What to do today?

1. Introdution and Preparation
2. Analysis with Binary Variables (Chp 1-2)

- 2.1 Analysis with binary variables I (Chp 1)
- 2.1.1 On one binary variable (Chp1.1)
- 2.1.1A Bernoulli and binomial distributions
- 2.1.1B Inference on probability of success
- 2.1.1C More on confidence intervals
- 2.1.2 On two binary variables (Chp1.2)
- 2.2 Analysis with binary response II (Chp 2)

2.1.1A Bernoulli and binomial distribution

- When the binary variable Y is used to formulate a chance process with two outcomes, r.v. Y's distribution is a
Bernoulli distribution: the probability mass function (pmf) is

$$
P(Y=y)=\pi^{y}(1-\pi)^{1-y}
$$

for $y=0,1 . \pi=P(Y=1)=P($ success $)$: what is π ?

- Multiple observations on $Y: Y_{1}, \ldots, Y_{n}$
- n independent Bernoulli trials $\Longrightarrow Y_{1}, \ldots, Y_{n}$ are iid:

$$
L(\pi \mid \text { data })=\prod_{i=1}^{n} P\left(Y=y_{i}\right)=\pi^{\sum_{i=1}^{n} y_{i}}(1-\pi)^{n-\sum_{i=1}^{n} y_{i}}
$$

- The MLE of $\pi: \hat{\pi}=\sum_{i=1}^{n} Y_{i} / n$, the sample proportion of success.
- $W=\sum_{i=1}^{n} Y_{i}=Y_{1}+\ldots+Y_{n}$, the number of successes in the n trials: $\hat{\pi}=W / n$
- What is the distribution of W ?

2.1.1A Bernoulli and binomial distribution

Binomial Distribution

- Setting. n independent Bernoulli trials -
- two possible outcomes for each (success, failure);
- $\pi=P$ (success), $1-\pi=P$ (failure) in each trial;
- trials are independent
- $W=\sum_{i=1}^{n} Y_{i}$, number of successes out of the n trials: r.v. W has the binomial distribution $B(n, \pi)$,
$P(W=w)=\binom{n}{w} \pi^{w}(1-\pi)^{n-w}=\frac{n!}{w!(n-w)!} \pi^{w}(1-\pi)^{n-w}$
for $w=0,1, \ldots, n$.
- Y's distribution, the Bernoulli distribution, is $B(1, \pi)$.

Example: Vote (Democrat, Republican)
Suppose $\pi=P($ Democrat $)=0.60$.
For a random sample with size $n=5$, let $w=$ number of Democratic votes

$$
p(w)=\frac{5!}{w!(5-w)!}(.6)^{w}(1-.6)^{5-w}
$$

for $w=0,1,2,3,4,5$

```
dbinom (x=1, size=5, prob = 0.6)
[1] 0.0768
> dbinom(x = 0:5, size = 5, prob = 0.6)
[1] 0.01024 0.07680}00.23040 0.34560 0.25920 0.07776
```


2.1.1A Bernoulli and binomial distribution

- Mean and Variance of $W \sim B(n, \pi)$
- special case: $Y \sim B(1, \pi)$

$$
\begin{gathered}
\mathrm{E}(Y)=(1) P(Y=1)+(0) P(Y=0)=\pi ; \\
\mathrm{V}(Y)=(1-\pi)^{2} P(Y=1)+(0-\pi)^{2} P(Y=0)=\pi(1-\pi) \\
W=Y_{1}+\ldots+Y_{n} \sim B(n, \pi) \\
\mathrm{E}(W)=\mathrm{E}\left(Y_{1}\right)+\ldots+\mathrm{E}\left(Y_{n}\right)=n \pi \\
\mathrm{~V}(W)=\mathrm{V}\left(Y_{1}\right)+\ldots+\mathrm{V}\left(Y_{n}\right)=n \pi(1-\pi)
\end{gathered}
$$

- Normal Approximation to $B(n, \pi)$: Suppose $W \sim B(n, \pi)$. When n is large, the distribution of W is approximately Normal with mean $\mu=n \pi$ and variance $\sigma^{2}=n \pi(1-\pi)$.

