# STAT475/675 TUT11 

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html Zhiyang Zhou (zhiyang_zhou@sfu.ca)

2018-03-26

## The lady testing tea

- 8 randomly ordered cups of tea: 4 prepared by first adding milk and 4 prepared by first adding the tea
- Select the 4 cups prepared by each method
- The lady got all eight cups correct (according to "The Lady Testing Tea" written by David Salsburg)
- Tabulated as a $2 \times 2$ contingency table
- Fixed marginals $n_{1+}, n_{2+}, n_{+1}, n_{+2}$ and $n_{++}$(this happens rarely)
- As long as one element of $\left\{n_{11}, n_{12}, n_{21}, n_{22}\right\}$ is known, all the others would be determined.


## Fisher's exact test

- One-sided test: $H_{0}: \mathrm{OR}=1$ vs $H_{1}: \mathrm{OR}>1$ (the success rate of the speculation is higher than that of a random guess)
- Take $n_{i j}$ as the realization (observed value) of randon variable $N_{i j}$
- Test statistic: $n_{11}$, the number of successes
- Under $H_{0}, N_{11} \sim$ Hypergeometric Distribution, i.e., for $m=0, \ldots, n_{++}$,

$$
\operatorname{Pr}_{H_{0}}\left(N_{11}=m\right)=\frac{\binom{n_{1+}}{m}\binom{n_{2+}}{n_{+1}-m}}{\binom{n_{++}}{n_{+1}}}
$$

- $p$-value $=\operatorname{Pr}_{H_{0}}\left(N_{11} \geq n_{11}\right)$
$-=1 / 70$ for $n_{11}=4$ in the lady tasting tea experiment


## Permutation test for independence

- $H_{0}: \mathrm{OR}=1$ vs $H_{1}: \mathrm{OR} \neq 1$
- The null distrubition of

$$
\chi_{\mathrm{obs}}^{2}=\sum \frac{(\text { observed }-\mathrm{fitted})^{2}}{\text { fitted }}
$$

is not well-approximated by $\chi^{2}$-distrubition when some $n_{i j}$ is not large enough

- Estimate the permutation distrubition by simulation
- randomly permute the "guess"
- repeat the permutation for $B \gg 1$ times and obtain $\chi_{\text {obs }, b}^{2}, b=1, \ldots, B$
- approximate the null distribution by the permutation distribution
$-p$-value $\approx \#\left\{\chi_{\mathrm{obs}, b}^{2}: \chi_{\mathrm{obs}, b}^{2} \geq \chi_{\mathrm{obs}}^{2}\right\} / B$


## Demo I

The Lady-Tasting-Tea experiment with different digits.

| Lady said |  |  |  |
| :---: | :---: | :---: | :---: |
| Truth | Tea First | Milk First | Row Total |
| Tea First | 10 | 2 | 12 |
| Milk First | 2 | 10 | 12 |
| Column Total | 12 | 12 | 24 |

## Loglinear-logit connection

- $\log \operatorname{linear}(X Y Z) \Leftrightarrow Y \sim \operatorname{logit}(X Z)$ or multi-logit $(X Z)$
$-\ln \mu_{i j k}=\lambda_{0}+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j k}^{X Y Z}$
$-\ln \frac{\pi_{i j k}}{\pi_{i j^{\prime} k}}=\beta_{j 0}+\beta_{j i}^{X}+\beta_{j k}^{Z}+\beta_{j i k}^{X Z}$
$-\beta_{j 0}=\lambda_{j}^{Y}-\lambda_{j^{\prime}}^{Y}$
$-\beta_{j i}^{X}=\lambda_{i j}^{X Y}-\lambda_{i j^{\prime}}^{X Y}$
$-\beta_{j k}^{Z}=\lambda_{j k}^{Y Z}-\lambda_{j^{\prime} k}^{Y Z}$
$-\beta_{j i k}^{X Z}=\lambda_{i j k}^{X Y Z}-\lambda_{i j^{\prime} k}^{X Y Z}$
- $\log \operatorname{linear}(X Y, Y Z, X Z) \Leftrightarrow Y \sim \operatorname{logit}(X, Z)$ or multi-logit $(X, Z)$
$-\ln \mu_{i j k}=\lambda_{0}+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}$
$-\ln \frac{\pi_{i j k}}{\pi_{i j^{\prime} k}}=\beta_{j 0}+\beta_{j i}^{X}+\beta_{j k}^{Z}$
$-\beta_{j 0}=\lambda_{j}^{Y}-\lambda_{j^{\prime}}^{Y}$
$-\beta_{j i}^{X}=\lambda_{i j}^{X Y}-\lambda_{i j^{\prime}}^{X Y}$
$-\beta_{j k}^{Z}=\lambda_{j k}^{Y Z}-\lambda_{j^{\prime} k}^{Y} Z$
- Given $X \Perp Z \mid Y$, $\log$ linear $(X Y, Y Z) \Leftrightarrow Y \sim \operatorname{logit}(X, Z)$ or multi-logit $(X, Z)$
$-\ln \mu_{i j k}=\lambda_{0}+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}$
$-\ln \frac{\pi_{i j k}}{\pi_{i j^{\prime} k}}=\beta_{j 0}+\beta_{j i}^{X}+\beta_{j k}^{Z}$
$-\beta_{j 0}=\lambda_{j}^{Y}-\lambda_{j^{\prime}}^{Y}$
$-\beta_{j i}^{X}=\lambda_{i j}^{X Y}-\lambda_{i j^{\prime}}^{X Y}$
$-\beta_{j k}^{Z}=\lambda_{j k}^{Y Z}-\lambda_{j^{\prime} k}^{Y Z}$


## Demo II

- Data "UCBAdmissions" (included in R default Package "datasets") is on applicants to graduate school at Berkeley for the six largest departments in 1973 classified by admission and sex.
- Admit: Admitted, Rejected
- Gender: Male, Female
- Dept: A, B, C, D, E, F

