What to do today (02/01)?

» 2. Analysis with Binary Variables (Chp 1-2)
2.1 Analysis with binary variables | (Chp 1)

2.2 Analysis with binary response Il (Chp 2)
2.2.1 Regression models (Chp2.1, Chp2.2.1)
2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)
2.2.4 Generalized linear models (Chp2.3)

» Midterm 1: 10:30 - 11:20



2.2.2 Simple logistic regression analysis

> a binary response Y (e.g. success (1)/failure (0)); one explanatory
variable X

> to find out about the function 7(x) = P(Y = 1|X = x)

Simple Logistic Regression Model:

. (x
logit [r(x)] = log [1—(7r()x)} = a4 Bx
equivalently to 7(x) = %.

Properties:
> always in between 0 and 1 regardless of a and f3’s values
» if 3=0, 7(x) = ﬁ%; if 8>0(<0), 7(x)1T({)asx?T

» S-shaped — often desirable and meeting the commen sense



Example. Female Horseshoe Crabs and their Satellites: Reuvisit |

To consider a simplified problem: the response variable Y =1 or 0 for
if presence of satellite; one predictor X=“width"

How does Y depend on X? What is 7(x) = P(Y = 1|X = x)?
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Example. Female Horseshoe Crabs and their Satellites: Revisit |
with Model A. #(x) = —1.766 + 0.092x

with Model B. the simple logistic regression model

logit [ (x; ar, B)] = a + Bx: & = —12.351, B = 0.497
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Example. Female Horseshoe Crabs and their Satellites: Revisit |
With Model B., #(x) = (SR 12:354.497)

v

1-+exp(—12.354.497x)

B> 0: #(Xmin) = 0.129 and A (Xpmax) = 0.987

the median effective level (the steepest slope of the curve,
m(x;a,8) =1/2): Elsg = —&/ﬁ =248

at the sample mean width of X = 26.5cm, © = .674 and the slope
Ba(l—7)=0.11

the odds ratio for each cm increases in width: exp(3) = 1.64 e.g.,
x =26.3 vs x = 27.3 = 0dds=2.07 vs 3.40.

9AS% Cl for the size of the width's effect:
B+ Z s ASE = (0.298,0.697)

Testing (significant effect?): Hy: 8 =0, Zops = BA/ASE =49

95% CI for 7(26.5): (.61,.77), obtained by getting Cl for a + 8x
and then logit~-transfering.



Example. Female Horseshoe Crabs and their Satellites: Reuvisit |

Model A.
—— Model B.
—— Proportions/Lowess
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Is the simple logistic regression model provides a good fit to
the data? Are there any other predictors?



2.2.3 Multiple logistic regression analysis

> a binary response Y (e.g. success (1)/failure (0)); several
explanatory variables Xi, ..., Xk

» to find out about the function
w(x1, .., xk) = P(Y =1X1 = x1,..., Xk = xk)

Multiple Logistic Regression Model:

m(x1, ..., Xk)
177T(X1,...,XK)

logit [m(xq, ..., k)] :Iog{ } =a+ Bixa+...+ Brxk

7BK) __exp(atpfixit...4+Bkxk)

equivalently to m(x1,...,xk;a, f1, ... = Trexp(ot AT B

> always in between 0 and 1 regardless of a and f3’s values

> i Bry. . B = 0, (1, xK) = o if 1 > 0(< 0),
m(x1,...,xk) T (J) as x; 1 and fixed other predictors

> S-shaped [with a predictor] — often desirable and meeting the
commen sense



2.2.3A Modeling and interpretation

Multiple Logistic Regression Model:

ﬂ-(Xl""?XK)

= a+fix1+. . . +Bkxk
1—m(x,. .., Xk)

logit [m(x1,...,xk)] = log [

equivalently to
(X1, XK Py

Bk) = exp(a+Bixi+...4+Brxk)
)y PK 1+exp(atpfixi+...+B8kxk) "

For example, when X; = 1 or 0, (1 is the effect of Xj on the log
odds of Y =1, controlling the other explanatory variables

» Testing on Hp : B1 = 0 = whether Xj is a significant
predictor in the presence of the other ones



2.2.3A Modeling and interpretation
Multiple Logistic Regression Model:

