What to do today (01/23)?

1. Introdution and Preparation

2. Analysis with Binary Variables (Chp 1-2)

2.1 Analysis with binary variables I (Chp 1)
2.1.1 On one binary variable (Chp1.1)
2.1.2 On two binary variables (Chp1.2)
2.1.2A Introduction
2.1.2B Inference with two binary variables
2.1.2C Further topics

2.2 Analysis with binary response II (Chp 2)

< ロ > < 同 > < 回 > < 回 > < 回 >

2.1.2B Inference with two binary variables

Likelihood-based and others approaches with 2×2 contingency tables:

Estimation

• estm probabilities of π_{ij} , π_{i+} , π_{+j} , $p_i = \pi_{i1}/\pi_{i+}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

estm RR and OR

Hypothesis Testing

- ▶ about a parameter: e.g. p₁ − p₂
- about independence

2.1.2B Inference with two binary variables: Hypothesis testing on independence

- With a 2 × 2 table, it can be formulated into testing on H₀: OR = 1
- How about a general approach, which works with any two-way table?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- \implies Consider two general testing procedures:
 - Pearson's Chi-Squared (χ^2 -) Test (K. Pearson, 1900)
 - Likelihood Ratio Test (LRT)

2.1.2B Hypothesis testing on independence: χ^2 -test

In general, testing on H_0 vs H_1 with a two-way contingency table $(2 \times 2 \text{ table as a special case})$:

Cell Counts				
	Variable Y			
Variable X	1	2		
1	N_{11}	N ₁₂		
2	N_{21}	N ₂₂		

Suppose, when H_0 is true, the expected frequencies $E_{H_0}(N_{ij}) = \mu_{ij}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Test on H_0 by comparing N_{ij} with μ_{ij} ?

Pearson's Chi-Squared Test (K. Pearson, 1900) on H_0 vs H_1 with an $I \times J$ contingency table Consider the **Pearson** χ^2 -statistic:

$$\mathcal{X}^2 = \sum_{i,j} \frac{(N_{ij} - \mu_{ij})^2}{\mu_{ij}}$$

Approximately,
$$\mathcal{X}^2 \sim \chi^2(df)$$
 under H_0 for large n .
 $\implies p - value = P_{H_0}(\mathcal{X}^2 \ge \mathcal{X}^2_{obs})$

Remarks:

- The χ^2 -approximation is good usually when $\mu_{ij} \ge 5$
- The degrees of freedom: df = #(parameters under H₁) - #(parameters under H₀)
- ▶ What are µ_{ij}? How to implement the procedure?

2.1.2B Hypothesis testing on independence: χ^2 -test

Consider specifically ...

To test on $H_0 : X \perp Y$ vs $H_1 : X \not\perp Y$ with an $I \times J$ contingency table by the multinomial sampling with $N_{++} = n$

- ► Reformulate the hypotheses according to the sampling ... $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j vs H_1 : otherwise
- Getting μ_{ij} or their best estimates $\mu_{ij} = E_{H_0}(N_{ij}) = n\pi_{i+}\pi_{+j}$ the MLE under H_0 is $\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$
- Applying Pearson's χ^2 -test ...
 - determine df = (IJ 1) ([I 1] + [J 1]) = (I 1)(J 1)by Fisher (1922)
 - calculate $\mathcal{X}_{obs}^2 = \sum \frac{(n_{ij} \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}}$
 - ► calculate $p value = P_{H_0}(\mathcal{X}^2 \ge \mathcal{X}_{obs}^2)$ based on $\mathcal{X}^2 \sim \chi^2(df)$ approximately when n >> 1
 - draw conclusion

2.1.2B Hypothesis testing on independence: LRT

Likelihood Ratio Test (LRT) on H_0 vs H_1 with a two-way contingency table Consider the **likelihood ratio test statistic**:

$$-2\log\Big(rac{\max L_{H_0}(parameter|data)}{\max L(parameter|data)}\Big) \propto G^2 = 2\sum_{i,j} N_{ij}\log\Big(rac{N_{ij}}{\mu_{ij}}\Big)$$

Approximately, $G^2 \sim \chi^2(df)$ under H_0 for large $n \implies p - value = P_{H_0}(X^2 \ge X_{obs}^2)$

- the χ^2 -approximation is good usually when $\mu_{ij} \ge 5$
- the degrees of freedom df = #(parameters under H₁) - #(parameters under H₀)
- ▶ What are µ_{ij}? How to implement the procedure?

2.1.2B Hypothesis testing on independence: LRT

Consider specifically ...

To test on $H_0 : X \perp Y$ vs $H_1 : X \not\perp Y$ with an $I \times J$ contingency table by the multinomial sampling with $N_{++} = n$

- Reformulate the hypotheses according to the sampling ... $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j vs $H_1:$ otherwise
- **Getting** μ_{ij} **or their best estimates** $\mu_{ij} = E_{H_0}(N_{ij}) = n\pi_{i+}\pi_{+j}$: the MLE under H_0 is $\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$

Applying LRT-test ...

