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Revisit to Example of Belief in Afterlife:

Belief in Afterlife
Gender Yes No or Undecided
Females 435 147
Males 375 134

Analysis 1. Model of Independence log µij = λ+ λXi + λYj , corresponding

to log µij = λ+ βXA + βYB with λXi = βXA and λYj = βYB and A,B
the dummy variables.

Coding Coding Coding
Parameter Type 1 Type 2 Type 3

λ 4.876 6.069 5.472
λX
1 0.134 0 0.067

λX
2 0 - 0.134 -0.067

λY
1 1.059 0 0.529

λY
2 0 -1.059 -0.529



Analysis 2. Saturated Model log µij = λ+ λXi + λYj + λXYij , corresponding

to logµij = λ+ βXA + βYB + βXYAB with λXi = βXA, λYj = βYB, and

λXYij = βXYAB, and A,B the dummy variables.
The number of nonredundant parameters:

1 + (I − 1) + (J − 1) + (I − 1)(J − 1) = IJ,

the same as the number of parameters as the I × J table has Poisson
observations =⇒ perfect fit.

Coding Coding Coding
Association Parameter Type 1 Type 2 Type 3

λXY
11 0.056 0 0.014

λXY
12 0 0 -0.014

λXY
21 0 0 - 0.014

λXY
22 0 0.056 0.014



4.2.4B Poisson regression with contingency tables:
Three-Way Contingency Tables

Recall that

I n individuals cross-classified according to X , Y , Z variables
=⇒ an I × J × K contingency table with cell counts
{Nijk : i = 1, . . . , I ; j = 1, . . . , J; k = 1, . . . ,K}

I to establish the association of the cell counts,
Nijk ∼ Poisson(µijk), with X , Y , and Z , three categorical
variables?

Saturated Loglinear Model (XYZ) (including all main effects,
two factor interactions, three factor interactions)

logµijk = λ+ λXi + λYj + λZk + λXYij + λYZjk + λXZik + λXYZijk

the table’s df=IJK=num of non-redundant parameters



4.2.4B Poisson regression with contingency tables:
Three-Way Contingency Tables

Loglinear Model of Independence (X,Y,Z) (including only main
effects, i.e. one factor effects)

logµijk = λ+ λXi + λYj + λZk

multual independence model; the table’s df=IJK > num of
non-redundant parameters in the model 1+(I-1)+(J-1)+(K-1)

Loglinear Model of Homogeneous Association (XY,YZ,XZ)
(including all main effects, two factor interactions; assuming
λXYZijk = 0)

logµijk = λ+ λXi + λYj + λZk + λXYij + λYZjk + λXZik

the table’s df=IJK>num of non-redundant parameters



4.2.4B Poisson regression with contingency tables:
Three-Way Contingency Tables

Parameter Interpretation for Model (XY,YZ,XZ):
when I=J=2, X-Y conditional odds ratio at Z = k is

log θXY (k) = log
(µ11kµ22k
µ12kµ21k

)
= λXY11 + λXY22 − λXY12 − λXY21

Thus, if λXYij = 0,

I =⇒ Model (YZ,XZ)

I log θXY (k) = 0, for all k =⇒ X⊥Y |Z



4.2.4B Poisson regression with contingency tables:
Three-Way Contingency Tables

Statistical Inference
the statistical analysis with the loglinear (Poisson) regression
model with three categorical predictors:

I Be careful with coding X ,Y ,Z

I Choice of models: e.g. (X,Y,Z), (X,YZ), (YZ,XZ),
(XY,YZ,XZ), (XYZ)

Variouse inference procedures:

I Estm model parameters: the main effects, and/or two/three
factor interactions

I Estm µijk , and then OR

I Model checking/Comparison: Pearson’s χ2-test, LRT-test

e.g. H0: Model (YZ,XZ) vs H1: Model (XY,YZ,XZ)



Example. Alcohol, Cigarette and Marijuana Use

Alcohol Cigarette Marijuana Use (M)
Use (A) Use (C) Yes No

Yes Yes 911 538
No 44 456

No Yes 3 43
No 2 279

Source: a survey conducted in 1992 by the Wright State Univ.
School of Medicine and the United Health Services in Dayton.

Step 1. Fitted Values for Loglinear Models: (software available to do so)

The fit for (AC,AM,CM) is close to the observed data, the same as the

fitted values for (ACM).



