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I 2.1.1A Bernoulli and binomial distributions
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2.1.1A Bernoulli and binomial distribution
I When the binary variable Y is used to formulate a chance

process with two outcomes, r.v. Y ’s distribution is a
Bernoulli distribution: the probability mass function (pmf) is

P(Y = y) = πy (1− π)1−y

for y = 0, 1. π = P(Y = 1) = P(success): what is π?
I Multiple observations on Y : Y1, . . . ,Yn

I n independent Bernoulli trials =⇒ Y1, . . . ,Yn are iid:

L(π|data) =
n∏

i=1

P(Y = yi ) = π
∑n

i=1 yi (1− π)n−
∑n

i=1 yi

I The MLE of π: π̂ =
∑n

i=1 Yi

/
n, the sample proportion of

success.

I W =
∑n

i=1 Yi = Y1 + . . .+ Yn, the number of successes in
the n trials: π̂ = W

/
n

I What is the distribution of W ?



2.1.1A Bernoulli and binomial distribution

Binomial Distribution

I Setting. n independent Bernoulli trials -
I two possible outcomes for each (success, failure);
I π = P(success), 1− π = P(failure) in each trial;
I trials are independent

I W =
∑n

i=1 Yi , number of successes out of the n trials: r.v.
W has the binomial distribution B(n, π),

P(W = w) =

(
n
w

)
πw (1−π)n−w =

n!

w !(n − w)!
πw (1−π)n−w

for w = 0, 1, . . . , n.

I Y ’s distribution, the Bernoulli distribution, is B(1, π).



Example: Vote (Democrat, Republican)
Suppose π = P(Democrat) = 0.60.
For a random sample with size n = 5, let w = number of Demo-
cratic votes

p(w) =
5!

w !(5− w)!
(.6)w (1− .6)5−w

for w = 0, 1, 2, 3, 4, 5

1> dbinom ( x = 1 , s i z e = 5 , prob = 0 . 6 )
2 [ 1 ] 0 .0768
3

4> dbinom ( x = 0 : 5 , s i z e = 5 , prob = 0 . 6 )
5 [ 1 ] 0 .01024 0.07680 0.23040 0.34560 0.25920 0.07776



2.1.1A Bernoulli and binomial distribution

I Mean and Variance of W ∼ B(n, π)
I special case: Y ∼ B(1, π)

E(Y ) = (1)P(Y = 1) + (0)P(Y = 0) = π;

V(Y ) = (1− π)2P(Y = 1) + (0− π)2P(Y = 0) = π(1− π)

I W = Y1 + . . .+ Yn ∼ B(n, π)

E(W ) = E(Y1) + . . .+ E(Yn) = nπ

V(W ) = V(Y1) + . . .+ V(Yn) = nπ(1− π)

I Normal Approximation to B(n, π): Suppose W ∼ B(n, π).
When n is large, the distribution of W is approximately
Normal with mean µ = nπ and variance σ2 = nπ(1− π).



Example for The Normal Approximation to Binomial Distribution:
Sample surveys show that fewer people enjoy shopping than in the past.

A survey asked a nationwide random sample of 2500 adults if they agreed

or disagreed that “I like buying new clothes, but shopping is often

frustrating and time-consuming.” Suppose that exactly 60% of all adult

U.S. residents would say “Agree” if asked the same question. Let W =

the number in the sample who agree. Estimate the probability that 1520

or more of the sample agree.



2.1.1B Inference on probability of success

I Modeling. Binary variable Y ∼ B(1, π)

I Data. iid observations Y1, . . . ,Yn

I Goal. Make Inference about π

I Testing: e.g. H0 : π = π0 vs H1 : π 6= π0
I Estimation: e.g. confidence interval for π

I Procedure.

I Likelihood based
I Others methods



2.1.1B Inference on probability of success

Likelihood based procedures.

I L(π|data) =
∏n

i=1 P(Y = yi ) = π
∑n

i=1 yi (1− π)n−
∑n

i=1 yi .

I The MLE of π: π̂ =
∑n

i=1 Yi

/
n, the sample proportion of

success.

