
What to do today (Feb 6)?

1. Introdution and Preparation

2. Analysis with Binary Variables (Chp1-2)
I 2.1 Analysis with binary variables I (Chp 1)
I 2.2 Analysis with binary response (Chp 2)

I 2.2.1 Regression models (Chp2.1, Chp2.2.1)
I 2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
I 2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)

I 2.3 Generalized linear models (Chp2.3)

3. Analysis with Multicategory Variables (Chp3)
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2.2.3C Interactions and transformations of predictors

When to consider two predictors X1,X2

the logistic regression model I:

logit
[
π(x1, x2)

]
= log

[ π(x1, x2)

1− π(x1, x2)

]
= α + β1x1 + β2x2

I What if the interaction of X1,X2 is of interest? =⇒ to add the
term for X3 = X1X2 to the model:

logit
[
π(x1, x2)

]
= log

[ π(x1, x2)

1− π(x1, x2)

]
= α + β1x1 + β2x2 + β12x1x2

I What if the effect of h(X2) is of interest, instead of X2? =⇒ to
replace X2 with X ∗

2 = h(X2) in to the model:

logit
[
π(x1, x2)

]
= log

[ π(x1, x2)

1− π(x1, x2)

]
= α + β1x1 + β2h(x2)



2.2.3D Qualitative explanatory variables

Example. AZT Use and AIDS (NY Times, 1991): a clinical trial
with n=338 HIV infected subjects

Development of AIDS by AZT Use and Race
AIDS Symptoms

Race AZT Use yes no

white yes 14 93
no 32 81

black yes 11 52
no 12 43

I binary response Y : AIDS developed or not

I two factors X= AZT Use: received immediately or not, and
Z=Race: white or black

I multiple logistic model: logit
[
π(x , z)

]
= α + β1X + β2Z



Multiple logistic regression model:

logit
[
π(x , z)

]
= α + β1X + β2Z

⇔ π(x , z) = π(i , k), i = 1, 2 and k = 1, 2:
ANOVA Representation logit[π(i , k)] = α + βXi + βZk

I Coding Scheme I (eg. SAS): βX
1 = β1, the coef to X ; βX

2 = 0;

The log OR of AIDS with AZT use vs not is βX
1 − βX

2 = β1.

I Coding Scheme II (eg. R): βX
1 = 0 and βX

2 = β1, the coef to X ;

The log OR of AIDS with AZT use vs not is βX
1 − βX

2 = −β1.

I Coding Scheme III (eg. ANOVA-type): βX
1 = −βX

2 ⇔
βX

1 + βX
2 = 0, and βX

1 = β1, the coef to X ;

The log OR of AIDS with AZT use vs not is βX
1 − βX

2 = 2β1.



If consider two factor interactions ... ...

Multiple logistic regression model:

logit
[
π(x , z)

]
= α + β1X + β2Z + β12XZ

π(x , z) = P(Y = 1|X = x ,Z = z) ⇔ π(x , z) = π(i , k), i = 1, 2
and k = 1, 2:

ANOVA Representation

logit[π(i , k)] = α + βXi + βZk + βXZik



2.2.3E Example of the crab study (cont’d)
Revisit II: A multiple logistic regression analysis

I Using Color and Width Predictors – X1 = width, X2 = color : (a surrogate

for age) light (not sampled), medium light, medium, medium dark, dark:

I X21 = 1 for medium, = 0 otherwise
I X22 = 1 for medium dark, = 0 otherwise
I X23 = 1 for dark, = 0 otherwise

I Consider logit(π) = α+ β1x1 + β21x21 + β22x22 + β23x23

I For x1 = 26.3, a medium-light crab’s predicted probability is
π̂(26.3, 0, 0, 0) = .715 and 95% CI (.392, .908):

I calculate 95% CI for logit(π) = α + β126.3:

(α̂+β̂126.3
)
±1.96∗

√
ˆvar(α̂) + ˆvar(β̂1) ∗ 26.32 + 2 ˆcov(α̂, β̂1) ∗ 26.3

=⇒ (−.44, 2.28)
I calculate 95% CI for π:

