What to do today (01/18)?

1. Introdution and Preparation
2. Analysis with Binary Variables (Chp 1-2)
2.1 Analysis with binary variables I (Chp 1)
2.1.1 On one binary variable (Chp1.1)
2.1.2 On two binary variables (Chp1.2)
2.1.2A Introduction
2.1.2B Inference with two binary variables

2.1.2A On two binary variables (Chp1.2): Introudction

Basic concepts related to 2×2 contingency table: Relative Risk and Odds Ratio

- Relative Risk

$$
R R=\frac{\operatorname{Pr}(\text { disease in } M \mid M)}{\operatorname{Pr}(\text { disease in } F \mid F)}=\frac{\pi_{11} / \pi_{1+}}{\pi_{21} / \pi_{2+}}
$$

- Odds Ratio (OR)
disease odds in Male(1st)-group/Female(2nd)-group:

$$
\text { odds }_{1}=\pi_{11} / \pi_{12} ; \quad \text { odds } s_{2}=\pi_{21} / \pi_{22}
$$

the odds ratio is

$$
\theta=o d d s_{1} / o d d s_{2}
$$

How to make inference on RR/OR with the 2 by 2 contingency data?

2.1.2A On two binary variables (Chp1.2): Introudction

Basic concepts related to 2×2 contingency table: Sensitivity and Specificity

For a diagnostic test:

	Diseased (Y)		
Test Outcome (X)	true	not	Total
positve	π_{11}	π_{12}	π_{1+}
negative	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

- sensitivity $\operatorname{Pr}(X=$ positive $\mid Y=$ true $)=\frac{\pi_{11}}{\pi_{+1}}$
- specificity $\operatorname{Pr}(X=$ negative $\mid Y=n o t)=\frac{\pi_{22}}{\pi_{+2}}$
two conditional probabilities

2.1.2A On two binary variables (Chp1.2): Introudction

Probability Models for 2×2 Tables

- multinomial sampling: e.g. Example of "belief in afterlife" with fixed $N=n$,
$\left(N_{11}, N_{12}, N_{21}, N_{22}\right) \sim \operatorname{multinomial}\left(n ;\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)\right)$

2．1．2A On two binary variables（Chp1．2）：

Introudction

Probability Models for 2×2 Tables
－binomial sampling：e．g．Example of＂lung cancer＂

$$
\begin{aligned}
& \text { Given } N_{1+}=n_{1+},\left(N_{11}, N_{12}\right) \sim B\left(n_{1+}, p_{1}\right) \text { with } \\
& p_{1}=\pi_{11} / \pi_{1+} ;
\end{aligned}
$$

Given $N_{2+}=n_{2+},\left(N_{21}, N_{22}\right) \sim B\left(n_{2+}, p_{2}\right)$ with

$$
p_{2}=\pi_{21} / \pi_{2+}
$$

2.1.2A On two binary variables (Chp1.2): Introudction
 Probability Models for 2×2 Tables

- hyper-geometric distn: e.g. select balls from a box with black and red balls
Given the row and column totals n_{i+} and n_{+j},

$$
\operatorname{Pr}\left(N_{11}=x \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right)=\frac{\binom{n_{+1}}{x}\binom{n_{+2}}{n_{1+}-x}}{\binom{n}{n_{1+}}}
$$

2.1.2B Inference with two binary variables

Likelihood-based and others approaches with 2×2 contingency tables:

- Estimation
- estm probabilities of $\pi_{i j}, \pi_{i+}, \pi_{+j}, p_{i}=\pi_{i 1} / \pi_{i+}$
- estm RR and OR
- Hypothesis Testing
- about a parameter: e.g. $p_{1}-p_{2}$
- about independence

2.1.2B Inference with two binary variables: Estimating Probabilities

- To estm $\pi_{i j}$ with data from cross-sectional studies by multinomial sampling: (e.g. Example of "belief in afterlife")
Given the grand total $n,\left(N_{11}, N_{12}, N_{21}, N_{22}\right) \sim$ multinomial $\left(n, \pi_{i j}^{\prime} s\right)$

