What to do today (Mar 13)?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analysis with Count Variables (Chp 4)
5. Model Selection and Evaluation (Chp 5)

- 5.1 Variable selection (Chp 5.1.1-4)
- 5.2 Tools to assess model fit (Chp 5.2)
- 5.3 Examples

6. Additional Topics (Chp 6)

5A. Model Selection and Evaluation: Overview

Model selection in regression.

- to identify an appropriate probability model
- to identify an appropriate set of explanatory variables in the appropriate model: variable selection

Model evalaution in regression.

- residuals: graphical assessment of residuals
- goodness-of-fit
- influence: influence measures such as leverage

5A. Model Selection and Evaluation: Overview

Model comparison criteria.

$$
I C(k)=-2 \log (L(\hat{\beta} \mid \text { data }))+k r
$$

with sample size n and r (non-redundant) parameters.

- Akaike's Information Criterion (AIC):

$$
A I C=I C(2)=-2 \log (L(\hat{\beta} \mid \text { data }))+2 r
$$

- Corrected AIC:

$$
A I C_{c}=I C\left(\frac{2 n}{n-r-1}\right)=-2 \log (L(\hat{\beta} \mid \text { data }))+\frac{2 n}{n-r-1} r
$$

- Bayesian Information Criterion (BIC; Schwarz criterion):

$$
B I C=I C(\log (n))=-2 \log (L(\hat{\beta} \mid \text { data }))+\log (n) r
$$

5A. Model Selection and Evaluation: Overview

Variable selection.
Applying a method for model checking "dynamically" to achieve the "best" model of a class of models, with a specified criterion at each step

- forward selection starting from a model without any predictor, and adding predictor to the regression model one by one
- backward elimination starting from a regression model with all potential predictors, and removing not important predictor from the model one by one
- forward-backward or backward-forward selection combinations of forward and backward selection

5B. Model Selection and Evaluation: in the simple logistic regression

Statistical inference in the simple logistic regression.
Modeling. With the simple logistic regression model, $\operatorname{logit}[\pi(x)]=\alpha+\beta x$,
$\Longrightarrow Y \mid X=x \sim \operatorname{Bernoulli}(\pi(x))$
Available data. data from a study with n independent individuals: $\left\{\left(X_{i}, Y_{i}\right): i=1, \ldots, n\right\}$.

What to do?

- estimate α, β; test on hypothese about α, β; estimate $\pi(x)$
- model checking: is "logit $[\pi(x)]=\alpha+\beta x$ " a good model?

Example. Female Horseshoe Crabs and their Satellites: Revisit I
To consider a simplified problem: the response variable $Y=1$ or 0 for if presence of satellite; one predictor $X=$ "width"
How does Y depend on X ? What is $\pi(x)=P(Y=1 \mid X=x)$?

Fitted model $\operatorname{logit}[\pi(x)]=-12.35+0.497 x$

5B. Model Selection and Evaluation: in the simple logistic regression

Case (i) If X is categorical with / levels

- The study data can be summarized by an $I \times 2$ table, as Y is binary.
- To diagnose the simple logistic regression model: to test on $H_{0}: \operatorname{logit}[\pi(x)]=\alpha+\beta x$ vs H_{1} : otherwise
- If the cell counts in the table ≥ 5 and the overall total $n \gg 1$, \Longrightarrow applications of the Pearson's χ^{2}-test and LRT-test with the two way contingency table:

5B. Model Selection and Evaluation: in the simple logistic regression

Case (i) If X is categorical with / levels
Under H_{0} and $d f=I-2$,

$$
\begin{gathered}
\mathcal{K}^{2}=\sum \frac{(\text { observed }- \text { fitted })^{2}}{\text { fitted }} \sim \chi^{2}(d f) \\
\mathcal{G}^{2}=2 \sum(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right) \sim \chi^{2}(d f)
\end{gathered}
$$

fitted $=\hat{\pi}(x) *(\#$ subjects in \times group $)$ or fitted $=(1-\hat{\pi}(x)) *(\#$ subjects in x group $)$

