
What to do today (Feb 8)?
1. Introdution and Preparation

2. Analysis with Binary Variables (Chp1-2)
I 2.1 Analysis with binary variables I (Chp 1)
I 2.2 Analysis with binary response (Chp 2)

I 2.2.1 Regression models (Chp2.1, Chp2.2.1)
I 2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
I 2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)

I 2.3 Generalized linear models (Chp2.3)

3. Analysis with Multicategory Variables
(Chp3)

I 3.1 Analysis of larger contingency tables

I 3.2 Regression analysis with multicategory response
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2.3A Generalized linear models: Introduction

Recall that a regression model describes patterns of association
and interaction, and can be used to predict “future”: very useful

=⇒ Is there a broad class of regression models includes
OLM, Logit models as special cases?

Generalized Linear Models (GLM): a unified framework for
many regression analyses.

I including OLM, Logit models as special cases

I including other regression models



2.3B Generalized linear models: Components

What common features in the examples of regression
models, OLM, Logit? Recall how to conduct the analysis with R:
glm(formula, family)
GOAL: to study how Y ← X1, . . . ,XK

Generalized Linear Models:

I Random Component. response r.v. Y with
µ(x1, . . . , xk) = E (Y |x1, . . . , xk) to be examined

I Systematic Component. α + β1x1 + . . .+ βKxK
Some xk can be based on others: e.g. x3 = x1x2.

I Link Function. g(µ) = α + β1x1 + . . .+ βKxK
The link function g(·) links the random componet through its
mean and the systematic component. More on GLM later



3.1.1 Review of two-way contingency tables

For general categorical variables X and Y , ...
I × J contingency table: cell counts nij , i = 1, . . . , I and j = 1, . . . , J

Cell Counts
Variable Y

Variable X 1 2 ... J total
1 n11 n12 ... n1J n1+
2 n21 ... ... n2J n2+
... ... ... ... ...
I nI1 ... ... nIJ nI+
total n+1 ... ... n+J n++

I subtotals: ni+ (row totals); n+j (column totals)

I grand total: n++

How to analyze the 2-Way contingency table?



3.1.1 Review of two-way contingency tables: Joint,
Marginal and Conditional Probabilities

Consider two discrete r.v.s X and Y , with all possible levels i = 1, . . . , I
for X and j = 1, . . . , J for Y

I joint distn (prob) of X and Y : πij = Pr(X = i ,Y = j) for
i = 1, . . . , I and j = 1, . . . , J

I marginal distn (prob) of X ,Y : πi+ = Pr(X = i) i = 1, . . . , I ;
π+j = Pr(Y = j) j = 1, . . . , J

πi+ =
∑J

j=1 πij and π+j =
∑I

i=1 πij

I conditional disn (prob) of X |Y or Y |X :
Pr(X = i |Y = j) =

πij

π+j
= πi|j , Pr(Y = j |X = i) =

πij

πi+
= πj|i for

i = 1, . . . , I and j = 1, . . . , J



3.1.1 Review of two-way contingency tables: Joint,
Marginal and Conditional Probabilities

Probabilities with I × J contingency table: πij , i = 1, . . . , I and
j = 1, . . . , J

Probabilities in I × J Table
Variable Y

Variable X 1 2 ... J total
1 π11 π12 ... π1J π1+
2 π21 ... ... π2J π2+
... ... ... ... ...
I πI1 ... ... πIJ πI+
total π+1 ... ... π+J π.. ≡ 1

I marginal probabilitites: πi+ (with the row variable X); π+j (with the
column variable Y)

I conditional probabilitites: πij/πi+ = πj|i (conditional on X=i);
πij/π+j = πi|j (conditional on Y=j)



3.1.1 Review of two-way contingency tables: X ⊥⊥ Y

independence: X ⊥⊥ Y (the simplest relationship of X and Y )

I X ⊥⊥ Y when πij = πi+π+j for all i = 1, . . . , I and
j = 1, . . . , J, or

I X ⊥⊥ Y when P(X = i |Y = j) = πi |j is πi+ for all i , j , or
P(Y = j |X = i) = πj |i is π+j for all i , j

I When X and Y are binary, X ⊥⊥ Y if OR = 1.