Example for The Normal Approximation to Binomial Distribution: Sample surveys show that fewer people enjoy shopping than in the past. A survey asked a nationwide random sample of 2500 adults if they agreed or disagreed that "I like buying new clothes, but shopping is often frustrating and time-consuming." Suppose that exactly 60% of all adult U.S. residents would say "Agree" if asked the same question. Let $\mathrm{W}=$ the number in the sample who agree. Estimate the probability that 1520 or more of the sample agree.

2．1．1B Inference on probability of success

－Modeling．Binary variable $Y \sim B(1, \pi)$
－Data．iid observations Y_{1}, \ldots, Y_{n}
－Goal．Make Inference about π
－Testing：e．g．$H_{0}: \pi=\pi_{0}$ vs $H_{1}: \pi \neq \pi_{0}$
－Estimation：e．g．confidence interval for π
－Procedure．
－Likelihood based
－Others methods

2．1．1B Inference on probability of success

Likelihood based procedures．
－$L(\pi \mid$ data $)=\prod_{i=1}^{n} P\left(Y=y_{i}\right)=\pi^{\sum_{i=1}^{n} y_{i}}(1-\pi)^{n-\sum_{i=1}^{n} y_{i}}$.
－The MLE of $\pi: \hat{\pi}=\sum_{i=1}^{n} Y_{i} / n$ ，the sample proportion of success．
－$E(\hat{\pi})=\pi$ ：unbiased
－$\hat{\pi} \rightarrow \pi$ almost surely as $n \rightarrow \infty$ ：consistent
－$\hat{\pi} \sim N(\pi, \pi(1-\pi) / n)$ as $n \rightarrow \infty$ ：asymptotical normality

2.1.1B Inference on probability of success

Likelihood based procedures. Testing on $H_{0}: \pi=\pi_{0}$ vs
$H_{1}: \pi \neq \pi_{0}$

- Wald Test: approximately under H_{0}

$$
Z=\frac{\hat{\pi}-\pi_{0}}{S E(\hat{\pi})}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\hat{\pi}(1-\hat{\pi}) / n}} \sim N(0,1)
$$

Given significance level of α, reject H_{0} if
$Z_{\text {obs }} \notin\left(Z_{\alpha / 2}, Z_{1-\alpha / 2}\right)$.

- type I error rate α
- $P_{H_{0}}\left(Z \in\left(-Z_{1-\alpha / 2}, Z_{1-\alpha / 2}\right)\right)=1-\alpha$, equivalent to
$P_{H_{0}}\left(\hat{\pi}-Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}<\pi_{0}<\hat{\pi}+Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}\right)=1-\alpha$

2.1.1B Inference on probability of success

Likelihood based procedures. Confidence interval (CI) for π

- Wald type: approximately

$$
Z=\frac{\hat{\pi}-\pi}{S E(\hat{\pi})}=\frac{\hat{\pi}-\pi}{\sqrt{\hat{\pi}(1-\hat{\pi}) / n}} \sim N(0,1)
$$

Cl for π

$$
\hat{\pi} \pm Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}
$$

with confidence level of $1-\alpha$, because of
$P\left(\hat{\pi}-Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}<\pi<\hat{\pi}+Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}\right)=1-\alpha$

- Easy to implement
- Requires large n ?
- May give Cl with negative values/values larger than 1 ?

2.1.1B Inference on probability of success

Likelihood based procedures. Testing on $H_{0}: \pi=\pi_{0}$ vs $H_{1}: \pi \neq \pi_{0}$

- Score test: $S\left(\pi_{0}\right)=\left.\frac{\partial \log L(\pi \mid \text { data })}{\partial \pi}\right|_{\pi=\pi_{0}}=\frac{\hat{\pi}-\pi_{0}}{\pi_{0}\left(1-\pi_{0}\right) / n} ;$ approximately under H_{0}

$$
Z=\frac{S\left(\pi_{0}\right)}{\sqrt{V\left(S\left(\pi_{0}\right)\right)}}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}} \sim N(0,1)
$$

Given significance level of α, reject H_{0} if
$Z_{o b s} \notin\left(Z_{\alpha / 2}, Z_{1-\alpha / 2}\right)$.