5B．Model Selection and Evaluation：in the simple logistic regression

Case（ii）If X is continuous or discrete but with large I^{*} levels
－Group the values of X into a finite number of I such that $n / l \geq 5$
－the larger I is，the less coarsening but the $I \times 2$ table＇s cell counts are smaller
－the smaller I is，the more coarsening and thus more away from the really value
－Form the $I \times 2$ table and then use the approaches in Case（i） different grouping／partitioning \Rightarrow different conclusion？

5B. Model Selection and Evaluation: in the simple logistic regression

Likelihood-Ratio Model Comparison Test.
In general, to compare a "smaller" model to a "larger" model in good fit: H_{0} : model M_{0} vs $H_{1}:$ model M_{1} with $M_{0} \subset M_{1}$

For example, $M_{1}: \pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}$ and $M_{0}: \pi(x)=\frac{e^{\alpha}}{1+e^{\alpha}}$
The LRT-test statistic

$$
\mathcal{G}^{2}\left(M_{0} \mid M_{1}\right)=-2 \log \left(\frac{\max L_{M_{0}}}{\max L_{M_{1}}}\right) \sim \chi^{2}(d f)
$$

approximately under H_{0}, with $d f=d f_{M_{1}}-d f_{M_{0}}$.

5B. Model Selection and Evaluation: in the simple logistic regression

Likelihood-Ratio Model Comparison Test.
Often, to obtain $\mathcal{G}^{2}\left(M_{0} \mid M_{1}\right)=\mathcal{G}^{2}\left(M_{0} \mid M_{s}\right)-\mathcal{G}^{2}\left(M_{1} \mid M_{s}\right)$

- M_{s} is the "saturated" model: the model gives the perfect fit its number of parameters is the same as the df of the data
- $\mathcal{G}^{2}\left(M_{0} \mid M_{s}\right)$ and $\mathcal{G}^{2}\left(M_{1} \mid M_{s}\right)$ are referred to as the deviances of M_{0} and M_{1} (to M_{s}), denoted by $\mathcal{G}^{2}\left(M_{0}\right)$ and $\mathcal{G}^{2}\left(M_{1}\right)$ sometime
more about this later

5B. Model Selection and Evaluation: in the simple logistic regression

Residuals for the Logit Model.
The Pearson's χ^{2} - test $\mathcal{K}^{2}=\sum \frac{(\text { observed-fitted })^{2}}{\text { fitted }}$ is the same as

$$
\sum e_{k}^{2}: \quad e_{k}=\frac{s_{k}-n_{k} \hat{\pi}_{k}}{\sqrt{n_{k} \hat{\pi}_{k}\left(1-\hat{\pi}_{k}\right)}}
$$

$n_{k}=\# x_{i}=k$ with s_{k} successes and $\pi_{k}=P($ success $\mid X=k)$.
e_{k} 's: the Pearson's residuals

- If $n_{k} \uparrow, e_{k} \sim N\left(0, \operatorname{var}\left(e_{k}\right)\right)$ under H_{0} approximately: $\operatorname{var}\left(e_{k}\right)<1$.
- If $e_{k} \geq 2 \rightarrow$ possible lack of fit.
- Graphical displays of e_{k} 's: residual plots

5B. Model Selection and Evaluation: in the simple logistic regression

Residuals for the Logit Model.
Often the adjusted residuals are used:

$$
e_{k}^{*}=\frac{e_{k}}{\sqrt{1-h_{k}}}=\frac{s_{k}-n_{k} \hat{\pi}_{k}}{\sqrt{\operatorname{var}\left(s_{k}-n_{k} \hat{\pi}_{k}\right)}} \sim N(0,1)
$$

approximately uner H_{0}
Diagnostic measures of influence:

- values of e_{k} 's or e_{k}^{*}
- outliers: extrem values?
- deleting outliers to obtain a better fit?
- taking them as important signals?