3.1.1 Review of two-way contingency tables:
Probability Models

I Consider r.v.s X with I levels and Y with J levels

I Consider observations of (X ,Y ): (X1,Y1), . . . , (Xn,Yn)

Data are summarized by the I × J contingency table: cell
counts Nij , i = 1, . . . , I and j = 1, . . . , J

Cell Counts

Variable Y
Variable X 1 2 ... J total

1 N11 N12 ... N1J N1+

2 N21 ... ... N2J N2+

... ... ... ... ... ...
I NI1 ... ... NIJ NI+

total N+1 ... ... N+J N++

I subtotals: Ni+ (row totals); N+j (column totals)

I grand total: N++



3.1.1 Review of two-way contingency tables:
Probability Models

I multinomial sampling:
With fixed N++ = n,
(Nij : i = 1, . . . , I ; j = 1, . . . , J) ∼ multinomial(n, π′ijs)

I purposive sampling:
Given Ni+ = ni+,
(Nij : j = 1, . . . , J) ∼ multinomial(ni+, π

′
j |i s) with

πj |i = πij/πi+ and
∑J

j=1 πj |i = 1.



3.1.2 Analysis of I × J contingency table: Estimating
Probabilities

I To estm πij with data from cross-sectional studies by
multinomial sampling:

Given the grand total N++ = n,
(Nij : i = 1, . . . , I ; j = 1, . . . , J) ∼ multinomial(n, π′ijs)

I the likelihood function (with constraint
∑
πij = 1):

L(π′ijs|data) ∝
∏

i=1,...,I ;j=1,...,J

π
nij
ij

=⇒ the MLE π̂ij = nij/n, for i = 1, . . . , I ; j = 1, . . . , J

the same as the corresponding sample proportions!



3.1.2 Analysis of I × J contingency table: Estimating
Probabilities

Plus, π̂1+ = π̂11 + . . .+ π̂1J = n1+/n, ...,
and π̂j|1 = π̂1j/π̂1+ = n1j/n1+, ...

the same as the corresponding sample proportions!

=⇒ confidence intervals: Wald type, score based, LRT based with
large sample

e.g. Wald type: π̂11 ± (1.96)
√

π̂11[1−π̂11]
n



3.1.2 Analysis of I × J contingency table: Estimating
Probabilities

How about the estimation with data collected by purposive sample
with ni+ fixed by study design?
Is there enough information for estimating πij with the data?

I To estm π1|i = πi1/πi ., . . . , πJ|i = πiJ/πi . with data from
case-control studies by purposive sampling given row totals
ni .’s, i = 1, . . . , I :

∑J
j=1 πj |i = 1

the likelihood functions:

L(πj |1 : j = 1, . . . , J|data in line 1) ∝
J∏

j=1

π
n1j
j |1

... ...

L(πj |I : j = 1, . . . , J|data in line I ) ∝
J∏

j=1

π
nIj
j |I



=⇒ the MLE π̂j |1 = n1j/n1., π̂j |2 = n2j/n2., ..., and π̂j |I = nIj/nI .
for j = 1, . . . , J.

=⇒ confidence intervals: Wald type, score based, LRT based with
large sample

e.g. Wald type CI: π̂j |1 ± 1.96
√
π̂j |1[1− π̂j |1]/n1. for j = 1, . . . , J.



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

In general, testing on H0 vs H1 with an I × J contingency table:

Cell Counts
Variable Y

Variable X 1 2 ... J total
1 n11 n12 ... n1J n1+
2 n21 ... ... n2J n2+
... ... ... ... ...
I nI1 ... ... nIJ nI+
total n+1 ... ... n+J n++

Suppose, when H0 is true, the expected frequencies EH0(Nij) = µij .
Then test on H0 by comparing Nij with µij?