- determine df = (IJ 1) ([I 1] + [J 1]) = (I 1)(J 1)
- calculate $G_{obs}^2 = 2 \sum_{i,j} n_{ij} \log \left(\frac{n_{ij}}{\hat{\mu}_{ij}} \right)$
- calculate $p value = P_{H_0}(G^2 \ge G_{obs}^2)$
- draw conclusion

2.1.2B Hypothesis testing on independence Example. Gender Gap in Political Affiliation

	Party Identification			
Gender	democrat	independent	republican	Total
female	762	327	468	1557
male	484	239	477	1200
Total	1246	566	945	2757

Data from 2000 General Social Survey

X = gender with I = 2 levels, female vs males; Y = party with J = 3 levels, democrat vs indept vs republican

To test on $H_0: X \perp Y$ vs $H_1: X \not\perp Y$ with the 2 × 3 contingency table by the multinomial sampling with $N_{++} = n = 2575$

- Reformulate the hypotheses according to the sampling ... $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ vs $H_1:$ otherwise
- Getting μ_{ij} or their best estimates $\mu_{ij} = E_{H_0}(N_{ij}) = n\pi_{i+}\pi_{+j}$, with the MLE under H_0 $\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$

Applying Pearson's χ^2 -Test ...

• determine
$$df = (I - 1)(J - 1) = (1)(2)$$

• calculate
$$\mathcal{X}^2_{obs} = \sum rac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} = 30.1$$
 with $\hat{\mu}_{ij} = n_{i+}n_{+j}/n_{+j}$

- ► calculate $p value = P_{H_0}(\mathcal{X}^2 \ge 30.1) < .0001$ based on $\mathcal{X}^2 \sim \chi^2(2)$ approximately when n >> 1
- concluding: strong evidence against H₀ there is a significant association between gender and political affiliation

Applying LRT ...

- determine df = (I 1)(J 1) = 2
- calculate $G_{obs}^2 = 2 \sum_{i,j} n_{ij} \log \left(\frac{n_{ij}}{\hat{\mu}_{ij}} \right) = 30.0$ with $\hat{\mu}_{ij} = n_{i+} n_{+j} / n_{ij}$
- ► calculate $p value = P_{H_0}(G^2 \ge 30.0) < .0001$ based on $G^2 \sim \chi^2(2)$ approximately when n >> 1
- concluding: strong evidence against H₀ there is a significant association between gender and political affiliation

2.1.2B Hypothesis testing on independence

To test on $H_0: X \perp Y$ vs $H_1: X \not\perp Y$ with an $I \times J$ contingency table by the purposive sampling with $N_{i+} = n_{i+}$

- ▶ Reformulate the hypotheses according to the sampling ... $H_0: p_j = \pi_{+j}$ for all i, j vs $H_1:$ otherwise $(p_j = \frac{\pi_{ij}}{\pi_{i+}} = P(Y = j | X = i))$
- Getting μ_{ij} or their best estimates $\mu_{ij} = E_{H_0}(N_{ij}) = n_{i+}p_j$ the MLE under H_0 $\hat{\mu}_{ij} = n_{i+}\hat{p}_j = n_{i+}\frac{n_{i+}}{n} = \frac{n_{i+}n_{+j}}{n}$ (the same as it with multinomial sampling)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

2.1.2B Hypothesis testing on independence Applying Pearson's χ^2 -Test ...

• determine df = (IJ - I) - (J - 1) = (I - 1)(J - 1)

• calculate
$$\mathcal{X}_{obs}^2 = \sum \frac{(n_{ij} - \hat{\mu}_{ij})}{\hat{\mu}_{ij}}$$

- ► calculate p value = P_{H0}(X² ≥ X²_{obs}) based on X² ~ χ²(df) approximately when n >> 1
- conclude ...

Applying LRT ...

- determine df = (IJ I) (J 1) = (I 1)(J 1)
- calculate $G_{obs}^2 = 2 \sum_{i,j} n_{ij} \log \left(\frac{n_{ij}}{\hat{\mu}_{ij}} \right)$
- calculate $p value = P_{H_0}(G^2 \ge G_{obs}^2)$
- conclude ...

The same test statistics \mathcal{X}^2 , G^2 as used with tables by the multinominal sampling.

What will we study in the next class?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

- > 2.1 Analysis with binary variables (Chp 1)
 - 2.1.1 On one binary variable (Chp1.1)
 - 2.1.2 On two binary variables (Chp1.2)
 - 2.1.2A Introduction
 - 2.1.2B Inference with two binary variables
 - 2.1.2C Further topics

2.2 Analysis with binary response (Chp 2)

- 2.2.1 Regression models (Chp2.1, Chp2.2.1)
- ▶ 2.2.2 Inference with logistic regression models (Chp2.2.1-7)
- 2.2.3 Further topics (Chp2.2.8, Chp2.3)

< ロ > < 同 > < 回 > < 回 > < 回 >