I E (π̂) = π: unbiased

I π̂ → π almost surely as n→∞: consistent

I π̂ ∼ N(π, π(1− π)
/
n) as n→∞: asymptotical normality



2.1.1B Inference on probability of success

Likelihood based procedures. Testing on H0 : π = π0 vs
H1 : π 6= π0

I Wald Test: approximately under H0

Z =
π̂ − π0
SE (π̂)

=
π̂ − π0√
π̂(1− π̂)

/
n
∼ N(0, 1)

Given significance level of α, reject H0 if
Zobs 6∈ (Zα/2,Z1−α/2).

I type I error rate α
I PH0(Z ∈ (−Z1−α/2,Z1−α/2)) = 1− α, equivalent to

PH0

(
π̂−Z1−α/2

√
π̂(1− π̂)

/
n < π0 < π̂+Z1−α/2

√
π̂(1− π̂)

/
n
)

= 1−α



2.1.1B Inference on probability of success

Likelihood based procedures. Confidence interval (CI) for π

I Wald type: approximately

Z =
π̂ − π
SE (π̂)

=
π̂ − π√

π̂(1− π̂)
/
n
∼ N(0, 1)

CI for π

π̂ ± Z1−α/2

√
π̂(1− π̂)

/
n

with confidence level of 1− α, because of

P
(
π̂−Z1−α/2

√
π̂(1− π̂)

/
n < π < π̂+Z1−α/2

√
π̂(1− π̂)

/
n
)

= 1−α

I Easy to implement
I Requires large n?
I May give CI with negative values/values larger than 1?



2.1.1B Inference on probability of success

Likelihood based procedures. Testing on H0 : π = π0 vs
H1 : π 6= π0

I Score test: S(π0) = ∂ log L(π|data)
∂π

∣∣∣
π=π0

= π̂−π0
π0(1−π0)

/
n

;

approximately under H0

Z =
S(π0)√
V (S(π0))

=
π̂ − π0√

π0(1− π0)
/
n
∼ N(0, 1)

Given significance level of α, reject H0 if
Zobs 6∈ (Zα/2,Z1−α/2).

I type I error rate α
I PH0(Z ∈ (−Z1−α/2,Z1−α/2)) = 1− α, equivalent to

PH0

(
π̂−Z1−α/2

√
π0(1− π0)

/
n < π0 < π̂+Z1−α/2

√
π0(1− π0)

/
n
)

= 1−α



I Score type (Wilson CI): approximately

Z =
π̂ − π√

π(1− π)
/
n
∼ N(0, 1)

CI for π: with confidence level of 1− α,

{
π : −Z1−α/2 <

π̂ − π√
π(1− π)

/
n
< Z1−α/2

}
⇔ π̃±

Z1−α/2
√
n

n + Z2
1−α/2

√
π̂(1− π̂) + Z2

1−α/2/(4n)

with π̃ = (w + Z 2
1−α/2/2)

/
(n + Z 2

1−α/2).

I with large n, an approximation to Wilson CI (Agresti-Coull
CI):

π̃ ± Z1−α/2

√
π̃(1− π̃)

n + Z 2
1−α/2

I To implement?

I Requires large n?

I May give CI with negative values/values larger than 1?



2.1.1B Inference on probability of success

Example. n = 10, w = 4: 95% CI of π?

I Wald-type: π̂ ± Z1−α/2

√
π̂(1− π̂)

/
n

1> w<−4
2> n<−10
3> a lpha<−0 .05
4> p i . hat<−w/n
5

6> va r . wald<−p i . hat ∗(1− p i . hat ) /n
7> l owe r<−p i . hat − qnorm (p = 1−a lpha / 2) ∗ s q r t ( va r . wald )
8> upper<−p i . hat + qnorm (p = 1−a lpha / 2) ∗ s q r t ( va r . wald )
9> round ( data . f rame ( lower , upper ) , 4)

10 l owe r upper
11 1 0 .0964 0 .7036



2.1.1B Inference on probability of success

Example. n = 10, w = 4: 95% CI of π?

I Wilson (Score-type) CI:

π̃ ±
Z1−α/2

√
n

n + Z 2
1−α/2

√
π̂(1− π̂) + Z 2

1−α/2/(4n)

with π̃ = (w + Z 2
1−α/2/2)

/
(n + Z 2

1−α/2)

1> p i . t i l d e<−(w + qnorm (p = 1−a lpha / 2) ˆ2 / 2) / ( n + qnorm (p
2 = 1−a lpha / 2) ˆ2)
3> p i . t i l d e
4 [ 1 ] 0 .4277533
5

6> Wilson C . I .
7> round ( p i . t i l d e + qnorm (p = c ( a lpha / 2 , 1−a lpha / 2) ) ∗
8 s q r t ( n ) / ( n+qnorm (p = 1−a lpha / 2) ˆ2) ∗ s q r t ( p i . hat ∗(1−
9 p i . hat ) + qnorm(1− a lpha / 2) ˆ2/ (4 ∗n ) ) , 4)

10 [ 1 ] 0 .1682 0 .6873



2.1.1B Inference on probability of success

Example. n = 10, w = 4: 95% CI of π?

