
2.1 Analysis with binary variables I (Chp 1) 2.2 Analysis with binary response II (Chp 2)

What to do today (01/25)?

1. Introdution and Preparation

2. Analysis with Binary Variables (Chp 1-2)
2.1 Analysis with binary variables I (Chp 1)

2.1.1 On one binary variable (Chp1.1)
2.1.2 On two binary variables (Chp1.2)

2.1.2A Introduction
2.1.2B Inference with two binary variables
2.1.2C Further topics

2.2 Analysis with binary response II (Chp 2)
2.2.1 Regression models (Chp 2.1, Chp2.2.1)
2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
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2.1.2C Further topics: Matched pairs data

Example. Crossover Study to Compare Drug with Placebo.
86 subjects randomly assigned to receive drug then placebo or else
placebo then drug. Binary response (success, failure) for each
treatment.

Treatment success failure Total

drug 61 25 86
placebo 22 64 86

I Methods so far (e.g., X 2, G 2 test of indep., CI for the log-OR
θ from logistic regression) assume independent samples: they
are inappropriate for dependent samples (e.g., same subjects
in each sample, which yield matched pairs).



Example. Crossover Study to Compare Drug with Placebo.
(cont’d)
To reflect the dependence, display the data as 86 (pair)
observations rather than 2× 86 observations:

Placebo
success failure Total

success 12 49 61
Drug

failure 10 15 25
22 64 86

To compare the drug vs placebo with the data =⇒ to check if
π1+ − π+1, the difference in success rate between the drug and
placebo, is zero.



2.1.2C Further topics: Matched pairs data

In general, with a 2× 2 table, there is marginal homogeneity if
π1+ − π+1 = 0

I Since π1+ − π+1 = [π11 + π12]− [π11 + π21] = π12 − π21,
marginal homogeneity ⇔ π12 = π21 (symmetry).

I With H0: marginal homogeneity, π12
π12+π21

= 1
2 . Thus, under

H0 and conditioanl on n∗ = N12 + N21, N12 ∼ Bin(n∗, 12) with

mean E (N12) = n∗

2 and std.dev=
√
n∗(12)(12)



McNemar’s Test on H0: π1+ = π+1

By normal approximation to binomial, for large n∗ and under H0,

Z =
N12 − n∗

2√
n∗( 1

2 )( 1
2 )

=
n12 − n21√
n12 + n21

∼ N(0, 1)

or, equivalently

Z 2 =
(n12 − n21)2

n12 + n21
∼ χ2(1)

CI for π1+ − π+1:

[π̂1+ − π̂+1]± z1−α/2SE(π̂1+−π̂+1)

with SE = 1
n

√
(n12 + n21)− (n12−n21)2

n .



Example. Crossover Study to Compare Drug with Placebo.
(cont’d)
Test on H0 : π1+ = π+1 vs H1 : π1+ > π+1

zobs =
n12 − n21√
n12 + n21

=
49− 10√
49 + 10

= 5.1

=⇒ p < 0.001: extremely strong evidence for the probability of success is
higher with drug compared to placebo.

95% CI for π1+ − π+1

[
n11 + n12

n
− n11 + n21

n
]± 1.96SE = 0.453± 1.96(.075) = (0.31, 0.60)

Conclude that with 95% confidence the probability of success with drug

is between .31 and .60 higher than it with placebo.



2.1.2C Further topics: Larger contingency tables

Recall ... ...

I Contingency Table

a table with cells contain frequency counts of outcome according to
categorical variables

I 2-Way Contingency Table

a table with cells contain frequency counts of outcome according to
2 categorical variables

I I× J Contingency Table

a table with cells contain frequency counts of outcome according to
2 categorical variables, one with I levels and one with J levels

Larger contingency tables ...

I I× J Contingency Table with I > 2 and/or J > 2

I K-Way Contingency Table with K > 2



2.1.2C Further topics: Larger contingency tables
Where do young people live?



Test on independence between age and living place:

X 2 =
∑

all 5×4 cells

(observed count - expected count)2

expected count
=
∑
i,j

(nij − µ̂ij)
2

µ̂ij
∼ χ2(df )

df = (5− 1) ∗ (4− 1) and X 2
obs = 193.56

=⇒ p-value=P(X 2 > X 2
obs) = P(X 2 > 193.56) < 0.001

Conclusion. There is very strong evidence that living
arrangements of young people are not the same across the groups
of age 19,20,21, and 22.

