIC = IC (2) = −2 log
(
L(β̂|data)

)
+ 2r

I Corrected AIC:

AICc = IC (
2n

n − r − 1
) = −2 log

(
L(β̂|data)

)
+

2n

n − r − 1
r

I Bayesian Information Criterion (BIC; Schwarz criterion):

BIC = IC (log(n)) = −2 log
(
L(β̂|data)

)
+ log(n)r



5A. Model Selection and Evaluation: Overview

Variable selection.

Applying a method for model checking “dynamically” to achieve
the “best” model of a class of models, with a specified criterion at
each step

I forward selection starting from a model without any
predictor, and adding predictor to the regression model one by
one

I backward elimination starting from a regression model with
all potential predictors, and removing not important predictor
from the model one by one

I forward-backward or backward-forward selection
combinations of forward and backward selection



5B. Model Selection and Evaluation: in the simple
logistic regression

Statistical inference in the simple logistic regression.

Modeling. With the simple logistic regression model,
logit

[
π(x)

]
= α + βx ,

=⇒ Y |X = x ∼ Bernoulli(π(x))

Available data. data from a study with n independent individuals:
{(Xi ,Yi ) : i = 1, . . . , n}.

What to do?

I estimate α, β; test on hypothese about α, β; estimate π(x)

I model checking: is “logit
[
π(x)

]
= α + βx” a good model?



Example. Female Horseshoe Crabs and their Satellites: Revisit I
To consider a simplified problem: the response variable Y = 1 or 0 for
if presence of satellite; one predictor X =“width”

How does Y depend on X ? What is π(x) = P(Y = 1|X = x)?

20 22 24 26 28 30 32 34

0.
0

0.
5

1.
0

Width

P
re

se
nc

e 
of

 S
at

el
lit

es

2

3

1

3

3

2 132 33 2

2

4

2 12 2

4

22 12 34

4

22

42

1

12

2 2

4 2

2

4

231 1 23 322 2 24 212 2 223

24 3

3 32 2 22

2 2

233

3

2

32

32

3

2

3 43

3

2

4

244 2

2

24 23

2

3

33 322 22 2 32 22 2 22

3

2 2

4

4

3

2 33 1

3

2 2

2

34 221

2

24 2

2

232 2 223

2 2

4 223 22

222 4

2

2

2

3

322 2

4

2

23

33 3

142

Model A.
Model B.

Fitted model logit
[
π(x)

]
= −12.35 + 0.497x



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (i) If X is categorical with I levels

I The study data can be summarized by an I × 2 table, as Y is
binary.

I To diagnose the simple logistic regression model:
to test on H0 : logit

[
π(x)

]
= α + βx vs H1: otherwise

I If the cell counts in the table ≥ 5 and the overall total
n >> 1,
=⇒ applications of the Pearson’s χ2-test and LRT-test with
the two way contingency table:



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (i) If X is categorical with I levels

Under H0 and df = I − 2,

K2 =
∑ (observed − fitted)2

fitted
∼ χ2(df );

G2 = 2
∑

(observed) log
(observed

fitted

)
∼ χ2(df )

fitted = π̂(x) ∗
(
#subjects in x group

)
or

fitted =
(
1− π̂(x)

)
∗
(
#subjects in x group

)



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (ii) If X is continuous or discrete but with large I ∗ levels

I Group the values of X into a finite number of I such that
n/I ≥ 5

I the larger I is, the less coarsening but the I × 2 table’s cell
counts are smaller

I the smaller I is, the more coarsening and thus more away from
the really value

I Form the I × 2 table and then use the approaches in Case (i)

different grouping/partitioning ⇒ different conclusion?



5B. Model Selection and Evaluation: in the simple
logistic regression

Likelihood-Ratio Model Comparison Test.
In general, to compare a “smaller” model to a “larger” model in
good fit: H0 : model M0 vs H1 : model M1 with M0 ⊂ M1

For example, M1 : π(x) = eα+βx

1+eα+βx and M0 : π(x) = eα

1+eα

The LRT-test statistic

G2(M0|M1) = −2 log
(max LM0

max LM1

)
∼ χ2(df )

approximately under H0, with df = dfM1 − dfM0 .



5B. Model Selection and Evaluation: in the simple
logistic regression

Likelihood-Ratio Model Comparison Test.
Often, to obtain G2(M0|M1) = G2(M0|Ms)− G2(M1|Ms)

I Ms is the “saturated” model: the model gives the perfect fit –
its number of parameters is the same as the df of the data

I G2(M0|Ms) and G2(M1|Ms) are referred to as the deviances of
M0 and M1 (to Ms), denoted by G2(M0) and G2(M1)
sometime

more about this later ... ...



5B. Model Selection and Evaluation: in the simple
logistic regression

Residuals for the Logit Model.

The Pearson’s χ2 − test K2 =
∑ (observed−fitted)2

fitted is the same as∑
e2

k : ek =
sk − nk π̂k√
nk π̂k (1− π̂k )

nk = #xi = k with sk successes and πk = P(success|X = k).
ek ’s: the Pearson’s residuals

I If nk ↑, ek ∼ N(0, var(ek )) under H0 approximately:
var(ek ) < 1.

