What to do today (Mar 13)?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)

- ▶ 5.1 Variable selection (Chp 5.1.1-4)
- ▶ 5.2 Tools to assess model fit (Chp 5.2)
- 5.3 Examples

6. Additional Topics (Chp 6)

- 4 同 ト 4 ヨ ト

5A. Model Selection and Evaluation: Overview

Model selection in regression.

- to identify an appropriate probability model
- to identify an appropriate set of explanatory variables in the appropriate model: variable selection

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Model evalaution in regression.

- residuals: graphical assessment of residuals
- goodness-of-fit
- influence: influence measures such as *leverage*

5A. Model Selection and Evaluation: Overview

Model comparison criteria.

$$IC(k) = -2\log\left(L(\hat{\beta}|data)\right) + kr$$

with sample size n and r (non-redundant) parameters.

Akaike's Information Criterion (AIC):

$$AIC = IC(2) = -2\log\left(L(\hat{eta}|data)\right) + 2r$$

Corrected AIC:

$$AIC_c = IC(rac{2n}{n-r-1}) = -2\log\left(L(\hat{eta}|data)
ight) + rac{2n}{n-r-1}r$$

Bayesian Information Criterion (BIC; Schwarz criterion):

$$BIC = IC(\log(n)) = -2\log(L(\hat{\beta}|data)) + \log(n)r$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

5A. Model Selection and Evaluation: Overview

Variable selection.

Applying a method for model checking "dynamically" to achieve the "best" model of a class of models, with a specified criterion at each step

- forward selection starting from a model without any predictor, and adding predictor to the regression model one by one
- backward elimination starting from a regression model with all potential predictors, and removing not important predictor from the model one by one
- forward-backward or backward-forward selection combinations of forward and backward selection

Statistical inference in the simple logistic regression.

Modeling. With the simple logistic regression model, $logit[\pi(x)] = \alpha + \beta x$, $\implies Y|X = x \sim Bernoulli(\pi(x))$

Available data. data from a study with *n* independent individuals: $\{(X_i, Y_i) : i = 1, ..., n\}$.

What to do?

- estimate α, β ; test on hypothese about α, β ; estimate $\pi(x)$
- model checking: is "logit $[\pi(x)] = \alpha + \beta x$ " a good model?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Example. Female Horseshoe Crabs and their Satellites: Revisit I **To consider a simplified problem:** the response variable Y = 1 or 0 for if presence of satellite; one predictor X = "width"

How does Y depend on X? What is $\pi(x) = P(Y = 1 | X = x)$?

Fitted model $logit[\pi(x)] = -12.35 + 0.497x$

Case (i) If X is categorical with / levels

- ► The study data can be summarized by an *I* × 2 table, as *Y* is binary.
- ► To diagnose the simple logistic regression model: to test on H₀ : logit [π(x)] = α + βx vs H₁: otherwise
- ► If the cell counts in the table ≥ 5 and the overall total n >> 1,

 \implies applications of the Pearson's $\chi^2\text{-test}$ and LRT-test with the two way contingency table:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Case (i) If X is categorical with / levels

Under H_0 and df = I - 2,

$$\mathcal{K}^{2} = \sum \frac{(observed - fitted)^{2}}{fitted} \sim \chi^{2}(df);$$

$$\mathcal{G}^{2} = 2\sum (observed) \log \left(\frac{observed}{fitted}\right) \sim \chi^{2}(df)$$
fitted = $\hat{\pi}(x) * (\# subjects \ in \ x \ group)$ or
fitted = $(1 - \hat{\pi}(x)) * (\# subjects \ in \ x \ group)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Case (ii) If X is continuous or discrete but with large l^* levels

- Group the values of X into a finite number of I such that $n/I \ge 5$
 - ► the larger *I* is, the less coarsening but the *I* × 2 table's cell counts are smaller
 - the smaller *I* is, the more coarsening and thus more away from the really value

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Form the $I \times 2$ table and then use the approaches in Case (i)

different grouping/partitioning \Rightarrow *different conclusion?*

Likelihood-Ratio Model Comparison Test.

In general, to compare a "smaller" model to a "larger" model in good fit: H_0 : model M_0 vs H_1 : model M_1 with $M_0 \subset M_1$

For example,
$$M_1:\pi(x)=rac{e^{lpha+eta x}}{1+e^{lpha+eta x}}$$
 and $M_0:\pi(x)=rac{e^{lpha}}{1+e^{lpha}}$

The LRT-test statistic

$$\mathcal{G}^2(M_0|M_1) = -2\log\left(\frac{\max L_{M_0}}{\max L_{M_1}}\right) \sim \chi^2(df)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

approximately under H_0 , with $df = df_{M_1} - df_{M_0}$.