- type I error rate α
- $P_{H_{0}}\left(Z \in\left(-Z_{1-\alpha / 2}, Z_{1-\alpha / 2}\right)\right)=1-\alpha$, equivalent to
$P_{H_{0}}\left(\hat{\pi}-Z_{1-\alpha / 2} \sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}<\pi_{0}<\hat{\pi}+Z_{1-\alpha / 2} \sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}\right)=1-\alpha$
- Score type (Wilson CI): approximately

$$
Z=\frac{\hat{\pi}-\pi}{\sqrt{\pi(1-\pi) / n}} \sim N(0,1)
$$

Cl for π : with confidence level of $1-\alpha$,
$\left\{\pi:-Z_{1-\alpha / 2}<\frac{\hat{\pi}-\pi}{\sqrt{\pi(1-\pi) / n}}<Z_{1-\alpha / 2}\right\} \Leftrightarrow \tilde{\pi} \pm \frac{Z_{1-\alpha / 2} \sqrt{n}}{n+Z_{1-\alpha / 2}^{2}} \sqrt{\hat{\pi}(1-\hat{\pi})+Z_{1-\alpha / 2}^{2} /(4 n)}$
with $\tilde{\pi}=\left(w+Z_{1-\alpha / 2}^{2} / 2\right) /\left(n+Z_{1-\alpha / 2}^{2}\right)$.

- with large n, an approximation to Wilson Cl (Agresti-Coull Cl):

$$
\tilde{\pi} \pm Z_{1-\alpha / 2} \sqrt{\frac{\tilde{\pi}(1-\tilde{\pi})}{n+Z_{1-\alpha / 2}^{2}}}
$$

- To implement?
- Requires large n ?
- May give Cl with negative values/values larger than 1 ?

2．1．1B Inference on probability of success

Example．$n=10, w=4: 95 \% \mathrm{Cl}$ of π ？
－Wald－type：$\hat{\pi} \pm Z_{1-\alpha / 2} \sqrt{\hat{\pi}(1-\hat{\pi}) / n}$

```
>w<-4
> n<-10
> alpha<-0.05
    pi.hat<-w/n
    var.wald<-pi.hat*(1-pi.hat)/n
> lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)
upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)
> round(data.frame(lower, upper), 4)
    lower upper
10.0964 0.7036
```


2.1.1B Inference on probability of success

Example. $n=10, w=4: 95 \% \mathrm{Cl}$ of π ?

- Wilson (Score-type) CI:

$$
\tilde{\pi} \pm \frac{Z_{1-\alpha / 2} \sqrt{n}}{n+Z_{1-\alpha / 2}^{2}} \sqrt{\hat{\pi}(1-\hat{\pi})+Z_{1-\alpha / 2}^{2} /(4 n)}
$$

with $\tilde{\pi}=\left(w+Z_{1-\alpha / 2}^{2} / 2\right) /\left(n+Z_{1-\alpha / 2}^{2}\right)$

```
> pi.tilde<-(w + qnorm(p = 1-alpha/2)^2 / 2) / (n + qnorm(p
    = 1-alpha/2)^2)
> pi.tilde
[1] 0.4277533
> Wilson C.l.
> round(pi.tilde + qnorm(p = c(alpha/2, 1-alpha/2)) *
    sqrt(n) / (n+qnorm(p = 1-alpha/2)^2) * sqrt(pi.hat*(1-
    pi.hat) + qnorm(1-alpha/2)^2/(4*n)), 4)
[1] 0.1682 0.6873
```


2.1.1B Inference on probability of success

Example. $n=10, w=4: 95 \% \mathrm{Cl}$ of π ?