I If ek ≥ 2→ possible lack of fit.

I Graphical displays of ek ’s: residual plots



5B. Model Selection and Evaluation: in the simple
logistic regression

Residuals for the Logit Model.
Often the adjusted residuals are used:

e∗k =
ek√

1− hk
=

sk − nk π̂k√
var(sk − nk π̂k )

∼ N(0, 1)

approximately uner H0

Diagnostic measures of influence:

I values of ek ’s or e∗k
I outliers: extrem values?

I deleting outliers to obtain a better fit?
I taking them as important signals?



Example. Female Horseshoe Crabs and their Satellites Revisit
I (cont’d)

I Model checking A: Is the logistic model appropriate?

I Classifying width values into 8 groups:
(0, 23.25], (23.25, 24.25], ..., (28.25, 29.25], (29.25,∞)

I Form 8× 2 table
I Obtain K2

obs = 5.3 and G2
obs = 6.2 (df=6)

I Conclusion: no evidence of lack of fit

Q: original 66× 2? Can be K2-test or G2-test directly applied?



Example. Female Horseshoe Crabs and their Satellites Revisit
I (cont’d)

I Model checking B: Can the term of X in the logistic model be
omitted?
With the 8× 2 table:
H0 : logit(π(x)) = α vs H1 : logit(π(x)) = α + βx
G 2(M1

∣∣M0) = 34.0− 6 = 28(df = 1)

strong evidence against H0



Example. Female Horseshoe Crabs and their Satellites Revisit
I (cont’d)

I Model checking B: Can the term of X in the logistic model be
omitted?

With the original data (66× 2 table):
G 2(M1

∣∣M0) = 225.76− 194.45 = 31.3(df = 1) strong evidence
against H0

tmpy<-ifelse(ex.crab[,5]>0,1,0) 

tmpout<-glm(tmpy~ex.crab[,3], family=binomial) 

summary(tmpout) 

 

================================== 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.0281  -1.0458   0.5480   0.9066   1.6942   

 

    Null deviance: 225.76  on 172  degrees of freedom 

Residual deviance: 194.45  on 171  degrees of freedom 

AIC: 198.45 

=============================== 
 

 



Example. Female Horseshoe Crabs and their Satellites Revisit
I (cont’d)

Compared to testing H0 : β = 0?

I 8× 2 table: β̂
SEβ̂

= 0.46316/0.09787 = 4.732 ⇒ p < 0.001

I 66× 2 table: β̂
SEβ̂

= 0.4972/0.1017 = 4.887 ⇒ p < 0.001



Example. Female Horseshoe Crabs and their Satellites: More
Revisits ...

About What Aspects?

I More than one factors, including qualitative predicators

I The original response: not binary but count of satellites

=⇒ their model evaluation and selection?



5C. Model Selection and Evaluation: in multiple
logistic regression

General Setting:
A binary response Y (e.g. success (1)/failure (0)); several explanatory
variables X1, . . . ,XK (e.g. width, weight, color): to find out about the
function π(x1, . . . , xK ) = P(Y = 1|X1 = x1, . . . ,XK = xK )
Multiple Logistic Regression Model:

logit
[
π(x1, . . . , xK )

]
= log

[ π(x1, . . . , xK )

1− π(x1, . . . , xK )

]
= α + β1x1 + . . .+ βK xK

equivalently to π(x1, . . . , xK ) = exp(α+β1x1+...+βK xK )
1+exp(α+β1x1+...+βK xK ) .

Available Data:
{

(yi , xi1, . . . , xiK ) : i = 1, . . . , n
}

from indpt units.
Statistical inference under the model with the data:

I estimation of α, β1, . . . , βK : MLE; CI/CR; testing hypothese about
α, β1, . . . , βK ; estimation of π(x1, . . . , xK ): MLE; CI

I model checking and variable selection: compare the analysis with
the nonparametric one; residuals analysis; model comparison;
model/variable selection



5C. Model Selection and Evaluation: in multiple
logistic regression

Model Checking:
I inferential methods

I after grouping data according to X1, . . . ,XK , applications of
the Pearson’s χ2-test and the LRT

I applying the LRT for comparing M0 vs M1,
G2(M0|M1) ∼ χ2(df )

I graphical methods: various residual plots
I Pearson’s residual: ek = yk−nk π̂k√

nk π̂k (1−π̂k )

yk =num of successes with nk trials
I the standardized (adjusted) Pearson’s residual: e∗k = ek√

1−hk

hk is the observation’s leverage: the diagonal elements of
estimated Σ(K+1)×(K+1)



5C. Model Selection and Evaluation: in multiple
logistic regression

I Variable Selection.
Caution in using multiple regression model about
“multi-collinearity”:
If there are strong correlations in X1, . . . ,XK , none of them
could seem important in the presence of the others in the
model.