	AfterLife		
Group	Y	N	total
F	n_{11}	n_{12}	n_{1+}
M	n_{21}	n_{22}	n_{2+}
total	n_{+1}	n_{+2}	n

- the likelihood function (with constraint $\sum \pi_{i j}=1$):

$$
L\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22} \mid \text { data }\right)=\frac{n!}{n_{11}!n_{12}!n_{21}!n_{22}!} \pi_{11}^{n_{11}} \pi_{12}^{n_{12}} \pi_{21}^{n_{21}} \pi_{22}^{n_{22}} \propto \pi_{11}^{n_{11}} \pi_{12}^{n_{12}} \pi_{21}^{n_{21} 1} \pi_{22}^{n_{22}}
$$

2.1.2B Inference with two binary variables:

 Estimating Probabilities\Longrightarrow the MLE $\hat{\pi}_{11}=n_{11} / n, \hat{\pi}_{12}=n_{12} / n, \hat{\pi}_{21}=n_{21} / n, \hat{\pi}_{22}=n_{22} / n$
Plus, $\hat{\pi}_{1+}=\hat{\pi}_{11}+\hat{\pi}_{12}=n_{1+} / n, \hat{\pi}_{2+}=\hat{\pi}_{21}+\hat{\pi}_{22}=n_{2+} / n$, $\hat{\pi}_{+1}=\hat{\pi}_{11}+\hat{\pi}_{21}=n_{+1} / n, \hat{\pi}_{+2}=\hat{\pi}_{12}+\hat{\pi}_{22}=n_{+2} / n$.
and $\hat{p}_{1}=\hat{\pi}_{11} / \hat{\pi}_{1+}=n_{11} / n_{1+}, \hat{p}_{2}=\hat{\pi}_{21} / \hat{\pi}_{2+}=n_{21} / n_{2+}$,
the same as the corresponding sample proportions!
\Longrightarrow confidence intervals: Wald-type, score-based, LRT-based with large sample
e.g. Wald type: $\hat{\pi}_{11} \pm(1.96) \sqrt{\frac{\hat{\pi}_{11}\left[1-\hat{\pi}_{11}\right]}{n}}$

Example of "belief in afterlife" cont'd

	Belief in Afterlife		
Gender	yes	no/undecided	n_{i+}
female	509	116	625
male	398	104	502
n_{+j}	907	220	$n_{++}=1127$

2.1.2B Inference with two binary variables: Estimating Probabilities

- To estm $p_{1}=\pi_{11} / \pi_{1+}, p_{2}=\pi_{21} / \pi_{2+}$ with data from case-control studies by binomial sampling: (e.g. Example of "lung cancer")
Given $n_{1+}, n_{2+}, N_{11} \sim B\left(n_{1+}, p_{1}\right)$ and $N_{21} \sim B\left(n_{2+}, p_{2}\right)$

	Smoked		
Lung Cancer	Y	N	Total
Y	n_{11}	n_{12}	n_{1+}
N	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n

- the likelihood functions:
$L\left(p_{1} \mid\right.$ data in line 1$) \propto p_{1}^{n_{11}}\left(1-p_{1}\right)^{n_{1+}-n_{11}}$, $L\left(p_{2} \mid\right.$ data in line 2$) \propto p_{2}^{n_{21}}\left(1-p_{2}\right)^{n_{2+}-n_{21}}$
- To estm $p_{1}=\pi_{11} / \pi_{1+}, p_{2}=\pi_{21} / \pi_{2+}$ with data from case-control studies by binomial sampling: (e.g. Example of "lung cancer")
Given row totals $n_{1+}, n_{2+}, N_{11} \sim B\left(n_{1+}, p_{1}\right)$ and $N_{21} \sim B\left(n_{2+}, p_{2}\right)$

	Smoked		
Lung Cancer	Y	N	Total
Y	n_{11}	n_{12}	n_{1+}
N	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n

\Longrightarrow the MLE $\hat{p}_{1}=n_{11} / n_{1+}$, and $\hat{p}_{2}=n_{21} / n_{2+}$
\Longrightarrow confidence intervals: Wald-type, score-based, LRT-based with large sample
e.g. Wald type CI: $\hat{p}_{1} \pm 1.96 \sqrt{\hat{p}_{1}\left[1-\hat{p}_{1}\right] / n_{1+}}$