Pearson’s Chi-Squared Test (K. Pearson, 1900) on H0 vs H1

with an I × J contingency table
Consider the Pearson χ2-statistic:

X 2 =
∑
i ,j

(Nij − µij)2

µij

Approximately, X 2 ∼ χ2(df ) under H0 for large n.
=⇒ p − value = PH0(X 2 ≥ X 2

obs)

Remarks:

I The χ2-approximation is good usually when µij ≥ 5

I The degrees of freedom:
df = #(parameters under H1) - #(parameters under H0)

I What are µij? How to implement the procedure?



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

Likelihood Ratio Test (LRT) on H0 vs H1 with an I × J
contingency table
Consider the likelihood ratio test statistic:

−2 log
(max LH0(parameter |data)

max L(parameter |data)

)
∝ G 2 = 2

∑
i ,j

Nij log
(Nij

µij

)
Approximately, G 2 ∼ χ2(df ) under H0 for large n
=⇒ p − value = PH0(X 2 ≥ X 2

obs)

I the χ2-approximation is good usually when µij ≥ 5

I the degrees of freedom
df = #(parameters under H1) - #(parameters under H0)

I What are µij? How to implement the procedure?



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

Consider specifically ...

To test on H0 : X ⊥⊥ Y vs H1 : X 6⊥⊥ Y with an I × J contingency
table by the multinomial sampling with N++ = n

I Reformulate the hypotheses according to the sampling ...
H0 : πij = πi+π+j for all i , j vs H1 : otherwise

I Getting µij or their best estimates ... ...
µij = EH0(Nij) = nπi+π+j

the MLE µ̂ij = nπ̂i+π̂+j =
ni+n+j

n



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

I Applying Pearson’s χ2-test ...
I determine df = (IJ − 1)− ([I − 1] + [J − 1]) = (I − 1)(J − 1)

by Fisher (1922)

I calculate X 2
obs =

∑ (nij−µ̂ij )
2

µ̂ij

I calculate p − value = PH0(X 2 ≥ X 2
obs) based on X 2 ∼ χ2(df )

approximately when n >> 1
I draw conclusion

I Applying LRT-test ...
I determe df = (IJ − 1)− ([I − 1] + [J − 1]) = (I − 1)(J − 1)

I calculate G 2
obs = 2

∑
i,j nij log

(
nij
µ̂ij

)
I calculate p − value = PH0(G 2 ≥ G 2

obs)
I draw conclusion



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

To test on H0 : X ⊥⊥ Y vs H1 : X 6⊥⊥ Y with an I × J contingency
table by the purposive sampling with Ni+ = ni+

I Reformulate the hypotheses according to the sampling ...
H0 : πj |i = π+j for all i , j vs H1 : otherwise
(πj |i =

πij
πi+

= P(Y = j |X = i))

I Getting µij or their best estimates ... ...
µij = EH0(Nij) = ni+πj |i
the MLE µ̂ij = ni+π̂j |i = ni+

n+j

n =
ni+n+j

n



3.1.2 Analysis of I × J contingency table:
Hypothesis Testing on Independence

I Applying Pearson’s χ2-test ...
I determe df = (IJ − I )− (J − 1) = (I − 1)(J − 1)

I calculate X 2
obs =

∑ (nij−µ̂ij )
2

µ̂ij

I calculate p − value = PH0(X 2 ≥ X 2
obs) based on X 2 ∼ χ2(df )

approximately when n >> 1
I concluding

I Applying LRT ...
I determe df = (IJ − I )− (J − 1) = (I − 1)(J − 1)

I calculate G 2
obs = 2

∑
i,j nij log

(
nij
µ̂ij

)
I calculate p − value = PH0(G 2 ≥ G 2

obs)
I concluding

The same test statistics X 2, G 2 as used with tables by the
multinominal sampling.



3.1.3A Multi-Way Contingency Table: Introduction

What if three categorical variables X (with I levels), Y (with J
levels), and Z (with K levels) are of interest?

=⇒ studying about three-way contingency tables, I × J × K
tables: the statistical analyses with them.

What can be new in the relevant statistical analysis, compared to
analysis with two-way contingency tables?

Can all the relevant goals be achieved by studying the pairs,
(X ,Y ), (X ,Z ) and (Y ,Z )?

