What to do today (02/01)?

- ▶ 2. Analysis with Binary Variables (Chp 1-2)
- 2.1 Analysis with binary variables I (Chp 1)
- 2.2 Analysis with binary response II (Chp 2)
 - 2.2.1 Regression models (Chp2.1, Chp2.2.1)
 - 2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
 - 2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)
 - 2.2.4 Generalized linear models (Chp2.3)

Midterm 1: 10:30 - 11:20

2.2.2 Simple logistic regression analysis

- ▶ a binary response Y (e.g. success (1)/failure (0)); one explanatory variable X
- ▶ to find out about the function $\pi(x) = P(Y = 1|X = x)$

Simple Logistic Regression Model:

$$logit[\pi(x)] = log[\frac{\pi(x)}{1 - \pi(x)}] = \alpha + \beta x$$

equivalently to
$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$
.

Properties:

- ightharpoonup always in between 0 and 1 regardless of α and β 's values
- ▶ if $\beta = 0$, $\pi(x) = \frac{e^{\alpha}}{1+e^{\alpha}}$; if $\beta > 0$ (< 0), $\pi(x) \uparrow (\downarrow)$ as $x \uparrow$
- ▶ S-shaped often desirable and meeting the commen sense

Example. Female Horseshoe Crabs and their Satellites: Revisit I

To consider a simplified problem: the response variable Y=1 or 0 for if presence of satellite; one predictor X= "width"

How does Y depend on X? What is $\pi(x) = P(Y = 1 | X = x)$?

Example. Female Horseshoe Crabs and their Satellites: Revisit I with **Model A.** $\hat{\pi}(x) = -1.766 + 0.092x$ with **Model B.** the simple logistic regression model

 $logit[\pi(x; \alpha, \beta)] = \alpha + \beta x$: $\hat{\alpha} = -12.351$, $\hat{\beta} = 0.497$

Example. Female Horseshoe Crabs and their Satellites: Revisit I With **Model B.**, $\hat{\pi}(x) = \frac{\exp(-12.35 + .497x)}{1 + \exp(-12.35 + .497x)}$

- $\hat{\beta} > 0$: $\hat{\pi}(x_{min}) = 0.129$ and $\hat{\pi}(x_{max}) = 0.987$
- ▶ the median effective level (the steepest slope of the curve, $\pi(x; \alpha, \beta) = 1/2$): $EL_{50} = -\hat{\alpha}/\hat{\beta} = 24.8$
- ▶ at the sample mean width of $\bar{x}=26.5$ cm, $\hat{\pi}=.674$ and the slope $\hat{\beta}\hat{\pi}(1-\hat{\pi})=0.11$
- ▶ the odds ratio for each cm increases in width: $\exp(\hat{\beta}) = 1.64$ e.g., x = 26.3 vs $x = 27.3 \Longrightarrow \text{odds} = 2.07$ vs 3.40.
- ▶ 95% CI for the size of the width's effect: $\hat{\beta} \pm Z_{0.25}ASE = (0.298, 0.697)$
- ▶ Testing (significant effect?): $H_0: \beta = 0, Z_{obs} = \hat{\beta}/ASE = 4.9$
- ▶ 95% CI for $\pi(26.5)$: (.61, .77), obtained by getting CI for $\alpha + \beta x$ and then logit⁻¹-transfering.

Example. Female Horseshoe Crabs and their Satellites: Revisit I

Is the simple logistic regression model provides a good fit to the data? Are there any other predictors?

2.2.3 Multiple logistic regression analysis

- ▶ a binary response Y (e.g. success (1)/failure (0)); several explanatory variables X_1, \ldots, X_K
- ▶ to find out about the function $\pi(x_1,...,x_K) = P(Y = 1|X_1 = x_1,...,X_K = x_K)$

Multiple Logistic Regression Model:

$$logit[\pi(x_1,\ldots,x_K)] = log\left[\frac{\pi(x_1,\ldots,x_K)}{1-\pi(x_1,\ldots,x_K)}\right] = \alpha + \beta_1 x_1 + \ldots + \beta_K x_K$$

equivalently to
$$\pi(x_1,\ldots,x_K;\alpha,\beta_1,\ldots,\beta_K) = \frac{\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}{1+\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}$$
.

