What to do today (Mar 8)?

4. Analysis with Count Response (Chp 4)

4.1 Poisson Model for Counts (Chp 4.1)

4.2 Poisson Regression Analysis (Chp 4.2)

4.3 Additional Topics on Count Responses (Chp 4.3-4)

- 4.3.1 Poisson rate regression
- 4.3.2 Overdispersion and zero inflation
- 4.3.3 Generalized linear models II

A Review for Midterm 2

- 4 同 ト - 4 三 ト - 4 三 ト

4.3.1A Poisson rate regression: Introduction

A "rate" variable is often of interest Y/t: e.g.

- number of computer crashes in some area
- number of arrivals at an airport over some time periods

When the baseline measure of the "exposure" varies over observations?

- The measure needs to be incorporated into the analysis.
- One way to do this is to model Y/t instead of just Y: Y =count of events; t =measure of opportunity for events.

Poisson Rate Regression Model. Consider the response $Y|t, x_1, \ldots, x_K \sim Poisson(\mu(x_1, \ldots, x_K; t))$ and assume

$$\log[\mu(x_1,\ldots,x_K;t)] = \log(t) + \beta_0 + \beta_1 x_1 + \ldots + \beta_K x_K,$$

equivalently to $E(Y/t|\mathbf{x}) = \exp(\beta_0 + \beta_1 x_1 + \ldots + \beta_K x_K).$

4.3.1B Poisson rate regression: Example

Example. Number of Credit Cards vs Income (*https://onlinecourses.science.psu.edu/stat504/node/170*)

Number	Credit
Cases	Cards
1	0
1	0
5	2
3	0
6	6
1	1
	Number Cases 1 1 5 3 6 1

^a in millions of lira (the currency in Italy before euro)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Consider $\log(\mu/t) = \beta_0 + \beta_1$ income: $\mu = E$ (number of credit cards), t = number of cases.

4.3.1B Poisson rate regression: Example

The fitted model:

 $\log(\hat{\mu}/t) = -2.3866 + 0.0208 imes$ income

where log(t) = log(num cases).

Questions can be answered by the analysis:

- What is the estimated average rate of incidence, i.e. the usage of credit cards given the income?
- Is income a significant predictor? Does the overall model fit?

e.g. with income= 65,

 $\log(\hat{\mu}/t) = -2.3866 + 0.0208 \times 65 \Longrightarrow \log(\hat{\mu}) = -2.3866 + 0.0208 \times 65 + \log(t)$

for a group of six people with income 65:

 $\log(\hat{\mu}) = -2.3866 + 0.0208 \times 65 + \log(6) \Longrightarrow \hat{\mu} = 2.126$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

4.3.2 Overdispersion and zero inflation

Recall that Y has a **Poisson distribution**: $Y \sim Poisson(\mu)$, if its pmf is

$$P(Y = y) = p(y) = \frac{\mu^{y} e^{-\mu}}{y!}, \quad y = 0, 1, 2, \dots$$

A characteristic of the distribution is that its mean is equal to its variance: $E(Y) = \mu$; $Var(Y) = \mu$

In many situations, the variance of the observed counts is greater than the mean \implies **overdispersion** and the Poisson model is not appropriate:

- ➤ Y has an "overdispersed" distribution if Var(Y) > E(Y): e.g. "overdispered Poisson" distribution.
- how to deal with it? e.g. quasi-likelihood estimation (Chp 6)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

4.3.2 Overdispersion and zero inflation

Another common problem with Poisson regression is excess zeros

- infection diseases: a population includes "susceptible" and "immune" individuals
- products with high quality

 \implies the zero-inflated Poisson (ZIP) model (Lambert, 1992):

$$egin{array}{rcl} Y &=& 0 & ext{with prob} & \pi(z) \ Y &\sim & extsf{Poisson}(\mu(x)) & ext{with prob} & 1-\pi(z) \end{array}$$

with the logistic model $logit(\pi(z)) = \gamma_0 + \gamma_1 z$ and the loglinear model $log(\mu(x)) = \beta_0 + \beta_1 x$. **Remarks:**

- ▶ In package of "pscl" in R, use the function of *zeroinfl*().
- ZIP is a *mixture* distribution.

4.3.3 Generalized linear models II

Generalized Linear Models (GLM): a unified framework for many regression analyses.

- including OLM, Logit, Loglinear models as special cases
- including other regression models.
 - ► To study $Y \leftarrow X, Z$? with binary response Y = 1, or 0: $P(Y = 1 | X = x, Z = z) = \pi(x, z), Y \sim Bernoulli(\pi(x, z))$
 - R: glmout< -glm(Y~X*Z, family=binomial(link="probit"))</p>
 - To study Y ← X, Z? with count response Y and two explanatory variables: E(Y|X, Z) = µ(X, Z) with log(µ(X, Z)) = α + βX + γZ + ηXZ but Poisson assumption is not appropriate
 - R: glmout< -glm(Y~X*Z, family=quasipoisson(link="log"))</p>

4.3.3 Generalized linear models II: GLIM Components

Recall how to conduct the analysis with *R*: $glm(formula, family=xxx (link="xxx")) \Longrightarrow$

- **Random Component.** response r.v. *Y* with $\mu(x_1, \ldots, x_k) = E(Y|x_1, \ldots, x_k)$ to be examined
- Systematic Component. α + β₁x₁ + ... + β_Kx_K Some x_k can be based on others: e.g. x₃ = x₁x₂.
- Link Function. g(μ) = α + β₁x₁ + ... + β_Kx_K The link function g(·) links the random componet through its mean and the systematic component. More on GLM later

Quiz 2. [10 points] A clinical trial observed 41 successes from Treatment A group with size 60, and 42 failures from Treatment B group with size 80.

Q1.[4 points] Present the data using Table 1.

Q2.[6 points] Suggest two regression models for an analysis to establish how an individual's outcome is associated with his/her treatment.

treatment	outcome (Y)		
(X)	Failure	Success	
A			
В			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table 1.

What if there's a third variable, say, age (Z) with three categories?

	treatment	outcome (Y)	
age (Z)	(X)	Failure	Success
< 25	А	8	14
	В	7	13
25-55	А	5	19
	В	5	17
> 55	А	6	8
	В	30	8

Table 2.

• Q3.1: 3-way contingency table: $2 \times 2 \times 3$

- margianl OR of success for treatments A and B? answer in Q1 and Q2.2
- conditional OR of success for treatments A and B with an age group?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

- MH test, Breslow-Day test? the common OR?
- Q3.2: logistic regression: $Y \sim X, Z, Y \sim XZ$?
- ► Q3.3: loglinear regression: (X,Y,Z), (XY,YZ,XZ), and (XYZ)?
 - parameter interpretation? fitted models?

What will we do next?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
- 3. Analysis with Multicategory Variables (Chp 3)
- 4. Analsyis with Count Response (Chp 4)
- 5. Model Selection and Evaluation (Chp 5)
 - ▶ 5.1 Variable selection (Chp 5.1)
 - ▶ 5.2 Tools to asses model fit (Chp 5.2-3)
 - 5.3 Examples

Midterm 2. 10:30-11:20 Thu March 15

- To cover Chp1-4, including the supplementary material on multi-way contingency tables.
- 6. Additional Topics (Chp 6)

Final Exam: 15:30-18:30 Monday April 23