Likelihood-Ratio Model Comparison Test. Often, to obtain $\mathcal{G}^2(M_0|M_1) = \mathcal{G}^2(M_0|M_s) - \mathcal{G}^2(M_1|M_s)$

- ► M_s is the "saturated" model: the model gives the perfect fit its number of parameters is the same as the df of the data
- G²(M₀|M_s) and G²(M₁|M_s) are referred to as the deviances of M₀ and M₁ (to M_s), denoted by G²(M₀) and G²(M₁) sometime

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

more about this later

Residuals for the Logit Model. The Pearson's $\chi^2 - test \ \mathcal{K}^2 = \sum \frac{(observed - fitted)^2}{fitted}$ is the same as

$$\sum e_k^2: \quad e_k = rac{s_k - n_k \hat{\pi}_k}{\sqrt{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $n_k = \#x_i = k$ with s_k successes and $\pi_k = P(success | X = k)$. e_k 's: the Pearson's residuals

- If n_k ↑, e_k ~ N(0, var(e_k)) under H₀ approximately: var(e_k) < 1.</p>
- If $e_k \ge 2 \rightarrow$ possible lack of fit.
- Graphical displays of ek's: residual plots

Residuals for the Logit Model.

Often the adjusted residuals are used:

$$e_k^* = rac{e_k}{\sqrt{1-h_k}} = rac{s_k-n_k\hat{\pi}_k}{\sqrt{ extsf{var}(s_k-n_k\hat{\pi}_k)}} \sim N(0,1)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

approximately uner H_0

Diagnostic measures of influence:

- values of e_k's or e^{*}_k
- outliers: extrem values?
 - deleting outliers to obtain a better fit?
 - taking them as important signals?

- Model checking A: Is the logistic model appropriate?
 - ▶ Classifying width values into 8 groups: (0, 23.25], (23.25, 24.25], ..., (28.25, 29.25], (29.25, ∞)
 - Form 8×2 table
 - Obtain $\mathcal{K}^2_{obs} = 5.3$ and $\mathcal{G}^2_{obs} = 6.2$ (df=6)
 - Conclusion: no evidence of lack of fit

 ${\bf Q}:$ original 66 \times 2? Can be ${\cal K}^2\text{-test}$ or ${\cal G}^2\text{-test}$ directly applied?

(日) (四) (문) (문) (문)

Model checking B: Can the term of X in the logistic model be omitted?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

With the 8×2 table:

$$\begin{array}{l} H_0 : logit(\pi(x)) = \alpha \text{ vs } H_1 : logit(\pi(x)) = \alpha + \beta x \\ G^2(M_1 | M_0) = 34.0 - 6 = 28(df = 1) \end{array}$$

strong evidence against H₀

Model checking B: Can the term of X in the logistic model be omitted?

```
With the original data (66 \times 2 table):

G^2(M_1|M_0) = 225.76 - 194.45 = 31.3(df = 1) strong evidence

against H_0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Compared to testing $H_0: \beta = 0$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example. Female Horseshoe Crabs and their Satellites: More Revisits ...

About What Aspects?

- More than one factors, including qualitative predicators
- The original response: not binary but count of satellites

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \implies their model evaluation and selection?

General Setting:

A binary response Y (e.g. success (1)/failure (0)); several explanatory variables X_1, \ldots, X_K (e.g. width, weight, color): to find out about the function $\pi(x_1, \ldots, x_K) = P(Y = 1 | X_1 = x_1, \ldots, X_K = x_K)$ **Multiple Logistic Regression Model:**

$$logit[\pi(x_1,\ldots,x_K)] = log\left[\frac{\pi(x_1,\ldots,x_K)}{1-\pi(x_1,\ldots,x_K)}\right] = \alpha + \beta_1 x_1 + \ldots + \beta_K x_K$$

equivalently to $\pi(x_1, \ldots, x_K) = \frac{\exp(\alpha + \beta_1 x_1 + \ldots + \beta_K x_K)}{1 + \exp(\alpha + \beta_1 x_1 + \ldots + \beta_K x_K)}$. Available Data: $\{(y_i, x_{i1}, \ldots, x_{iK}) : i = 1, \ldots, n\}$ from indpt units. Statistical inference under the model with the data:

- ► estimation of α, β₁,..., β_K: MLE; CI/CR; testing hypothese about α, β₁,..., β_K; estimation of π(x₁,..., x_K): MLE; CI
- model checking and variable selection: compare the analysis with the nonparametric one; residuals analysis; model comparison; model/variable selection

Model Checking:

inferential methods

- ▶ after grouping data according to X₁,..., X_K, applications of the Pearson's χ²-test and the LRT
- applying the LRT for comparing M_0 vs M_1 , $\mathcal{G}^2(M_0|M_1) \sim \chi^2(df)$
- graphical methods: various residual plots
 - ► Pearson's residual: $e_k = \frac{y_k n_k \hat{\pi}_k}{\sqrt{n_k \hat{\pi}_k (1 \hat{\pi}_k)}}$ $y_k =$ num of successes with n_k trials
 - ► the standardized (adjusted) Pearson's residual: e^{*}_k = e^{*}_k √(1-h_k) is the observation's leverage: the diagonal elements of estimated Σ_{(K+1)×(K+1)}

Variable Selection.

Caution in using multiple regression model about "multi-collinearity":

If there are strong correlations in X_1, \ldots, X_K , none of them could seem important in the presence of the others in the model.

Criteria for Variable Selection:

 classical criterion selecting/keeping only predictors according to a pre-specified significance level

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 Information criteria: e.g. to achieve the min AIC, or corrected AIC or BIC **Example. Female Horseshoe Crabs and their Satellites**: Revisit II. multiple logistic regression analysis

- Using Color and Width Predictors X₁ = width, X₂ = color: (a surrogate for age) light (not sampled), medium light, medium, medium dark, dark:
 - $X_{21} = 1$ for medium, = 0 otherwise
 - $X_{22} = 1$ for medium dark, = 0 otherwise
 - $X_{23} = 1$ for dark, = 0 otherwise
- Consider $logit(\pi) = \alpha + \beta_1 x_1 + \beta_{21} x_{21} + \beta_{22} x_{22} + \beta_{23} x_{23}$