Fitted Values for Loglinear Models:

Loglinear Model
A C M (A,C,M) (AC,M) (AM,CM) (AC,AM,CM) (ACM)

Yes Yes Yes 540.0 611.2 909.24 910.4 911
No 740.2 837.8 438.84 538.6 538

No Yes 282.1 210.9 45.76 44.6 44
No 386.7 289.1 555.16 455.4 456

No Yes Yes 90.6 19.4 4.76 3.6 3
No 124.2 26.6 142.16 42.4 43

No Yes 47.3 118.5 0.24 1.4 2
No 64.9 162.5 179.84 279.6 279

Step 2. To Obtain Estimates for What Needed.

I the A-C association with model (AM,CM):

I Estimate of the conditional OR?
I Estimate of the marginal OR?



I model (AC,AM,CM) permits all pairwise associations but maintains
homogeneous odds ratios between two variables at each level of the
third variable.

I The A-C estimated conditional odds ratios for this model?
I The A-C estimated marginal odds ratio?

Step 3. Confidence Intervals for Odds Ratios:
MLE of loglinear model parameters have large-sample normal
distributions: to use the estimates and their ASE to construct confidence
intervals for true log odds ratios and then exponentiate them to form
intervals for odds ratios.
For example, in (AC,AM,CM)

I R: λ̂AC22 = 2.054 (ASE = 0.174)

I SAS - PROC GENMOD: λ̂AC11 = 2.054 (ASE = 0.174)

I SAS - PROC CATMOD: λ̂AC11 = λ̂AC22 = 0.514,

all =⇒ λ̂AC11 + λ̂AC22 − λ̂AC12 − λ̂AC21 = 2.054 (ASE = 0.174):

=⇒ 95% CI for log odds ratio: 2.054± 1.96(0.174), yielding

(e1.71, e2.39) = (5.5, 11.0) for CI of the odds ratio.

Model Checking?



4.3.1A Poisson rate regression: Introduction

A “rate” variable is often of interest Y /t: e.g.

I number of computer crashes in some area

I number of arrivals at an airport over some time periods

When the baseline measure of the “exposure” varies over
observations?

I The measure needs to be incorporated into the analysis.

I One way to do this is to model Y /t instead of just Y : Y =count of
events; t =measure of opportunity for events.

Poisson Rate Regression Model. Consider the response
Y |t, x1, . . . , xK ∼ Poisson

(
µ(x1, . . . , xK ; t)

)
and assume

log[µ(x1, . . . , xK ; t)] = log(t) + β0 + β1x1 + . . .+ βKxK ,

equivalently to E (Y /t|x) = exp(β0 + β1x1 + . . .+ βKxK ).



4.3.1A Poisson rate regression: Introduction

Poisson Rate Regression Model.
Consider the response Y |t, x1, . . . , xK ∼ Poisson

(
µ(x1, . . . , xK ; t)

)
and assume

log[µ(x1, . . . , xK ; t)] = log(t) + β0 + β1x1 + . . .+ βKxK .

I log(t) is an offset: t helps to adjust the “usual” mean by the
baseline measure.

E (Y |x, t) = t exp(β0 + β1x1 + . . .+ βKxK )

I Statistical Inference. estimation, testing, and model
interpretation proceed in a similar manner as before.



4.3.1B Poisson rate regression: Example

Example. Number of Credit Cards vs Income
(https://onlinecourses.science.psu.edu/stat504/node/170)

Number Credit
Incomea Cases Cards

24 1 0
27 1 0
28 5 2
29 3 0
... ... ...
120 6 6
130 1 1
a in millions of lira
(the currency in Italy before euro)

Consider log(µ/t) = β0 + β1income:

µ = E (number of credit cards), t = number of cases.



4.3.1B Poisson rate regression: Example

I The fitted model:

log(µ̂/t) = −2.3866 + 0.0208× income

where log(t) = log(cases).

I Questions can be answered by the analysis:

I What is the estimated average rate of incidence, i.e. the usage
of credit cards given the income?

I Is income a significant predictor? Does the overall model fit?

e.g. with income= 65,

log(µ̂/t) = −2.3866+0.0208×65 =⇒ log(µ̂) = −2.3866+0.0208×65+log(t)

for a group of six people

log(µ̂) = −2.3866 + 0.0208× 65 + log(6) =⇒ µ̂ = 2.126



What will we do next?

4. Analsyis with Count Response (Chp 4)

I 4.1 Poisson Model for Count Data (Chp 4.1)

I 4.2 Poisson Regression Analysis (Chp 4.2)
I 4.3 Additional Topics on Count Responses (Chp 4.3-4)

I 4.3.1 Poisson rate regression
I 4.3.2 Zero inflation
I 4.3.3 Generalized linear models

5. Model Selection and Evaluation (Chp 5)

6. Additional Topics (Chp 6)
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