What to do today (Mar 13)?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)

5. Model Selection and Evaluation (Chp 5)
» 5.1 Variable selection (Chp 5.1.1-4)
» 5.2 Tools to assess model fit (Chp 5.2)
» 5.3 Examples

6. Additional Topics (Chp 6)
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5A. Model Selection and Evaluation: Overview

Model selection in regression.
> to identify an appropriate probability model

> to identify an appropriate set of explanatory variables in the
appropriate model: variable selection

Model evalaution in regression.
> residuals: graphical assessment of residuals
» goodness-of-fit

> influence: influence measures such as leverage



5A. Model Selection and Evaluation: Overview
Model comparison criteria.
IC(k) = —2log (L(B|data)) + kr

with sample size n and r (non-redundant) parameters.

> Akaike’s Information Criterion (AIC):
AIC = IC(2) = —2log (L(f|data)) + 2r

» Corrected AIC:

2n
n—r—1

2n

AICC = IC( mr

)= —2log (L(B|data)) +

> Bayesian Information Criterion (BIC; Schwarz criterion):

BIC = IC(log(n)) = —2log (L(f|data)) + log(n)r



5A. Model Selection and Evaluation: Overview

Variable selection.

Applying a method for model checking “dynamically” to achieve
the “best” model of a class of models, with a specified criterion at
each step

» forward selection starting from a model without any
predictor, and adding predictor to the regression model one by
one

» backward elimination starting from a regression model with
all potential predictors, and removing not important predictor
from the model one by one

» forward-backward or backward-forward selection
combinations of forward and backward selection



5B. Model Selection and Evaluation: in the simple
logistic regression

Statistical inference in the simple logistic regression.

Modeling. With the simple logistic regression model,
logit [m(x)] = o + Bx,
= Y|X = x ~ Bernoulli(m(x))

Available data. data from a study with n independent individuals:
{(X;,Y:):i=1,...,n}.

What to do?

> estimate «, 3; test on hypothese about «, 3; estimate m(x)

» model checking: is “logit[m(x)] = o + Bx” a good model?



Example. Female Horseshoe Crabs and their Satellites: Revisit |
To consider a simplified problem: the response variable Y =1 or 0 for
if presence of satellite; one predictor X=“width"

How does Y depend on X? What is 7(x) = P(Y = 1|X = x)?

Model A.
—— Model B.
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Fitted model logit [m(x)] = —12.35 + 0.497x



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (i) If X is categorical with / levels

» The study data can be summarized by an / x 2 table, as Y is
binary.

» To diagnose the simple logistic regression model:
to test on Hy : logit[m(x)] = a + Bx vs Hy: otherwise

» If the cell counts in the table > 5 and the overall total
n>>1,
— applications of the Pearson's y?-test and LRT-test with
the two way contingency table:



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (i) If X is categorical with / levels
Under Hy and df = — 2,

bserved — fitted)?
S ~ 2(df);
Z fitted X (df)

2 _ observedy 2
g _2Z(observed)log( Ftted ) X~ (df)

fitted = #(x) = (#subjects in x group) or
fitted = (1 — #(x)) * (#subjects in x group)



5B. Model Selection and Evaluation: in the simple
logistic regression

Case (ii) If X is continuous or discrete but with large /* levels

» Group the values of X into a finite number of / such that
n/l >5
> the larger [ is, the less coarsening but the / x 2 table's cell
counts are smaller
» the smaller / is, the more coarsening and thus more away from
the really value

» Form the / x 2 table and then use the approaches in Case (i)

different grouping/partitioning = different conclusion?



5B. Model Selection and Evaluation: in the simple
logistic regression

Likelihood-Ratio Model Comparison Test.
In general, to compare a “smaller” model to a “larger” model in
good fit: Hy : model My vs Hy : model My with My C My

e t+Bx a

For example, My : m(x) = 15575 and Mo : m(x) = 15oa
The LRT-test statistic
Mo|My) = —2log (T - ) ~ x(df
G2(Mo|My) = —2log (2" ) ~ \(df)

approximately under Ho, with df = dfp, — dfp,.



5B. Model Selection and Evaluation: in the simple
logistic regression

Likelihood-Ratio Model Comparison Test.
Often, to obtain G2(Mg|My) = G?(Mo|Ms) — G?(M1|Ms)

> M is the “saturated” model: the model gives the perfect fit —
its number of parameters is the same as the df of the data

> G?(Mo|Ms) and G2(Mi|Ms) are referred to as the deviances of

Mo and My (to Ms), denoted by G2(Mp) and G?(M)
sometime

more about this later ... ...