Example of "lung cancer" cont'd

	Have Smoked		
Lung Cancer	yes	not	total
case	688	21	709
control	650	59	709
total	1338	80	1418

2.1.2B Inference with two binary variables: Estimating RR and OR

With data from cross-sectional studies by multinomial sampling: (e.g. Example of "belief in afterlife")

Given $N_{++}=n,\left(N_{11}, N_{12}, N_{21}, N_{22}\right) \sim \operatorname{multinomial}\left(n, \pi_{i j}^{\prime} s\right)$
Recall the MLE $\hat{\pi}_{i j}=n_{i j} / n, i=1,2$ and $j=1,2$
\Longrightarrow the MLE $\hat{\pi}_{i+}=n_{i+} / n$ and $\hat{\pi}_{+j}=n_{+j} / n$
\Longrightarrow the MLE $\hat{R R}=\frac{\hat{\pi}_{11} / \hat{\pi}_{1+}}{\hat{\pi}_{21} / \hat{\pi}_{2+}}=\frac{n_{11} / n_{1+}}{n_{21} / n_{2+}}$
\Longrightarrow the MLE $\hat{\theta}=\frac{\hat{\pi}_{11 /} / \hat{\pi}_{12}}{\hat{\pi}_{21} / \hat{\pi}_{22}}=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}$

2.1.2B Inference with two binary variables: Estimating RR and OR

With data from case-control studies by binomial sampling: (e.g. Example of "lung cancer")

Given $N_{1+}=n_{1+}, N_{2+}=n_{2+}, N_{11} \sim B\left(n_{1+}, p_{1}\right)$ and $N_{21} \sim B\left(n_{2+}, p_{2}\right)$

Recall the MLE $\hat{p}_{1}=n_{11} / n_{1+}$, and $\hat{p}_{2}=n_{21} / n_{2+}$
\Longrightarrow the MLE $\widehat{R R}=\frac{\widehat{\pi_{11} / \pi_{1+}}}{\pi_{21} / \pi_{2+}}=\frac{\hat{p}_{1}}{\hat{p}_{2}}=\frac{n_{11} / n_{1+}}{n_{21} / n_{2+}}$,
\Longrightarrow the MLE $\hat{\theta}=\frac{\hat{\rho}_{1} /\left(1-\hat{\rho}_{1}\right)}{\hat{p}_{2} /\left(1-\hat{p}_{2}\right)}=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}$
The MLEs of RR and OR are the same as the corresponding ones with the multinomial sampling!

Recall the MLE of OR: $\hat{\theta}=\frac{n_{11} n_{22}}{n_{21} n_{12}}$, the "cross-product"
Note the following facts about OR:

- $0 \leq \theta<\infty$
- $\log \hat{\theta} \sim N\left(\log \theta, \sigma^{2}\right)$ approximately, with $\hat{\sigma}^{2}=\sum_{i, j} \frac{1}{n_{i j}}$
\Longrightarrow an approximate $(1-\alpha) \mathrm{CI}$ of $\log \theta: \log \hat{\theta} \pm z_{\alpha / 2} \hat{\sigma}$
\Longrightarrow an approximate $(1-\alpha) \mathrm{Cl}$ of θ

$$
\exp \left\{\log \hat{\theta} \pm z_{\alpha / 2} \hat{\sigma}\right\}=\left(\hat{\theta} e^{-z_{\alpha / 2} \hat{\sigma}}, \hat{\theta} e^{z_{\alpha / 2} \hat{\sigma}}\right)
$$

Example. Cross-classification of aspirin use and heart attack based on data from a Harvard physicians' health study

	Myocardial Infarction		
Group	yes	no	Total
placebo	189	10,845	11,034
aspirin	104	10,933	11,034

What will we study next class?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)

- 2.1 Analysis with binary variables I (Chp 1)
- 2.1.1 On one binary variable (Chp1.1)
- 2.1.2 On two binary variables (Chp1.2)
- 2.1.2A Introduction
- 2.1.2B Inference with two binary variables
- 2.1.2C Further topics
- 2.2 Analysis with binary response II (Chp 2)