Example. Female Horseshoe Crabs and their Satellites Revisit I (cont'd)

- Model checking A: Is the logistic model appropriate?
- Classifying width values into 8 groups: (0, 23.25], $(23.25,24.25], \ldots,(28.25,29.25],(29.25, \infty)$
- Form 8×2 table
- Obtain $\mathcal{K}_{\text {obs }}^{2}=5.3$ and $\mathcal{G}_{\text {obs }}^{2}=6.2(\mathrm{df}=6)$
- Conclusion: no evidence of lack of fit

Q: original 66×2 ? Can be \mathcal{K}^{2}-test or \mathcal{G}^{2}-test directly applied?

Example. Female Horseshoe Crabs and their Satellites Revisit I (cont'd)

- Model checking B: Can the term of X in the logistic model be omitted?
With the 8×2 table:

$$
\begin{aligned}
& H_{0}: \operatorname{logit}(\pi(x))=\alpha \text { vs } H_{1}: \operatorname{logit}(\pi(x))=\alpha+\beta x \\
& G^{2}\left(M_{1} \mid M_{0}\right)=34.0-6=28(d f=1)
\end{aligned}
$$

strong evidence against H_{0}

Example. Female Horseshoe Crabs and their Satellites Revisit I (cont'd)

- Model checking B: Can the term of X in the logistic model be omitted?
With the original data (66×2 table):
$G^{2}\left(M_{1} \mid M_{0}\right)=225.76-194.45=31.3(d f=1)$ strong evidence against H_{0}

```
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpout<-glm(tmpy~ex.crab[,3], family=binomial)
summary(tmpout)
=====================================
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.0281 & -1.0458 & 0.5480 & 0.9066 & 1.6942
\end{tabular}
    Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 194.45 on 171 degrees of freedom
AIC: 198.45
```

Example. Female Horseshoe Crabs and their Satellites Revisit I (cont'd)

Compared to testing $H_{0}: \beta=0$?
-8×2 table: $\frac{\hat{\beta}}{S E_{\hat{\beta}}}=0.46316 / 0.09787=4.732 \Rightarrow p<0.001$

- 66×2 table: $\frac{\hat{\beta}}{S E_{\hat{\beta}}}=0.4972 / 0.1017=4.887 \Rightarrow p<0.001$

Example．Female Horseshoe Crabs and their Satellites：More Revisits ．．．

About What Aspects？

－More than one factors，including qualitative predicators
－The original response：not binary but count of satellites
\Longrightarrow their model evaluation and selection？

5C. Model Selection and Evaluation: in multiple

 logistic regressionGeneral Setting:
A binary response Y (e.g. success (1)/failure (0)); several explanatory variables X_{1}, \ldots, X_{K} (e.g. width, weight, color): to find out about the function $\pi\left(x_{1}, \ldots, x_{K}\right)=P\left(Y=1 \mid X_{1}=x_{1}, \ldots, X_{K}=x_{K}\right)$
Multiple Logistic Regression Model:
$\operatorname{logit}\left[\pi\left(x_{1}, \ldots, x_{K}\right)\right]=\log \left[\frac{\pi\left(x_{1}, \ldots, x_{K}\right)}{1-\pi\left(x_{1}, \ldots, x_{K}\right)}\right]=\alpha+\beta_{1} x_{1}+\ldots+\beta_{K} x_{K}$
equivalently to $\pi\left(x_{1}, \ldots, x_{K}\right)=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\ldots+\beta_{K} x_{K}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\ldots+\beta_{K} x_{K}\right)}$.
Available Data: $\left\{\left(y_{i}, x_{i 1}, \ldots, x_{i K}\right): i=1, \ldots, n\right\}$ from indpt units. Statistical inference under the model with the data:

