What to do today?

1. Introdution and Preparation

2. Analysis with Binary Variables (Chp 1-2)

» 2.1 Analysis with binary variables | (Chp 1)
» 2.1.1 On one binary variable (Chpl.1)
» 2.1.1A Bernoulli and binomial distributions

» 2.1.1B Inference on probability of success
» 2.1.1C More on confidence intervals

» 2.1.2 On two binary variables (Chpl1.2)

» 2.2 Analysis with binary response Il (Chp 2)
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2.1.1A Bernoulli and binomial distribution

» When the binary variable Y is used to formulate a chance
process with two outcomes, r.v. Y's distribution is a
Bernoulli distribution: the probability mass function (pmf) is

P(Y =y)=n(1 —m)'”

fory =0,1. m = P(Y = 1) = P(success): what is 7?
» Multiple observationson Y: Yi1,..., Y,
» n independent Bernoulli trials = Y1,..., Y, are iid:

7T|data HP Y .yl)_ﬂ- i= 1}’;(1_71_) E?:lyi
i=1

» The MLE of m: # = 3.7, Y,-/n, the sample proportion of
success.

» W= 27:1 Y:=Y1+...4+ Y, the number of successes in
the n trials: 7 = W/n

» What is the distribution of W?



2.1.1A Bernoulli and binomial distribution

Binomial Distribution

» Setting. n independent Bernoulli trials -

> two possible outcomes for each (success, failure);
» 1 = P(success), 1 —m = P(failure) in each trial;
» trials are independent

» W =737, Yi, number of successes out of the n trials: r.v.
W has the binomial distribution B(n, ),

P(W =w) = < " ) (L) = e (L)

forw=0,1,...,n.

» Y's distribution, the Bernoulli distribution, is B(1, 7).



Example: Vote (Democrat, Republican)
Suppose m = P(Democrat) = 0.60.
For a random sample with size n =5, let w = number of Demo-

cratic votes
5l

p(w) = W!(57;W)!(-6)W(1 —.6)>"

forw=0,1,2,3,4,5

1> dbinom (x = 1, size = 5, prob = 0.6)
b[1] 0.0768

t> dbinom(x = 0:5, size = 5, prob = 0.6)
5[1] 0.01024 0.07680 0.23040 0.34560 0.25920 0.07776




2.1.1A Bernoulli and binomial distribution

» Mean and Variance of W ~ B(n, )
» special case: Y ~ B(1,7)

E(Y) = (1)P(Y =1) + (0)P(Y = 0) = ;
V(Y)=(1-7)?P(Y =1)+(0—7)?P(Y =0) =n(1l - )
» W=Yi+...+Y,~ B(nn)
E(W)=E(Y1)+... +E(Y,) =nm
V(W) =V(Y1) + ...+ V(Y,) = nr(1 —7)

» Normal Approximation to B(n,m): Suppose W ~ B(n, ).
When n is large, the distribution of W is approximately
Normal with mean i = n7 and variance 0 = nn(1 — 7).



Example for The Normal Approximation to Binomial Distribution:
Sample surveys show that fewer people enjoy shopping than in the past.
A survey asked a nationwide random sample of 2500 adults if they agreed
or disagreed that "I like buying new clothes, but shopping is often
frustrating and time-consuming.” Suppose that exactly 60% of all adult
U.S. residents would say “Agree” if asked the same question. Let W =
the number in the sample who agree. Estimate the probability that 1520
or more of the sample agree.



2.1.1B Inference on probability of success

v

Modeling. Binary variable Y ~ B(1, 7)

v

Data. iid observations Y7,...,Y,

Goal. Make Inference about 7

v

» Testing: e.g. Hy:m=mgvs Hy:m # mg
» Estimation: e.g. confidence interval for

» Procedure.

» Likelihood based
» Others methods



2.1.1B Inference on probability of success

Likelihood based procedures.
> L(ﬂ"data) = H:’:l P(Y = yl) = 7-[-27:1}/,‘(1 — 71')”_27:1)/!"