I Agresti-Coull CI: π̃ ± Z1−α/2

√
π̃(1−π̃)

n+Z2
1−α/2

1> p i . t i l d e<−(w + qnorm (p = 1−a lpha / 2) ˆ2 / 2) / ( n + qnorm (p
2 = 1−a lpha / 2) ˆ2)
3> p i . t i l d e
4 [ 1 ] 0 .4277533
5

6> Ag r e s t i−Cou l l C . I .
7> va r . ac<−p i . t i l d e ∗(1− p i . t i l d e ) / ( n+qnorm (p = 1−a lpha / 2) ˆ2)
8> round ( p i . t i l d e + qnorm (p = c ( a lpha / 2 , 1−a lpha / 2) ) ∗
9 s q r t ( va r . ac ) , 4)

10 [ 1 ] 0 .1671 0 .6884



2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (CI) for π
(Clopper-Pearson CI) with confidence level 1− α:

I By the exact distribution of W ∼ B(n, π), with observation w ,{
π : P(W ≤ w) > α/2 and P(W ≥ w) > α/2

}
Example. n = 10, w = 4: 95% CI of π?

1

2> binom . c o n f i n t ( x=4,n=10, con f . l e v e l=1−a lpha , methods= exac t )
3 method x n mean l owe r upper
4 exac t 4 10 0 .4 0.1215523 0.7376219



2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (CI) for π
(Clopper-Pearson CI) with confidence level 1− α:

I By the relationship between the cumulative binomial
distribution and the beta distribution, the CI is

B(α/2;w , n − w + 1) < π < B(1− α/2;w + 1, n − w)

Example. n = 10, w = 4: 95% CI of π?

1> a lpha<−0 .05
2> round ( qbeta ( p=c ( a lpha /2,1− a lpha / 2) , shape1=c (4 ,4+1) , shape2=

c(10−4+1,10−4) ) ,4 )
3 [ 1 ] 0 .1216 0 .7376



2.1.1C More on confidence intervals

I CI vs Hypothesis Testing: There is a duality between them!

I have a try to apply LRT and LRT-based CI for proportion?

I Comparing the CIs

I Wald-type vs Score-type (Wilson) CIs, and Agresti-Coull CI

I likehood-based vs the exact CIs



Wald CI often has poor performance in categorical data anlaysis
unless n is quite large.

Example. Estimate π= population proportion of vegetarians For n
= 20, observe w = 0.

Then 95% Wald CI is 0± 1.96 ∗ 0 = (0, 0) =⇒???

I Note what happens with Wald CI for if π̂ = 0 or 1

I Actual coverage probability much less than 0.95 if near 0 or 1.

I Recall Wald 95% CI is the set of π0 values for which p-value
> .05 in testing H0 : π = π0 vs Ha : π 6= π0 using
z = π̂−π0√

π̂(1−π̂)
n

(denominator uses estimated SE)



Example. (cont’d) To estimate the probability of being vegetarian
y = 0, n = 20: π̂ = 0

Score-type (Wilson) CI:
What π0 satisfies the following?

±1.96 =
0− π0√
π0(1−π0)

20

or 1.96

√
π0(1− π0)

20
= |0− π0|

Two solutions: π0 = 0 and π0 = .16

=⇒ the 95% score CI is (0, .16), more sensible than the Wald CI
(0, 0)



What will we study in the next class?

1. Introduction and Preparation

2. Analysis with Binary Variables (Chp 1-2)

I 2.1 Analysis with binary variables I (Chp 1)
I 2.1.1 On one binary variable (Chp1.1)
I 2.1.2 On two binary variables (Chp1.2)

I 2.1.2A Introduction
I 2.1.2B Inference with two binary variables
I 2.1.2C Beyond binary variables

I 2.2 Analysis with binary response II (Chp 2)
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