- Agresti-Coull CI: $\tilde{\pi} \pm Z_{1-\alpha / 2} \sqrt{\frac{\tilde{\pi}(1-\tilde{\pi})}{n+Z_{1-\alpha / 2}^{2}}}$

$$
\begin{aligned}
& >\text { pi.tilde }<-\left(\mathrm{w}+\mathrm{qnorm}(\mathrm{p}=1-\mathrm{alpha} / 2)^{\wedge} 2 / 2\right) /(\mathrm{n}+\mathrm{qnorm}(\mathrm{p} \\
& =1 \text {-alpha/2) ^2) } \\
& >\text { pi.tilde } \\
& \text { [1] } 0.4277533 \\
& \text { Agresti-Coull C.I. } \\
& \text { var.ac<-pi.tilde } *(1-\mathrm{pi} . \mathrm{tilde}) /\left(\mathrm{n}+\mathrm{qnorm}(\mathrm{p}=1-\mathrm{alpha} / 2)^{\wedge} 2\right) \\
& >\text { round (pi.tilde }+ \text { qnorm (p = c(alpha/2, 1-alpha/2)) * } \\
& \text { sqrt(var.ac), 4) } \\
& \text { [1] } 0.16710 .6884
\end{aligned}
$$

2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (CI) for π (Clopper-Pearson CI) with confidence level $1-\alpha$:

- By the exact distribution of $W \sim B(n, \pi)$, with observation w,

$$
\{\pi: P(W \leq w)>\alpha / 2 \text { and } P(W \geq w)>\alpha / 2\}
$$

Example. $n=10, w=4: 95 \% \mathrm{Cl}$ of π ?

```
binom.confint(x=4,n=10,conf.level=1-alpha,methods= exact)
method x n mean lower upper
exact 4 10 0.4 0.1215523 0.7376219
```


2.1.1B Inference on probability of success

Alternative procedures. e.g. Exact Confidence interval (CI) for π (Clopper-Pearson Cl) with confidence level $1-\alpha$:

- By the relationship between the cumulative binomial distribution and the beta distribution, the Cl is

$$
B(\alpha / 2 ; w, n-w+1)<\pi<B(1-\alpha / 2 ; w+1, n-w)
$$

Example. $n=10, w=4: 95 \% \mathrm{Cl}$ of π ?

```
> alpha<-0.05
> round(qbeta(p=c(alpha/2,1-alpha/2), shape1=c(4,4+1), shape 2=
    c(10-4+1,10-4)),4)
[1] 0.1216 0.7376
```


2．1．1C More on confidence intervals

－CI vs Hypothesis Testing：There is a duality between them！
－have a try to apply LRT and LRT－based Cl for proportion？
－Comparing the Cls
－Wald－type vs Score－type（Wilson）Cls，and Agresti－Coull Cl
－likehood－based vs the exact Cls

Wald Cl often has poor performance in categorical data anlaysis unless n is quite large.

Example. Estimate $\pi=$ population proportion of vegetarians For n $=20$, observe $w=0$.

Then 95% Wald CI is $0 \pm 1.96 * 0=(0,0) \Longrightarrow ? ? ?$

- Note what happens with Wald Cl for if $\hat{\pi}=0$ or 1
- Actual coverage probability much less than 0.95 if near 0 or 1 .
- Recall Wald $95 \% \mathrm{Cl}$ is the set of π_{0} values for which p -value $>.05$ in testing $H_{0}: \pi=\pi_{0}$ vs $H_{a}: \pi \neq \pi_{0}$ using $z=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}}$ (denominator uses estimated SE)

Example. (cont'd) To estimate the probability of being vegetarian $\mathrm{y}=0, \mathrm{n}=20: \hat{\pi}=0$

Score-type (Wilson) CI: What π_{0} satisfies the following?

$$
\pm 1.96=\frac{0-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{20}}} \text { or } 1.96 \sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{20}}=\left|0-\pi_{0}\right|
$$

Two solutions: $\pi_{0}=0$ and $\pi_{0}=.16$
\Longrightarrow the 95% score Cl is $(0, .16)$, more sensible than the Wald Cl $(0,0)$

What will we study in the next class?

1. Introduction and Preparation
2. Analysis with Binary Variables (Chp 1-2)

- 2.1 Analysis with binary variables I (Chp 1)
- 2.1.1 On one binary variable (Chp1.1)
- 2.1.2 On two binary variables (Chp1.2)
- 2.1.2A Introduction
- 2.1.2B Inference with two binary variables
- 2.1.2C Beyond binary variables
- 2.2 Analysis with binary response II (Chp 2)