» The MLE of m: # = Y7 ; Y;/n, the sample proportion of
success.

» E(#) =7 unbiased
» 7 — 7 almost surely as n — oo: consistent

» &~ N(m,m(1—7)/n) as n — co: asymptotical normality



2.1.1B Inference on probability of success

Likelihood based procedures. Testing on Hy : m = mg vs
Hy o # mg

» Wald Test: approximately under Hyp

T — 7o T — 7o

= —~ = ~ N(0,1)
SE(R) @ —#)/n

Given significance level of «, reject Hp if

Zobs ¢ (Zoz/Zv Zl—oz/Z)-

> type | error rate a
> Puy(Z € (=Zi—aj2: Z1-a/2)) = 1 — @, equivalent to

PHo(ﬁ'—Zl—a/2\/m <m < 7?+ZI_Q/QM) —1—a

Z



2.1.1B Inference on probability of success

Likelihood based procedures. Confidence interval (Cl) for 7

» Wald type: approximately

A

g_f-T _ T—m ~ N(0,1)

" SER) T rGmyn
Cl for 7
T+ Zl_a/y/fr(l — ﬁ)/n

with confidence level of 1 — «, because of

p(ﬁ_zl_a/z\/m <7< ﬁ+Zl—a/2\/m) =1-a

» Easy to implement
» Requires large n?
» May give Cl with negative values/values larger than 17




2.1.1B Inference on probability of success

Likelihood based procedures. Testing on Hy : m = mg vs
Hy tm # mg

» Score test: S(mp) = W

T—T0

T=mo Wo(l—ﬂo)/"’

approximately under Hy

5(71'0) o o —mo

— — ~ N(0, 1
VYD) fro(1 — mo)/m -1

Given significance level of «a, reject Hy if
Zobs ¢ (Za/2a Zl—a/2)'

> type | error rate
> Puy(Z € (wZi—aj2: Zi—a/2)) = 1 — @, equivalent to

PHo (ﬁ'—Zl,aQ\/ﬂ'o(l — 7r0)/n <7y < ﬁ+21,a/2\/ﬁo(1 — 7T0)/n) =1l-«



» Score type (Wilson Cl): approximately
7= """ . NO,1)
m(l—m)/n

Cl for m: with confidence level of 1 — ¢,
\/m(l—m)/n
with # = (w + 27 ,/2)/(n+ 27, ).

» with large n, an approximation to Wilson Cl (Agresti-Coull

Cl):

Zy_o2v/n

n+ Z]?*Oé/2

{7TZ 721,0(/2 < < Zlfa/2} & Tt

VA =R+ 22,/ (an)

#(1—7)

2
n+27

T2 o0

» To implement?
> Requires large n?

> May give Cl with negative values/values larger than 17



2.1.1B Inference on probability of success

Example. n =10, w = 4: 95% Cl of 7?
> Wald-type: & £ Zy_o21/#(1—#)/n

> w<—4
p> n<—10
> alpha<—0.05
h> pi.hat<—w/n

6> var.wald<—pi.hat*(1—pi.hat)/n

r> lower<—pi.hat — gnorm(p = 1—alpha/2) % sqrt(var.wald)
> upper<—pi.hat 4+ gnorm(p = l1—alpha/2) % sqrt(var.wald)
> round(data.frame(lower, upper), 4)

1 lower upper

111 0.0964 0.7036




2.1.1B Inference on probability of success

Example. n =10, w = 4: 95% Cl of 7
» Wilson (Score-type) Cl:

Zi_q
-, 4 /;f\/ 1
n+Z 1-a/2
with 7 = (w + Z7_ a/2/2)/( +277 a/2)

— &)+ 27, o/ (4n)

> pi.tilde<—(w + gnorm(p =
b = 1—alpha/2)"2)