5B. Model Selection and Evaluation: in the simple
logistic regression

Residuals for the Logit Model.
—fitted)?
The Pearson’s x? — test K? =" W is the same as

Zz_ Sk — MRy
€ €k =

\/nkﬁk(l — ’ﬁ'k)

nk = #x; = k with s, successes and my = P(success|X = k).
er's: the Pearson’s residuals

> If ne 1, ex ~ N(O, var(ex)) under Hy approximately:
var(ex) < 1.
> If ¢ > 2 — possible lack of fit.

» Graphical displays of e's: residual plots



5B. Model Selection and Evaluation: in the simple
logistic regression

Residuals for the Logit Model.
Often the adjusted residuals are used:

ek Sk — NiTk

V1 — h - var(sx — nkk)

approximately uner Hy

ef = ~ N(0,1)

Diagnostic measures of influence:
» values of e,'s or e

» outliers: extrem values?

» deleting outliers to obtain a better fit?
» taking them as important signals?



Example. Female Horseshoe Crabs and their Satellites Revisit
| (cont'd)

» Model checking A: Is the logistic model appropriate?

» Classifying width values into 8 groups:
(0,23.25],(23.25,24.25], ..., (28.25, 29.25], (29.25, o0)

» Form 8 x 2 table

» Obtain K2,, = 5.3 and G%,, = 6.2 (df=6)

» Conclusion: no evidence of lack of fit

Q: original 66 x 2? Can be K2-test or G>-test directly applied?



Example. Female Horseshoe Crabs and their Satellites Revisit
| (cont'd)

» Model checking B: Can the term of X in the logistic model be
omitted?
With the 8 x 2 table:
Ho : logit(m(x)) = a vs Hi : logit(m(x)) = o+ Sx
G?(My|Mp) = 34.0 — 6 = 28(df = 1)

strong evidence against Hy



Example. Female Horseshoe Crabs and their Satellites Revisit
| (cont'd)

» Model checking B: Can the term of X in the logistic model be

omitted?
With the original data (66 x 2 table):
G?(My|Mo) = 225.76 — 194.45 = 31.3(df = 1) strong evidence
against Hy
tmpy<-ifelse (ex.crab[,5]>0,1,0)

tmpout<-glm(tmpy~ex.crab[,3], family=binomial)
summary (tmpout)

Deviance Residuals:
Min 10 Median 30 Max
-2.0281 -1.0458 0.5480 0.9066 1.6942

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 194.45 on 171 degrees of freedom
AIC: 198.45




Example. Female Horseshoe Crabs and their Satellites Revisit
| (cont'd)

Compared to testing Hp : 5 =07
> 8 x 2 table: % — 0.46316/0.09787 = 4.732 = p < 0.001

> 66 x 2 table: <2- — 0.4972/0.1017 — 4.887 = p < 0.001
SEB



Example. Female Horseshoe Crabs and their Satellites: More
Revisits ...

About What Aspects?

» More than one factors, including qualitative predicators

» The original response: not binary but count of satellites

= their model evaluation and selection?



5C. Model Selection and Evaluation: in multiple

logistic regression
General Setting:
A binary response Y (e.g. success (1)/failure (0)); several explanatory
variables Xi, ..., Xk (e.g. width, weight, color): to find out about the
function m(x,...,xk) = P(Y =1|X1 = x1,..., Xk = xk)
Multiple Logistic Regression Model:

m(x1, ..., Xk)
177T(X1,...,XK)

/ogit[w(xl,...,xK)] :Iog{ } =a+ Bixy + ...+ Brxk

exp(atBixi+...+Bkxk)
1+exp(a+Bixi+...+Bkxk)

Available Data: {(y,-,x,-l, ceaXik)ii=1000, n} from indpt units.
Statistical inference under the model with the data:

equivalently to 7(xy,...,xk) =

> estimation of a, f1,...,8k: MLE; Cl/CR; testing hypothese about
a, P, ..., Pk; estimation of 7(xi,...,xk): MLE; Cl

» model checking and variable selection: compare the analysis with
the nonparametric one; residuals analysis; model comparison;
model/variable selection



5C. Model Selection and Evaluation: in multiple
logistic regression

Model Checking:
» inferential methods
» after grouping data according to Xi, ..., Xk, applications of
the Pearson’s y?-test and the LRT
» applying the LRT for comparing My vs My,
G?(Mo| M) ~ x?(df)

» graphical methods: various residual plots
Yk — Nk Tk

» Pearson's residual: e, = - -
\/nk‘n'k(l—ﬂ'k)

yxk=num of successes with ny trials
. . 1 H . _ €
» the standardized (adjusted) Pearson's residual: e} = i
hy is the observation's leverage: the diagonal elements of
estimated Z(K+1)><(K+1)




5C. Model Selection and Evaluation: in multiple
logistic regression

» Variable Selection.

Caution in using multiple regression model about
“multi-collinearity” :

If there are strong correlations in Xi, ..., Xk, none of them
could seem important in the presence of the others in the
model.