Let’s see an example ... ...



3.1.3A Multi-Way Contingency Table: Introduction

Example. Death Penalty (e.g. Agresti, 2006) A 2× 2× 2 contingency
table from an article on effects of racial characteristics on whether
individuals convicted of homicide receive the death penalty.
X =Defendent’s Race: black vs white; Y =Death Penalty: yes vs not;
Z =Victim’s Race: black vs white

Victims’ Defendant’s Death Penalty
Race Race Yes No
white white 53 414

black 11 37
black white 0 16

black 4 139



3.1.3A Multi-Way Contingency Table: Introduction

Analysis 1. Partial tables: X-Y at Z=white, black

Victims’ Defendant’s Death Penalty Percentage
Race Race Yes No (row) Yes

white white 53 414 11.3
black 11 37 22.9

black white 0 16 0.0
black 4 139 2.8

I Table X-Y at Z=white: Death penalty imposed to black is
22.9% - 11.3%=11.6% higher than to white for white victim

I Table X-Y at Z=black: Death penalty imposed to black is
2.8% - 0%=2.8% higher than to white for black victim



3.1.3A Multi-Way Contingency Table: Introduction

Analysis 2. X-Y marginal table:

Defendant’s Death Penalty percentage
Race Yes No (row) Yes
white 53=(53+0) 430=(414+16) 11.0
black 15=(11+4) 176=(37+139) 7.9

Death penalty imposed to white is 11.0%-7.9% = 3.1% higher
than to black overall (ignoring victim’s race)

Sample odds ratio = 1.415



3.1.3A Multi-Way Contingency Table: Introduction

Why the association bt death penalty verdict and defendant’s
race differ so much when we ignore vs control victims’ race?

The marginal association can have different direction from the
conditional associations: Simpson’s paradox

Has it something to do with the nature of the association bt the
control variable, victims’ race (Z), and each of the other variables
(X and Y)?



3.1.3A Multi-Way Contingency Table: Introduction

Analysis 3. X-Z marginal table:

Defendant’s Victims’ Race
Race white black
white 467 48
black 16 143

Sample odds ratio = 87.0 (the odds that a white defendant had
white victims is estimated to be 87.0 times the odds that a black
defendant had white victims)

This explains why the conclusions by Analyses 1. and 2. aren’t
consistent.



3.1.3A Multi-Way Contingency Table: Introduction

Analysis 4. Y-Z marginal table:

Victims’ Death Penalty percentage
Race Yes No (row) Yes
white 64 451 14.2
black 4 155 2.6

Sample odds ratio = 5.50 (the odds that death penalty to a
defendant who had white victims is estimated to be 5.50 times the
odds that death penalty to a defendant who had black victims)

Probably this should be the key finding.



3.1.3B Multi-Way Contingency Table: Basic
Concepts

I Two-Way Partial Table: any two-way cross-sectional slice
all the cell counts associated with two of the three variables
and with the 3rd variable fixed at a level
e.g. {nij2 : i = 1, . . . , I ; j = 1, . . . , J}
=⇒ telling only about X and Y |Z = 2, a conditional
association

I Two-Way Marginal Table: any two-way table obtained by
combining the two-way partial tables according to the 3rd
variable
e.g. {nij+ : i = 1, . . . , I ; j = 1, . . . , J}
=⇒ telling only about X and Y accross diff levels of Z, a
marginal association



3.1.3B Multi-Way Contingency Table: Basic
Concepts

With a three-way contingency table, say, an I × J × K table:
{nijk : i = 1, . . . , I ; j = 1, . . . , J; k = 1, . . . ,K}

I joint prob. πijk = P(X = i ,Y = j ,Z = k)

I marginal prob. P(X = i ,Y = j) = πij+, P(X = i) = πi++,
etc

I conditional prob.
P(X = i ,Y = j |Z = k) = πijk/π++k = πij |k ,
P(X = i |Y = j ,Z = k) = πijk/π+jk = πi |jk , etc



3.1.3B Multi-Way Contingency Table: Basic
Concepts

When the sampling is by the cross-sectional sampling with fixed
overall total n+++ = n

I the MLE π̂ijk = nijk/n

I the MLE π̂ij+ = nij+/n, π̂i++ = ni++/n, etc

I the MLE π̂ij |k = nijk/n++k , π̂i |jk = nijk/n+jk , etc

When the sampling is by the purposive sampling with fixed
subtotals, say, n++k

I the MLE π̂ij |k = nijk/n++k , π̂i |jk = nijk/n+jk , etc

What are new in stats analysis with three-way tables?