Further, the percentage table shows how young people become
more independent as they grow older.

To conduct the test by LRT?



2.2 Analysis with binary response (Chp 2)

2.2.1 Regression models: Overview

Recall how we have studied so far about the association of
variables X ,Y ... ...

I One type of approaches ...
Don’t assign the different roles to them, and consider

I Another type of approaches ...
Choose one as the dependent (response) variable and the
other as the independent (explanatory) variable, and conduct
a regression analysis



2.2.1 Regression models: Logistic regression model

Example. Female Horseshoe Crabs and their Satellites (“An
Introduction to Categorical Data Analysis” A. Agresti, 2007)

I Study Goal: To investigate factors that affect whether a
female crab had any males (satellites) residing nearby her.

I Study Variables:
I Response: number of satellites
I Explanatory Variables: female crab’s color; spine condition;

weight; carapace width.

I Study Data ... ...



Data of Female Horseshoe Crab Study
C S W Wt Sa C S W Wt Sa

2 3 28.3 3.05 8 3 3 22.5 1.55 0
1 1 26.0 2.30 9 3 3 24.8 2.10 0
3 3 26.0 2.60 4 2 3 23.8 2.10 0

... ... ... ...

Source: Ethology, 102: 1-21, 1996
Note: C=color (1=light medium, 2=medium, 3=dark medium, 4=dark);
S=spine condition (1=both good, 2=one worn/broken, 3=both worn/broken);
W=carapace width (cm); Wt=weight(kg); Sa=number of satellites.

I How does “the number of satellites” depend on
“color”/“width”?



How does Y depend on X?

How about to consider a simplified problem:

I Consider the response variable Y as Y = 0 or 1 if “the
number of satellites” is 0 or > 0

I Consider only one explanatory variable X=“color”

Thinking ... ... To conduct a regression analysis? What regression
model to consider?

I How about Y = α + βX + ε?
not working well ... =⇒

I How about π(x) = α + βx with
π(x) = E (Y |X = x) = P(Y = 1|X = x)?
still not working well ... =⇒

I To consider log
[

π(x)
1−π(x)

]
= α + βx?



2.2.1 Regression models: Logistic regression model

General Setting:

I a binary response Y (e.g. success (1)/failure (0)); one
explanatory variable X

I to study how the prob of success depends on X
That is, to find out about the function
π(x) = E (Y |X = x) = P(Y = 1|X = x)

I Here Y |X = x ∼ Bernoulli
(
π(x)

)
Simple Logistric Regression Model:

logit
[
π(x)

]
= log

[ π(x)

1− π(x)

]
= α + βx

equivalent to π(x) = exp(α+βx)
1+exp(α+βx) .



2.2.2A Simple logistic regression analysis: Modeling
and Interpretation
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Properties:

I Always in between 0 and 1 regardless of α and β’s values

I If β = 0, π(x) = eα

1+eα ; if β > 0(< 0), π(x) ↑ (↓) as x ↑
I S-shaped – often desirable and meeting the common sense



2.2.2A Simple logistic regression analysis: Modeling
and Interpretation

When logit
[
π(x)

]
= α + βx , π(x) is not a linear function.

I Linear Approximation: π(x) ≈ a +
[dπ(x)

dx

]
x ,

dπ(x)

dx
= βπ(x)

[
1− π(x)

]
β determines the increase/decrease of π(x) as x ↑:

I with β = 0, dπ(x)
dx = 0 and thus π(x) = constant =⇒ Y ⊥⊥ X

I with a fixed β, the largest (steepest) linear slope is when
π(x) = 1/2 and thus x = −α/β (the median effective level)

I with a fixed β, if π(x) ≈ 0 or 1 =⇒ the flattest slope



2.2.2A Simple logistic regression analysis: Modeling
and Interpretation

When logit
[
π(x)

]
= α + βx , π(x) is not a linear function.