I Criteria for Variable Selection:

I classical criterion selecting/keeping only predictors according
to a pre-specified significance level

I Information criteria: e.g. to achieve the min AIC, or
corrected AIC or BIC



Example. Female Horseshoe Crabs and their Satellites: Revisit II.
multiple logistic regression analysis

I Using Color and Width Predictors – X1 = width, X2 = color : (a
surrogate for age) light (not sampled), medium light, medium,
medium dark, dark:

I X21 = 1 for medium, = 0 otherwise
I X22 = 1 for medium dark, = 0 otherwise
I X23 = 1 for dark, = 0 otherwise

I Consider logit(π) = α + β1x1 + β21x21 + β22x22 + β23x23

-------------------R Codes--------------------------------------------- 

tmpy<-ifelse(ex.crab[,5]>0,1,0) 

tmpx1<-ex.crab[,3] 

tmpx2<-ex.crab[,1] 

tmpout<-glm(tmpy~tmpx1+as.factor(tmpx2), family=binomial) 

summary(tmpout) 

 

 

 

 

 

 

 

 



---------------R Output ------------------------------------------- 

Deviance Residuals:   

    Min       1Q   Median       3Q      Max   

-2.1124  -0.9848   0.5243   0.8513   2.1413   

Coefficients:                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)       -11.38519    2.87346  -3.962 7.43e-05 *** 

tmpx1               0.46796    0.10554   4.434 9.26e-06 *** 

as.factor(tmpx2)2   0.07242    0.73989   0.098    0.922     

as.factor(tmpx2)3  -0.22380    0.77708  -0.288    0.773     

as.factor(tmpx2)4  -1.32992    0.85252  -1.560    0.119     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 Null deviance: 225.76  on 172  degrees of freedom 

Residual deviance: 187.46  on 168  degrees of freedom 

AIC: 197.46 
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Revisit II.1: a multiple logistic regression analysis –
goodness-of-fit? Inferential Procedures

I Compared to other models
I to the null model (M0 : π = eα

1+eα )

G2(M0|M1)obs = 225.76− 187.46 with
df = 5− 1 = [173− 1]− [173− 5]
=⇒ p − value < .001, a significant improvement

I to the simple logistic model with width only

(M0 : π = eα+β1x1

1+eα+β1x1
)

G2(M0|M1)obs = 194.45− 187.46 with
df = 5− 2 = [173− 2]− [173− 5]
=⇒ p − value = .072, a marginal improvement
(the reduced model has the advantage of simpler
interpretations)



Revisit II.2: multiple logistic regression analysis – To add in
more predictors? How about two predictors’ interactions?
Model selection (Backward Elimination)

Consider the multiple logistic regression with different sets of predictors:

Models Deviance
Model predictors Deviance df AIC Compared Difference
1 C S + C W + S W 173.7 155 209.7 - -
2 C + S + W 186.6 166 200.6 (2)-(1) 12.9 (df = 11)
3a C + S 208.8 167 220.8 (3a)-(2) 22.2 (df = 1)
3b S + W 194.4 169 202.4 (3b)-(2) 7.8 (df = 3)
3c C + W 187.5 168 197.5 (3c)-(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)-(3c) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)-(3c) 7.0 (df = 3)
5 (C = dark) + W 188.0 170 194.0 (5)-(3c) 0.5 (df = 2)
6 None 225.8 172 227.8 (6)-(5) 37.8 (df = 2)
C=color; S=spine condition; W=width.
Note: A strong linear correlation between width and weight: sample corr=0.887.
So weight is not included.



Revisit II.2: Model selection (Backward Elimination)
My variable selection by R ... ...

Using R function step(): a stepwise algorithm.
step(object, direction = c(”both”, ”backward”, ”forward”))

--------R Codes -------------------------------- 

tmpy<-ifelse(ex.crab[,5]>0,1,0) 

tmpx1<-ex.crab[,3] 

tmpx2<-as.factor(ex.crab[,1]) 

tmpx3<-as.factor(ex.crab[,2]) 

tmpout3<-glm(tmpy~tmpx1*tmpx2*tmpx3, family=binomial) 

step(tmpout3) 

 
 



----------------R Output ----------------------- 

Step:  AIC=199.08 

tmpy ~ tmpx1 + tmpx2 + tmpx1:tmpx2 

 

              Df Deviance    AIC 

- tmpx1:tmpx2  3   187.46 197.46 

<none>             183.08 199.08 

 

Step:  AIC=197.46 

tmpy ~ tmpx1 + tmpx2 

 

        Df Deviance    AIC 

<none>       187.46 197.46 

- tmpx2  3   194.45 198.45 

- tmpx1  1   212.06 220.06 

 

Call:  glm(formula = tmpy ~ tmpx1 + tmpx2, family = binomial) 

 

Coefficients: 

(Intercept)        tmpx1       tmpx22       tmpx23       tmpx24   

  -11.38519      0.46796      0.07242     -0.22380     -1.32992   

 

Degrees of Freedom: 172 Total (i.e. Null);  168 Residual 

Null Deviance:     225.8  

Residual Deviance: 187.5  AIC: 197.5  



What will we study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)

5. Model Selection and Evaluation (Chp 5)

I 5.1 Variable selection (Chp 5.1.1-4)

I 5.2 Tools to assess model fit (Chp 5.2)

I 5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20

6. Additional Topics (Chp 6)