- \blacktriangleright always in between 0 and 1 regardless of α and β 's values
- if $\beta_1, \ldots, \beta_K = 0$, $\pi(x_1, \ldots, x_K) = \frac{e^{\alpha}}{1 + e^{\alpha}}$; if $\beta_1 > 0 (< 0)$, $\pi(x_1, \ldots, x_K) \uparrow (\downarrow)$ as $x_1 \uparrow$ and fixed other predictors
- S-shaped [with a predictor] often desirable and meeting the commen sense

2.2.3A Modeling and interpretation

Multiple Logistic Regression Model:

$$logit\left[\pi(x_1,\ldots,x_K)\right] = log\left[\frac{\pi(x_1,\ldots,x_K)}{1-\pi(x_1,\ldots,x_K)}\right] = \alpha + \beta_1 x_1 + \ldots + \beta_K x_K$$

equivalently to

$$\pi(x_1,\ldots,x_K;\alpha,\beta_1,\ldots,\beta_K) = \frac{\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}{1+\exp(\alpha+\beta_1x_1+\ldots+\beta_Kx_K)}.$$

For example, when $X_1 = 1$ or 0, β_1 is the effect of X_1 on the log odds of Y = 1, controlling the other explanatory variables

► Testing on $H_0: \beta_1 = 0 \Rightarrow$ whether X_1 is a significant predictor in the presence of the other ones

2.2.3A Modeling and interpretation

Multiple Logistic Regression Model:

$$logit\left[\pi(x_1,\ldots,x_K)\right] = \log\left[\frac{\pi(x_1,\ldots,x_K)}{1-\pi(x_1,\ldots,x_K)}\right] = \alpha + \beta_1 x_1 + \ldots + \beta_K x_K$$

equivalently to $\pi(x_1, \ldots, x_K; \alpha, \beta_1, \ldots, \beta_K) = \frac{\exp(\alpha + \beta_1 x_1 + \ldots + \beta_K x_K)}{1 + \exp(\alpha + \beta_1 x_1 + \ldots + \beta_K x_K)}$. For example, when K = 2, X_2 is fixed at diff values, the curves $\pi(x_1, x_2)$ of x_1 are "parallel"

2.2.3B Statistical inference

Suppose the data from a study are

$$\{(y_i, x_{i1}, \ldots, x_{iK}) : i = 1, \ldots, n\}$$

all the individuals follow the same multiple logistic regression model:

$$Y_i | X_{i1}, \dots, X_{iK} \sim Bernoulli(\pi_i)$$

$$\pi_i = \pi(x_{i1}, \dots, x_{iK}; \alpha, \beta_1, \dots, \beta_K) = \frac{\exp(\alpha + \beta_1 x_{i1} + \dots + \beta_K x_{iK})}{1 + \exp(\alpha + \beta_1 x_{i1} + \dots + \beta_K x_{iK})}$$

What to do with the model next?

- estimation of $\alpha, \beta_1, \dots, \beta_K$
- testing for hypothese about $\alpha, \beta_1, \dots, \beta_K$
- estimation of $\pi(x_1,\ldots,x_K;\alpha,\beta_1,\ldots,\beta_K)$
- model checking and variable selection (* to study in Chp 5)

Estimation of $\alpha, \beta_1, \dots, \beta_K$ the likelihood function:

$$L(\alpha, \beta_1, \dots, \beta_K) = \prod_{i=1}^n \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}$$

with
$$\pi_i = \pi(x_{i1}, \dots, x_{iK}; \alpha, \beta_1, \dots, \beta_K) = \frac{\exp(\alpha + \beta_1 x_{i1} + \dots + \beta_K x_{iK})}{1 + \exp(\alpha + \beta_1 x_{i1} + \dots + \beta_K x_{iK})}$$

 \Longrightarrow the MLE $(\hat{\alpha},\hat{\beta}_1,\ldots,\hat{\beta}_K)$: consistent and asymptotically normal

$$N\left(\begin{pmatrix} \alpha \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}, \Sigma_{(K+1)\times(K+1)}(\alpha,\dots,\beta_k)\right)$$