- estimation of $\alpha, \beta_{1}, \ldots, \beta_{K}: M L E ; C I / C R ;$ testing hypothese about $\alpha, \beta_{1}, \ldots, \beta_{K} ;$ estimation of $\pi\left(x_{1}, \ldots, x_{K}\right)$: MLE; CI
- model checking and variable selection: compare the analysis with the nonparametric one; residuals analysis; model comparison; model/variable selection

5C. Model Selection and Evaluation: in multiple logistic regression

Model Checking:

- inferential methods
- after grouping data according to X_{1}, \ldots, X_{K}, applications of the Pearson's χ^{2}-test and the LRT
- applying the LRT for comparing M_{0} vs M_{1}, $\mathcal{G}^{2}\left(M_{0} \mid M_{1}\right) \sim \chi^{2}(d f)$
- graphical methods: various residual plots
- Pearson's residual: $e_{k}=\frac{y_{k}-n_{k} \hat{\pi}_{k}}{\sqrt{n_{k} \hat{\pi}_{k}\left(1-\hat{\pi}_{k}\right)}}$ $y_{k}=$ num of successes with n_{k} trials
- the standardized (adjusted) Pearson's residual: $e_{k}^{*}=\frac{e_{k}}{\sqrt{1-h_{k}}}$ h_{k} is the observation's leverage: the diagonal elements of estimated $\sum_{(K+1) \times(K+1)}$

5C. Model Selection and Evaluation: in multiple logistic regression

- Variable Selection.

Caution in using multiple regression model about "multi-collinearity":
If there are strong correlations in X_{1}, \ldots, X_{K}, none of them could seem important in the presence of the others in the model.

- Criteria for Variable Selection:
- classical criterion selecting/keeping only predictors according to a pre-specified significance level
- Information criteria: e.g. to achieve the min AIC, or corrected AIC or BIC

Example. Female Horseshoe Crabs and their Satellites: Revisit II. multiple logistic regression analysis

- Using Color and Width Predictors - $X_{1}=$ width, $X_{2}=$ color: (a surrogate for age) light (not sampled), medium light, medium, medium dark, dark:
- $X_{21}=1$ for medium, $=0$ otherwise
- $X_{22}=1$ for medium dark, $=0$ otherwise
- $X_{23}=1$ for dark, $=0$ otherwise
- Consider $\operatorname{logit}(\pi)=\alpha+\beta_{1} x_{1}+\beta_{21} x_{21}+\beta_{22} x_{22}+\beta_{23} x_{23}$

```
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpx1<-ex.crab[,3]
tmpx2<-ex.crab[,1]
tmpout<-glm(tmpy~tmpx1+as.factor(tmpx2), family=binomial)
summary(tmpout)
```

Deviance Residuals:

```
    Min 1Q Median 3Q Max
-2.1124-0.9848 0.5243 0.8513 2.1413
Coefficients: Estimate Std. Error z value Pr(> |z|)
(Intercept) -11.38519 2.87346 -3.962 7.43e-05
tmpx1 0.46796 0.10554 4.434 9.26e-06 *
as.factor(tmpx2)2 0.07242 0.73989 0.098 0.922
as.factor(tmpx2)3 -0.22380 0.77708 -0.288 0.773
as.factor(tmpx2)4 -1.32992 0.85252 -1.560 0.119
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.46 on 168 degrees of freedom
AIC: 197.46
```


Revisit II.1: a multiple logistic regression analysis -goodness-of-fit? Inferential Procedures

- Compared to other models
- to the null model ($\left.M_{0}: \pi=\frac{e^{\alpha}}{1+e^{\alpha}}\right)$
$\mathcal{G}^{2}\left(M_{0} \mid M_{1}\right)_{\text {obs }}=225.76-187.46$ with
$d f=5-1=[173-1]-[173-5]$
$\Longrightarrow p$ - value $<.001$, a significant improvement
- to the simple logistic model with width only

$$
\begin{aligned}
& \left(M_{0}: \pi=\frac{e^{\alpha+\beta_{1} x_{1}}}{1+e^{\alpha+\beta_{1} x_{1}}}\right) \\
& \mathcal{G}^{2}\left(M_{0} \mid M_{1}\right)_{o b s}=194.45-187.46 \text { with } \\
& d f=5-2=[173-2]-[173-5]
\end{aligned}
$$

