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4.3.1A Poisson rate regression: Introduction

A “rate” variable is often of interest Y /t: e.g.

I number of computer crashes in some area

I number of arrivals at an airport over some time periods

When the baseline measure of the “exposure” varies over
observations?

I The measure needs to be incorporated into the analysis.

I One way to do this is to model Y /t instead of just Y : Y =count of
events; t =measure of opportunity for events.

Poisson Rate Regression Model. Consider the response
Y |t, x1, . . . , xK ∼ Poisson

(
µ(x1, . . . , xK ; t)

)
and assume

log[µ(x1, . . . , xK ; t)] = log(t) + β0 + β1x1 + . . .+ βKxK ,

equivalently to E (Y /t|x) = exp(β0 + β1x1 + . . .+ βKxK ).



4.3.1B Poisson rate regression: Example

Example. Number of Credit Cards vs Income
(https://onlinecourses.science.psu.edu/stat504/node/170)

Number Credit
Incomea Cases Cards

24 1 0
27 1 0
28 5 2
29 3 0
... ... ...
120 6 6
130 1 1
a in millions of lira
(the currency in Italy before euro)

Consider log(µ/t) = β0 + β1income:

µ = E (number of credit cards), t = number of cases.



4.3.1B Poisson rate regression: Example

I The fitted model:

log(µ̂/t) = −2.3866 + 0.0208× income

where log(t) = log(num cases).

I Questions can be answered by the analysis:

I What is the estimated average rate of incidence, i.e. the usage
of credit cards given the income?

I Is income a significant predictor? Does the overall model fit?

e.g. with income= 65,

log(µ̂/t) = −2.3866+0.0208×65 =⇒ log(µ̂) = −2.3866+0.0208×65+log(t)

for a group of six people with income 65:

log(µ̂) = −2.3866 + 0.0208× 65 + log(6) =⇒ µ̂ = 2.126



4.3.2 Overdispersion and zero inflation

Recall that Y has a Poisson distribution: Y ∼ Poisson(µ), if its pmf is

P(Y = y) = p(y) =
µye−µ

y !
, y = 0, 1, 2, . . .

A characteristic of the distribution is that its mean is equal to its
variance: E (Y ) = µ; Var(Y ) = µ

In many situations, the variance of the observed counts is greater than
the mean =⇒ overdispersion and the Poisson model is not appropriate:

I Y has an “overdispersed” distribution if Var(Y ) > E (Y ): e.g.
“overdispered Poisson” distribution.

I how to deal with it? e.g. quasi-likelihood estimation (Chp 6)



4.3.2 Overdispersion and zero inflation

Another common problem with Poisson regression is excess zeros
... ...

I infection diseases: a population includes “susceptible” and
“immune” individuals

I products with high quality

=⇒ the zero-inflated Poisson (ZIP) model (Lambert, 1992):

Y = 0 with prob π(z)
Y ∼ Poisson(µ(x)) with prob 1− π(z)

with the logistic model logit(π(z)) = γ0 + γ1z and the loglinear
model log(µ(x)) = β0 + β1x .
Remarks:

I In package of “pscl” in R, use the function of zeroinfl().

I ZIP is a mixture distribution.



4.3.3 Generalized linear models II

Generalized Linear Models (GLM): a unified framework for
many regression analyses.

I including OLM, Logit, Loglinear models as special cases

I including other regression models.

I To study Y ← X ,Z ? with binary response Y = 1, or 0:
P(Y = 1|X = x ,Z = z) = π(x , z), Y ∼ Bernoulli

(
π(x , z)

)
I R: glmout< −glm(Y∼X*Z, family=binomial(link=”probit”))

I To study Y ← X ,Z ? with count response Y and two
explanatory variables: E (Y |X ,Z ) = µ(X ,Z ) with
log(µ(X ,Z )) = α + βX + γZ + ηXZ but Poisson assumption
is not appropriate

I R: glmout< −glm(Y∼X*Z, family=quasipoisson(link=”log”))



4.3.3 Generalized linear models II: GLIM
Components

Recall how to conduct the analysis with R:
glm(formula, family=xxx (link=”xxx”)) =⇒

I Random Component. response r.v. Y with
µ(x1, . . . , xk) = E (Y |x1, . . . , xk) to be examined

I Systematic Component. α + β1x1 + . . .+ βKxK
Some xk can be based on others: e.g. x3 = x1x2.

I Link Function. g(µ) = α + β1x1 + . . .+ βKxK
The link function g(·) links the random componet through its
mean and the systematic component. More on GLM later



Quiz 2. [10 points] A clinical trial observed 41 successes from
Treatment A group with size 60, and 42 failures from Treatment B
group with size 80.

Q1.[4 points] Present the data using Table 1.

Q2.[6 points] Suggest two regression models for an analysis to
establish how an individual’s outcome is associated with
his/her treatment.

Table 1.

treatment outcome (Y )
(X ) Failure Success

A
B



What if there’s a third variable, say, age (Z) with three
categories?

Table 2.

treatment outcome (Y )
age (Z) (X ) Failure Success

< 25 A 8 14
B 7 13

25-55 A 5 19
B 5 17

> 55 A 6 8
B 30 8

I Q3.1: 3-way contingency table: 2× 2× 3

I margianl OR of success for treatments A and B?
answer in Q1 and Q2.2

I conditional OR of success for treatments A and B with an age
group?

I MH test, Breslow-Day test? the common OR?

I Q3.2: logistic regression: Y ∼ X ,Z , Y ∼ XZ ?

I Q3.3: loglinear regression: (X,Y,Z), (XY,YZ,XZ), and (XYZ)?
I parameter interpretation? fitted models?



What will we do next?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)
3. Analysis with Multicategory Variables (Chp 3)
4. Analsyis with Count Response (Chp 4)

5. Model Selection and Evaluation (Chp 5)

I 5.1 Variable selection (Chp 5.1)

I 5.2 Tools to asses model fit (Chp 5.2-3)

I 5.3 Examples

Midterm 2. 10:30-11:20 Thu March 15
I To cover Chp1-4, including the supplementary material on

multi-way contingency tables.

6. Additional Topics (Chp 6)

Final Exam: 15:30-18:30 Monday April 23
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