> pi.tilde

L [1] 0.4277533

[1] 0.1682 0.6873

pi.hat) + gnorm(l—alpha/2)"2/(4%n)),

1—alpha/2)"2 / 2) / (n 4 gnorm(p

l-alpha/2)) =

> Wilson C. 1.
r> round(pi.tilde + gnorm(p = c(alpha/2,
sqrt(n) / (n+gnorm(p = l—alpha/2)"2) * sqrt(pi.hat*(1—

4)




2.1.1B Inference on probability of success

Example. n =10, w = 4: 95% Cl of 7?
#(1—7)

» Agresti-Coull CI: # £ Z;_, o s R
1—a/2

> pi.tilde<—(w + gnorm(p = 1—alpha/2)"2 / 2) / (n + qnorm(p
= 1—alpha/2)"2)

> pi.tilde

L [1] 0.4277533

> Agresti—Coull C. 1.

r> var.ac<—pi.tildex(1—pi.tilde) / (n+qnorm(p = 1—alpha/2)"2)

> round(pi.tilde + gnorm(p = c(alpha/2, 1—alpha/2)) =
sqrt(var.ac), 4)

i [1] 0.1671 0.6884




2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (Cl) for 7
(Clopper-Pearson Cl) with confidence level 1 —

» By the exact distribution of W ~ B(n, ), with observation w,

{m: P(W<w)>a/2and P(W > w) > a/2}

Example. n =10, w = 4: 95% Cl of ©?

b> binom.confint (x=4,n=10,conf.level=1-alpha , methods= exact)
method x n mean lower upper
h  exact 4 10 0.4 0.1215523 0.7376219




2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (Cl) for «
(Clopper-Pearson Cl) with confidence level 1 — o

» By the relationship between the cumulative binomial
distribution and the beta distribution, the Cl is

B(a/2;w,n—w+1)<m<B(l-—a/2;w+1,n—w)

Example. n = 10, w = 4: 95% Cl of «?

> alpha<—0.05

b> round (qgbeta(p=c(alpha/2,1—alpha/2),shapel=c(4,4+1),shape2=
c(10—4+1,10—4)) ,4)

[1] 0.1216 0.7376




2.1.1C More on confidence intervals

» Cl vs Hypothesis Testing: There is a duality between them!
» have a try to apply LRT and LRT-based Cl for proportion?

» Comparing the Cls

» Wald-type vs Score-type (Wilson) Cls, and Agresti-Coull Cl

» likehood-based vs the exact Cls



Wald Cl often has poor performance in categorical data anlaysis
unless n is quite large.

Example. Estimate m= population proportion of vegetarians For n
= 20, observe w = 0.

Then 95% Wald Cl is 0+ 1.96 % 0 = (0,0) =777

» Note what happens with Wald Cl forif #t = 0 or 1
» Actual coverage probability much less than 0.95 if near 0 or 1.

» Recall Wald 95% Cl is the set of 7o values for which p-value
> .05 iAn testing Hyp : m = mg vs H, : mw # mp using
z = =2 (denominator uses estimated SE)

#(1—7)




Example. (cont'd) To estimate the probability of being vegetarian
y=0,n=20:7=0

Score-type (Wilson) CI:
What mg satisfies the following?

0—mo 770(1 - 7TO)
— 1964/ ————= =10 —
mo(1—mo) o 20 ’ 7T0‘
20

£1.96 =

Two solutions: mg = 0 and mg = .16

= the 95% score Cl is (0,.16), more sensible than the Wald ClI
(0,0)



What will we study in the next class?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)

» 2.1 Analysis with binary variables | (Chp 1)

» 2.1.1 On one binary variable (Chpl.1)

» 2.1.2 On two binary variables (Chpl.2)
» 2.1.2A Introduction
» 2.1.2B Inference with two binary variables
» 2.1.2C Beyond binary variables

» 2.2 Analysis with binary response Il (Chp 2)
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