⇒ confidence interval/region: for example,

- lacksquare for each of the parameters: $\hat{eta}_1 \pm z_{0.975} SE_{\hat{eta}_1}$
- ▶ joint (simutaneous) CI/CR: e.g.

$$\Big\{\left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right):\left(\left(\begin{array}{c}\hat{\beta}_1\\\hat{\beta}_2\end{array}\right)-\left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right)\right)^{'}\Sigma^{-1}\Big(\left(\begin{array}{c}\hat{\beta}_1\\\hat{\beta}_2\end{array}\right)-\left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right)\Big)\leq c\Big\}$$

Estimation of $\pi(x_1, ..., x_K)$ Recall $logit(\pi(x_1, ..., x_K)) = \alpha + \beta_1 x_1 + ... + \beta_K x_K$ is equivalent to $\pi(x_1, ..., x_K; \alpha, \beta_1, ..., \beta_K) = \frac{\exp(\alpha + \beta_1 x_1 + ... + \beta_K x_K)}{1 + \exp(\alpha + \beta_1 x_1 + ... + \beta_K x_K)}$.

Point Estimator (MLE).

$$\hat{\pi}(x_1,\ldots,x_K) = \frac{\exp(\hat{\alpha} + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_K x_K)}{1 + \exp(\hat{\alpha} + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_K x_K)}.$$

- ► CI. $\hat{\pi} \pm z_{0.975} SE_{\hat{\pi}}$; an alternative method:
 - first to obtain a CI for $\alpha + \beta_1 x_1 + \ldots + \beta_K x_K$ using the estms of α, β 's and the estm of $\Sigma_{(K+1)\times(K+1)}$
 - ▶ then to take the $logit^{-1}$ -transformation to attain a CI for $\pi(x_1, \ldots, x_K)$

Hypothesis Testing

For example, when K=2, $H_0: \beta_2=0$ vs $H_1:$ otherwise (regarding the specified multiple logistic regression model for $\pi(x_1,x_2)$)

▶ Approach 1: using the MLE of β_2 and

$$Z = \frac{\hat{\beta}_2 - \beta_{20}}{SE_{\hat{\beta}_2}} \sim N(0,1)$$

approximately under H_0 when n >> 1

Approach 2: using the LRT

$$\mathcal{G}^2 = -2\log\left[\frac{\max L(\alpha, \beta_1, 0)}{\max L(\alpha, \beta_1, \beta_2)}\right] \sim \chi^2(1)$$

approximately under H_0 when n >> 1

Hypothesis Testing (cont'd)

For another example, when K=2, $H_0:\beta_1=0$, $\beta_2=0$ vs $H_1:$ otherwise (regarding the specified multiple logistic regression model for $\pi(x_1,x_2)$)

▶ Approach 1: using the MLE of β_1, β_2 and the Wald type test with

$$\left(\left(\begin{array}{c} \hat{\beta}_1 \\ \hat{\beta}_2 \end{array} \right) - \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right)' \Sigma^{-1} \left(\left(\begin{array}{c} \hat{\beta}_1 \\ \hat{\beta}_2 \end{array} \right) - \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right) \sim \chi^2(2)$$

approximately under H_0 when n >> 1

Approach 2: using the LRT

$$\mathcal{G}^2 = -2\log\left[\frac{\max L(\alpha, 0, 0)}{\max L(\alpha, \beta_1, \beta_2)}\right] \sim \chi^2(2)$$

approximately under H_0 when n >> 1

0000

2.2.4 Generalized linear models (Chp2.3)

What to do next?

- 1. Introduction and Preparation
- 2. Analysis with Binary Variables (Chp 1-2)
 - 2.1 Analysis with binary variables I (Chp 1)
 - 2.2 Analysis with binary response (Chp 2)
 - ▶ 2.2.1 Regression models (Chp2.1, Chp2.2.1)
 - ▶ 2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
 - 2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)
 - 2.2.4 Generalized linear models (Chp2.3)

Marked Midterm 1 papers will be returned on Feb 6