» Criteria for Variable Selection:

» classical criterion selecting/keeping only predictors according
to a pre-specified significance level

» Information criteria: e.g. to achieve the min AIC, or
corrected AIC or BIC



Example. Female Horseshoe Crabs and their Satellites: Revisit Il.
multiple logistic regression analysis

> Using Color and Width Predictors — X; = width, X, = color: (a
surrogate for age) light (not sampled), medium light, medium,
medium dark, dark:

» X>1 = 1 for medium, = 0 otherwise
» X, = 1 for medium dark, = 0 otherwise
» X3 = 1 for dark, = 0 otherwise

> Consider logit(m) = a + B1x1 + Parxo1 + Baoxan + Bazxos

R Codes
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpx1<-ex.crab[,3]
tmpx2<-ex.crabl[,1]
tmpout<-glm(tmpy~tmpx1+as.factor(tmpx2), family=binomial)

summary(tmpout)



R Output

Deviance Residuals:
Min  1Q Median 3Q Max

-2.1124 -0.9848 0.5243 0.8513 2.1413
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.38519 2.87346 -3.962 7.43e-05 ***
tmpx1 0.46796 0.10554 4.4349.26e-06 ***
as.factor(tmpx2)2 0.07242 0.73989 0.098 0.922
as.factor(tmpx2)3 -0.22380 0.77708 -0.288 0.773
as.factor(tmpx2)4 -1.32992 0.85252 -1.560 0.119
Signif. codes: 0 ‘“*** 0.001 **’ 0.01 ‘*'0.05°"0.1°"1
Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.46 on 168 degrees of freedom

AIC: 197.46
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Revisit 11.1: a multiple logistic regression analysis —
goodness-of-fit? Inferential Procedures
» Compared to other models
> to the null model (Mo : m = 1527)
G2(Mo|My)ops = 225.76 — 187.46 with
df =5—1=[173— 1] — [173 — 5]
—> p — value < .001, a significant improvement

> to the simple logistic model with width only
) o +HA1xL
(Mo : = W)
G%(Mo| M) obs = 194.45 — 187.46 with
df =5—-2=[173 - 2] — [173 - 5]
=—> p — value = .072, a marginal improvement
(the reduced model has the advantage of simpler
interpretations)



Revisit 11.2: multiple logistic regression analysis — To add in
more predictors? How about two predictors’ interactions?
Model selection (Backward Elimination)

Consider the multiple logistic regression with different sets of predictors:

Models Deviance
Model  predictors Deviance df AIC Compared  Difference
1 CS+CW+SW 1737 155 209.7 - -
2 C+S+W 186.6 166 200.6 (2)-(1) 12.9 (df = 11)
3a C+S 208.8 167 220.8 (3a)-(2) 222 (df = 1)
3b S+ W 194.4 169 202.4 (3b)-(2) 7.8 (df = 3)
3c C+WwW 187.5 168 1975 (3¢)-(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)-(3¢) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)-(3¢c) 7.0 (df = 3)
5 (C = dark) + W 188.0 170 194.0 (5)-(3¢) 0.5 (df = 2)
6 None 225.8 172 2278 (6)-(5) 37.8 (df = 2)

C=color; S=spine condition; W=width.
Note: A strong linear correlation between width and weight: sample corr=0.887.
So weight is not included.



Revisit 11.2: Model selection (Backward Elimination)
My variable selection by R ... ...

Using R function step(): a stepwise algorithm.
step(object, direction = c(" both",” backward" " forward"))

tmpy<-ifelse(ex.crab[,5]>0,1,0)

tmpxl<-ex.crab[, 3]

tmpx2<-as.factor (ex.crab[,1])
tmpx3<-as.factor(ex.crabl,2])

tmpout3<-glm (tmpy~tmpxl*tmpx2*tmpx3, family=binomial)
step (tmpout3)



Step: AIC=199.08
tmpy ~ tmpxl + tmpx2 + tmpxl:tmpx2

Df Deviance AIC
- tmpxl:tmpx2 3 187.46 197.46
<none> 183.08 199.08

Step: AIC=197.46
tmpy ~ tmpxl + tmpx2

Df Deviance AIC
<none> 187.46 197.46
- tmpx2 3 194.45 198.45
- tmpxl 1 212.06 220.06

Call: glm(formula = tmpy ~ tmpxl + tmpx2, family = binomial)

Coefficients:
(Intercept) tmpx1 tmpx22 tmpx23 tmpx24
-11.38519 0.46796 0.07242 -0.22380 -1.32992

Degrees of Freedom: 172 Total (i.e. Null); 168 Residual
Null Deviance: 225.8
Residual Deviance: 187.5 AIC: 197.5



What will we study next?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)

5. Model Selection and Evaluation (Chp 5)
» 5.1 Variable selection (Chp 5.1.1-4)
» 5.2 Tools to assess model fit (Chp 5.2)
» 5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20

6. Additional Topics (Chp 6)