```
-----R Codes------R
```

```
tmpy<-ifelse(ex.crab[,5]>0,1,0)
```

tmpx1<-ex.crab[,3]

tmpx2<-ex.crab[,1]

tmpout<-glm(tmpy~tmpx1+as.factor(tmpx2), family=binomial)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

summary(tmpout)

------R Output ------

Deviance Residuals:

Min 1Q Median 3Q Max -2.1124 -0.9848 0.5243 0.8513 2.1413 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -11.38519 2.87346 -3.962 7.43e-05 *** tmpx1 0.46796 0.10554 4.434 9.26e-06 *** as.factor(tmpx2)2 0.07242 0.73989 0.098 0.922 as.factor(tmpx2)3 -0.22380 0.77708 -0.288 0.773 as.factor(tmpx2)4 -1.32992 0.85252 -1.560 0.119 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 187.46 on 168 degrees of freedom AIC: 197.46

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Width

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Revisit II.1: a multiple logistic regression analysis – goodness-of-fit? Inferential Procedures

Compared to other models

▶ to the null model
$$(M_0 : \pi = \frac{e^{\alpha}}{1+e^{\alpha}})$$

 $\mathcal{G}^2(M_0|M_1)_{obs} = 225.76 - 187.46$ with
 $df = 5 - 1 = [173 - 1] - [173 - 5]$
 $\implies p - value < .001$, a significant improvement

▶ to the simple logistic model with width only $(M_0: \pi = \frac{e^{\alpha+\beta_1x_1}}{1+e^{\alpha+\beta_1x_1}})$ $\mathcal{G}^2(M_0|M_1)_{obs} = 194.45 - 187.46$ with df = 5 - 2 = [173 - 2] - [173 - 5] $\implies p - value = .072$, a marginal improvement (the reduced model has the advantage of simpler interpretations)

Revisit II.2: multiple logistic regression analysis – To add in more predictors? How about two predictors' interactions? **Model selection (Backward Elimination)**

Consider the multiple logistic regression with different sets of predictors:

					Models	Deviance
Model	predictors	Deviance	df	AIC	Compared	Difference
1	C S + C W + S W	173.7	155	209.7	-	-
2	C + S + W	186.6	166	200.6	(2)-(1)	12.9 (df = 11)
3a	C + S	208.8	167	220.8	(3a)-(2)	22.2 (df = 1)
3b	S + W	194.4	169	202.4	(3b)-(2)	7.8 (df = 3)
3c	C + W	187.5	168	197.5	(3c)-(2)	0.9 (df = 2)
4a	С	212.1	169	220.1	(4a)-(3c)	24.6 (df = 1)
4b	W	194.5	171	198.5	(4b)-(3c)	7.0 (df = 3)
5	(C = dark) + W	188.0	170	194.0	(5)-(3c)	0.5 (df = 2)
6	None	225.8	172	227.8	(6)-(5)	37.8 (df = 2)

C=color; S=spine condition; W=width.

Note: A strong linear correlation between width and weight: sample corr=0.887. So weight is not included.

(=) (

Revisit II.2: Model selection (Backward Elimination) My variable selection by R

Using R function *step*(): a stepwise algorithm. *step*(*object*, *direction* = *c*("*both*","*backward*","*forward*"))

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

-----R Output -----R Step: AIC=199.08 tmpy ~ tmpx1 + tmpx2 + tmpx1:tmpx2 Df Deviance AIC - tmpx1:tmpx2 3 187.46 197.46 <none> 183.08 199.08 Step: AIC=197.46 tmpv ~ tmpx1 + tmpx2 Df Deviance AIC <none> 187.46 197.46 - tmpx2 3 194.45 198.45 - tmpx1 1 212.06 220.06 Call: glm(formula = tmpy ~ tmpx1 + tmpx2, family = binomial) Coefficients: (Intercept) tmpx1 tmpx22 tmpx23 tmpx24 -11.38519 0.46796 0.07242 -0.22380 -1.32992 Degrees of Freedom: 172 Total (i.e. Null); 168 Residual Null Deviance: 225.8 Residual Deviance: 187.5 AIC: 197.5

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のくで

What will we study next?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analsyis with Count Response (Chp 4)
- 5. Model Selection and Evaluation (Chp 5)
 - ▶ 5.1 Variable selection (Chp 5.1.1-4)
 - ▶ 5.2 Tools to assess model fit (Chp 5.2)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20

6. Additional Topics (Chp 6)