3.1.3C Multi-Way Contingency Table: Conditional
vs Marginal Associations

Consider a 2× 2× K three-way contingency table:
{nijk : i = 1, 2; j = 1, 2; k = 1, . . . ,K} as the observed frequencies
πijk = P(X = i ,Y = j ,Z = k), the joint prob;
µijk = E (Nijk), the expected frequencies;

I X-Y conditional odds ratios: [describe conditional X-Y
association] For k = 1, . . . ,K ,

θXY (k) =
π11kπ22k
π12kπ21k

=
µ11kµ22k
µ12kµ21k

I sample X-Y conditional odds ratios: θ̂XY (k) = n11kn22k
n12kn21k

I If θXY (k) ≡ constant, =⇒ “homogeneous” conditional X-Y
association



3.1.3C Multi-Way Contingency Table: Conditional
vs Marginal Associations

Consider a 2× 2× K three-way contingency table:
{nijk : i = 1, 2; j = 1, 2; k = 1, . . . ,K} as the observed frequencies
πijk = P(X = i ,Y = j ,Z = k), the joint prob; µijk = E (Nijk), the
expected frequencies

I X-Y marginal odds ratios: [describe marginal X-Y
association]

θXY =
π11+π22+
π12+π21+

=
µ11+µ22+
µ12+µ21+

I sample X-Y marginal odds ratios: θ̂XY = n11+n22+
n12+n21+

I If θXY (k) ≡ constant [homogeneous conditional X-Y
association], θXY (k) ≡ θXY ???

Why is the Simpson’s Paradox!



3.1.3C Multi-Way Contingency Table: Conditional
vs Marginal Associations

Marginal vs Conditional Independence

I X ⊥⊥ Y |Z ↔ (iff) θXY (k) = 1 for all k

I X ⊥⊥ Y ↔ (iff) θXY = 1

I X ⊥⊥ Y |Z 6↔ X ⊥⊥ Y

See an illustrative example ...



3.1.3C Multi-Way Contingency Table: Conditional
vs Marginal Associations

Example. A hypothetical clinical trial with two arms, two sites,
two types of outcome

Y=Response
Z=Clinic X=Treatment success failure

1 A 18 12
B 12 8

2 A 2 8
B 8 32

A 20 20
B 20 40

I Look 1. θ̂XY (1) = θ̂XY (2) = 1 =⇒ X ⊥⊥ Y given a clinic
[conditional homogeneous association X-Y]

I Look 2. θ̂XY = 2 =⇒ X 6⊥⊥ Y [Treatment A is over B]



3.1.3C Multi-Way Contingency Table: Conditional
vs Marginal Associations

Y=Response
Z=Clinic X=Treatment success failure

1 A 18 12
B 12 8

2 A 2 8
B 8 32

I Look 3. the clue?
I X − Z : θ̂XZ(s) = θ̂XZ(f ) = 6 =⇒ X 6⊥⊥ Z : Clinic 1 had more

with A; 2, B.
[This should have been controled: randomized clinical trial.]

I Y − Z : θ̂YZ(A) = θ̂YZ(B) = 6 =⇒ Y 6⊥⊥ Z : clinic effect! Clinic
1 is over Clinic 2.
[This should have been controled: the goal is to assess the
treatment effect.]



What will we study next?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

3. Analysis with Multicategory Variables (Chp 3)

I 3.1 Revisit to Analysis with Contingency Table
I 3.1.1 Review of two-way contingency tables
I 3.1.2 Analysis of I × J contingency table
I 3.1.3 Multi-way contingency tables (supplementary)

I 3.2 Analysis with Multicategory Response
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