$\Longrightarrow p-$ value $=.072$, a marginal improvement (the reduced model has the advantage of simpler interpretations)

Revisit II.2: multiple logistic regression analysis - To add in more predictors? How about two predictors' interactions? Model selection (Backward Elimination)
Consider the multiple logistic regression with different sets of predictors:

Model	predictors	Deviance	df	AIC	Models Compared	Deviance Difference
1	C S C W + S W	173.7	155	209.7	-	-
2	C + S + W	186.6	166	200.6	$(2)-(1)$	$12.9(\mathrm{df}=11)$
3a	C + S	208.8	167	220.8	$(3 a)-(2)$	$22.2(\mathrm{df}=1)$
3b	S + W	194.4	169	202.4	$(3 b)-(2)$	$7.8(\mathrm{df}=3)$
3c	C + W	187.5	168	197.5	$(3 \mathrm{c})-(2)$	$0.9(\mathrm{df}=2)$
4a	C	212.1	169	220.1	$(4 a)-(3 \mathrm{c})$	$24.6(\mathrm{df}=1)$
4b	W	194.5	171	198.5	$(4 b)-(3 \mathrm{c})$	$7.0(\mathrm{df}=3)$
5	(C = dark $)+\mathrm{W}$	188.0	170	194.0	$(5)-(3 \mathrm{c})$	$0.5(\mathrm{df}=2)$
6	None	225.8	172	227.8	$(6)-(5)$	$37.8(\mathrm{df}=2)$

$\mathrm{C}=$ color; $\mathrm{S}=$ spine condition; $\mathrm{W}=$ width.
Note: A strong linear correlation between width and weight: sample corr $=0.887$.
So weight is not included.

Revisit II.2: Model selection (Backward Elimination)
My variable selection by R
Using R function step(): a stepwise algorithm.
step(object, direction $=c($ " both", " backward", " forward" $)$)

```
--------R Codes
tmpy<-ifelse(ex.crab[,5]>0,1,0)
tmpx1<-ex.crab[,3]
tmpx2<-as.factor(ex.crab[,1])
tmpx3<-as.factor(ex.crab[,2])
tmpout3<-glm(tmpy~tmpx1*tmpx2*tmpx3, family=binomial)
step(tmpout3)
```

```
-----------------R Output ------------------------------
Step: AIC=199.08
tmpy ~ tmpx1 + tmpx2 + tmpx1:tmpx2
    Df Deviance AIC
- tmpx1:tmpx2 3 187.46 197.46
<none> 183.08 199.08
Step: AIC=197.46
tmpy ~ tmpx1 + tmpx2
    Df Deviance AIC
<none> 187.46 197.46
- tmpx2 3 194.45 198.45
- tmpx1 1 212.06 220.06
Call: glm(formula = tmpy ~ tmpx1 + tmpx2, family = binomial)
Coefficients:
\begin{tabular}{rrrrr} 
(Intercept) & tmpx1 & tmpx22 & tmpx23 & tmpx24 \\
-11.38519 & 0.46796 & 0.07242 & -0.22380 & -1.32992
\end{tabular}
Degrees of Freedom: 172 Total (i.e. Null); 168 Residual
Null Deviance: 225.8
Residual Deviance: 187.5 AIC: 197.5
```


What will we study next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)
5. Model Selection and Evaluation (Chp 5)

- 5.1 Variable selection (Chp 5.1.1-4)
- 5.2 Tools to assess model fit (Chp 5.2)
- 5.3 Examples

Midterm 2: AQ 3005; 10:30-11:20
6. Additional Topics (Chp 6)