I Odds Ratio Interpretation: If X is binary, e.g male
(1)/female (0), the odds ratio of success with male vs female:

θ = π(1)/[1−π(1)]
π(0)/[1−π(0)] = exp(α+β∗1)

exp(α+β∗0) = exp(β) =⇒ log(θ) = β



2.2.2B Simple logistic regression analysis: Statistical
Inference

Modeling: With the simple logistic regression model,
logit

[
π(x)

]
= α + βx ,

=⇒ Y |X = x ∼ Bernoulli(π(x))

Available data: data from a study with n independent individuals:
{(Xi ,Yi ) : i = 1, . . . , n}.

What to do?

I estimate α, β

I test on hypothese about α, β

I estimate π(x)

I model checking: is “logit
[
π(x)

]
= α+ βx” a good model?



2.2.2B Simple logistic regression analysis:
Estimation of α and β

the likelihood function:

L(α, β) =
n∏

i=1

π(xi ;α, β)Yi
[
1− π(xi ;α, β)

]1−Yi

the log-likelihood function:

log L(α, β) =
n∑

i=1

[
Yi (α + βXi )− log(1 + eα+βXi )

]
Solving the equations to obtain the MLE α̂ and β̂:

∂ log L(α, β)

∂α
=

n∑
i=1

[
Yi−π(Xi ;α, β)

]
= 0;

∂ log L(α, β)

∂β
=

n∑
i=1

[
Yi−π(Xi ;α, β)

]
Xi = 0

To implement it by R.



2.2.2B Simple logistic regression analysis:
Estimation of α and β

Properties of the MLE α̂ and β̂:

I consistent estm

I asymptotic normality: β̂ ∼ N(β,AVβ̂) and α̂ ∼ N(α,AVα̂), as
n >> 1

More on the MLE ...

I MLE can be obtained with iterative numerical methods ... ...

I Estimation of the asymptotic variance AVα̂ and AVβ̂:[
AVθ̂(θ)

]−1

= nI (θ) ≈ −∂2 log L(θ)
/
∂θ2.

I Confidence intervals for α, β: the Wald type

e.g. β̂ ± 1.96ASEβ̂ with ASEβ̂ =
√
AVβ̂



2.2.2B Simple logistic regression analysis: Testing

To test on H0 : β = β0:

I the Wald-type test statistic: if n >> 1, under H0,
approximately

Z =
β̂ − β0
ASEβ̂

∼ N(0, 1)

equivalently Z 2 ∼ χ2(1)

I the LRT statistic: if n >> 1, under H0, approximately

−2 log
[L(α̂0, β0)

L(α̂, β̂)

]
∼ χ2(1)

I the score test statistic: if n >> 1, under H0, approximately

∂ log L(α, β)

∂β

∣∣∣
β=β0

∼ N(0, I (α, β0))



2.2.2B Simple logistic regression analysis:
Estimation of π(x ;α, β)

With the MLE of α, β, the MLE of π(x ;α, β) is

π̂(x) = π(x ; α̂, β̂) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)

How about an approximate 95% CI of π(x ;α, β)?

I π̂(x)± (1.96)(SEπ̂(x)), or

I logit−1
[
(α̂ + β̂x)± (1.96)(SEα̂+β̂x)

]
var(α̂ + β̂x) = var(α̂) + var(β̂)x2 + 2cov(α̂, β̂)x and

var(α̂, β̂) =

[
var(α̂) cov(α̂, β̂)

cov(α̂, β̂) var(β̂)

]
≈
[
− ∂2 log L(α, β)

/
∂(α, β)2

]−1

.



2.1 Analysis with binary variables I (Chp 1) 2.2 Analysis with binary response II (Chp 2)

2.2.2 Simple logistic regression analysis (Chp2.2.2-7)

What will we do next week?
A. New material to study:

I 1. Introduction and Preparation
I 2. Analysis with Binary Variables (Chp 1-2)

I 2.1 Analysis with binary variables I (Chp 1)

I 2.2 Analysis with binary response (Chp 2)
I 2.2.1 Regression models (Chp2.1, Chp2.2.1)
I 2.2.2 Simple logistic regression analysis (Chp2.2.2-7)
I 2.2.3 Multiple logistic regression analysis (Chp2.2.2-7)
I 2.2.4 Generalized linear models (Chp2.3)

B. Midterm 1:

I A brief review
I Exam: AQ3005; 10:30-11:20am
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