(
e−.44

1 + e−.44
,

e2.28

1 + e2.28
) = (.392, .908)



Revisit II: A multiple logistic regression analysis – using the
regression outcome

I For x1 = 26.3 (average width) and a medium-light crab, its odds is
.715/.285 = 2.51

I For x1 = 26.3 and a dark crab, its prob of having satellites is .399
and odds is .399/(1− .399) = 0.66

I The odds ratio of having satellites for medium-light vs dark crabs
with average width is 2.51/.66 = 3.8

=⇒ a dark crab of average width is less likely than a medium-light
crab to have satellites.



Revisit II: An alternative multiple logistic regression analysis
(Quantitative Treatment of the Ordinal Predictor, color)

color = x2 = 1, 2, 3, 4 for the color categories and fit
logit(π) = α + β1x1 + β2x2

I using the regression outcome
The estm for β1 and β2 along with their ASE values show
strong evidence of an effect for each.

I goodness-of-it?

to add in more predictors? how about two predictors’
interactions



Revisit III: Model selection (Backward Elimination)

Consider the multiple logistic regression with different sets of predictors:

Mo- Models Deviance
del Predictors Deviance DF AIC Compared Difference
1 C * S + C * W + S * W 173.7 155 209.7 - -
2 C + S + W 186.6 166 200.6 (2)-(1) 12.9 (df = 11)
3a C + S 208.8 167 220.8 (3a)-(2) 22.2 (df = 1)
3b S + W 194.4 169 202.4 (3b)-(2) 7.8 (df = 3)
3c C + W 187.5 168 197.5 (3c)-(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)-(3c) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)-(3c) 7.0 (df = 3)
5 C = dark + W 188.0 170 194.0 (5)-(3c) 0.5 (df = 2)
6 None 225.8 172 227.8 (6)-(5) 37.8 (df = 2)
C=color; S=spine condition; W=width.
Note: A strong linear correlation between width and weight: sample corr=0.887.
So weight is not included.

To be studied in Chp 5 systematically.



2.3A Generalized linear models: Introduction

I Ordinary Linear Regression Models (OLM)

To study Y ← X ,Z? with continuous response Y and two
explanatory variables: Y = α + βX + γZ + ηXZ + ε with
E (ε) = 0 and V (ε) = σ2

I R: glmout< −glm(Y∼X*Z, family=gaussian)

I Logistic Regression Models (Logit)

To study Y ← X ,Z? with binary response Y = 1, or 0:
logit

[
π(x , z)

]
= α + βX + γZ + ηXZ with

P(Y = 1|X = x ,Z = z) = π(x , z) and
Y ∼ Bernoulli

(
π(x , z)

)
I R: glmout< −glm(Y∼X*Z, family=binomial)



2.3B Generalized linear models: Components

What common features in the examples of regression
models, OLM, Logit? Recall how to conduct the analysis with R:
glm(formula, family) =⇒
GOAL: to study how Y ← X1, . . . ,XK

Generalized Linear Models:

I Random Component. response r.v. Y with
µ(x1, . . . , xk) = E (Y |x1, . . . , xk) to be examined

I Systematic Component. α + β1x1 + . . .+ βKxK
Some xk can be based on others: e.g. x3 = x1x2.

I Link Function. g(µ) = α + β1x1 + . . .+ βKxK
The link function g(·) links the random componet through its
mean and the systematic component. More on GLM later



What will we study next?

1. Introdution and Preparation

2. Analysis with Binary Variables (Chp1-2)

3. Analysis with Multicategory Variables (Chp 3)

I 3.1 Revisit to Analysis with Contingency Table (Chp
3.1-2)

I 3.1.1 Review of two-way contingency tables
I 3.1.2 Analysis of I × J contingency table
I 3.1.3 Multi-way contingency tables (supplementary)

I 3.2 Analysis with Multicategory Response (Chp 3.3-5)
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