. m(xe, ..., X
/og/t[ﬂ'(xl,...,xK)] = Iog{ (1, k) } =a+ fix1+ ...+ Bkxk
1—7T(X1,...,XK)
equivalently to m(x1, ..., xk; a, B1,.-.,0k) = explatBuxat... 4Bk

1+exp(a+Bixi+...+Bkxk)
For example, when K =2, X; is fixed at diff values, the curves 7(xq, x2)

of x; are “parallel”

o
=1

08

logit{pi(x1x2)]
]
L
pi(x1,x2)
0.6

0.4

0.2

0.0




2.2.3B Statistical inference
Suppose the data from a study are

{(i,xi1,. .-, xik) i =1,...,n}

all the individuals follow the same multiple logistic regression

model:
Y,"X,‘l, c. ,X,'K ~ Bernoulli(Tr,-)
L . e _ _explatBixiit+...+Bkxik)
T = 7T(X,1, ey XK O 61, ce ,ﬁK) - 1+exp(o¢+ﬁ1x,'1+...+BKIX,'K)

What to do with the model next?
» estimation of «, B1,..., Bk
> testing for hypothese about «, f1,. .., Bk
» estimation of m(xy,...,xk;a, B1,...,0kK)
» model checking and variable selection (* to study in Chp 5)



Estimation of «, 51, ..., 0k
the likelihood function:

n

L(aaﬁlw"aBK) :Hﬂl}ﬁ(l_ﬂi)liw

i=1
: _ ) . _ _explatBixiit+...+Bkxik)
with 7m; = 7(xi1, ..., Xik; o, 1, - .., BK) = Ttexp(at Bixit .+ BrxiK)
— the MLE (d,Bl, - 7BAK): consistent and asymptotically
normal
«

N( 61 aZ(K+1)><(K+1)(Oé,...,Bk)>
Bk



— confidence interval/region: for example,

» for each of the parameters: ﬁAl + 20.9755E31

» joint (simutaneous) CI/CR: e.g.

((2)((3)-(a )=
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Estimation of 7(x,. .., xk)

Recall Iogit(Tr(xl, ... ,XK)) =+ fix1 + ...+ Bkxk is equivalent
_ +Buxitet
to m(x1,. .., XKk; 0, 1, ..., BKk) = 1ixepx(p(za—€lﬁx11x1+fgi§;)<)

» Point Estimator (MLE).

. ) = exp(& + Bixi+ ...+ BKXK)
Y l—l—exp(&—&—ﬁlxl—i—...—i—BAKxK)

» Cl. 7+ 20.9755Eﬁ-;
an alternative method:
» first to obtain a Cl for oo + B1x1 + ... + Bk xk
using the estms of a, 3's and the estm of T (xy1)x(k+1)
» then to take the logit~-transformation to attain a CI for
7T(X1,...,XK)



Hypothesis Testing
For example, when K =2, Hp : 2 = 0 vs Hj : otherwise (regarding
the specified multiple logistic regression model for m(xy, x2))

» Approach 1: using the MLE of 3, and

~

B2 — P20

Z = —
SEB N(0,1)
2

approximately under Hy when n >>1
» Approach 2: using the LRT

max L(a, B1,0) ] N
max L(Oé7 ﬁla 52)

approximately under Hy when n >>1

X*(1)

G? = —2log [



Hypothesis Testing (cont'd)

For another example, when K =2, Hy : 81 = 0,80 =0 vs H; :
otherwise (regarding the specified multiple logistic regression
model for 7(x1, x2))

» Approach 1: using the MLE of 31, 8> and the Wald type test
with

0 _ 0
((2)-(5))=((3)-(5)) ~ve
approximately under Hy when n >>1
» Approach 2: using the LRT
max L(c, 0,0)
max L(«, f1, 52)
approximately under Hy when n >>1

G? = —2log [ } ~x*(2)



2.2 Analysis with binary response Il (Chp 2)

o
2.2.4 Generalized linear models (Chp2.3)

What to do next?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)
» 2.1 Analysis with binary variables | (Chp 1)

» 2.2 Analysis with binary response (Chp 2)

2.2.1 Regression models (Chp2.1, Chp2.2.1)

2.2.2 Simple logistic regression analysis (Chp2.2.2-7)

2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)
2.2.4 Generalized linear models (Chp2.3)
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Marked Midterm 1 papers will be returned on Feb 6

X. Joan Hu: STAT-475/675 Department of Statistics and Actuarial Science Simon Fraser University
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