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Model checking

• Data {(yi, xi1, . . . , xip) : i = 1, . . . , I}
– logit model: use the data in aggregated form, i.e., yi is the realization of Yi ∼ Binom(ni, πi(xi1, . . . , xip)),

aka the number of successes with ni trials and treatment (xi1, . . . , xip)
– loglinear model: yi is the count associated with (xi1, . . . , xip), aka the realization of Yi ∼

Pois(µi(xi1, . . . , xip))
– rule of thumb: regroup the data to make sure that

∗ logit model: ni ≥ 5 and n =
∑

i ni � 1
∗ loglinear model: µi(xi1, . . . , xip) is as large as possible
∗ different grouping leads to different conclussions

• Inferential method
– H0 : M is correct vs H1 : otherwise

∗ special case: checking independence for contingency tables
– r is the number of non-redundant parameters in M
– Pearson’s χ2-test: under H0 with dfM = I − r,

K2 =
I∑

i=1

(yi − ŷi)2

ŷi
≈ χ2(dfM )

– LRT: under H0 with dfM = I − r,

G2 = 2
I∑

i=1
yi ln yi

ŷi
≈ χ2(dfM ),

• Graphical method: residual plots
– Pearson’s residual:

ei = yi − ŷi√
v̂ar(Yi)

∗ logit model: ŷi = niπ̂i and v̂ar(Yi) = niπ̂i(1− π̂i)
∗ loglinear model: ŷi = µ̂i = v̂ar(Yi) = yi−ŷi√

v̂ar(Yi)
– standardized (adjusted) Pearson’s residual (approximately normal-distributed):

e∗
i = ei√

1− hii

= yi − ŷi√
v̂ar(Yi − Ŷi)

where hii is the i-th observation’s leverage: the i-th diagonal element ofH = V
1
2X(XTV X)−1XTV

1
2

with V = diag(v̂ar(Y1), . . . , v̂ar(YI))
– extreme residuals: implies extra variability not well-explained by the model:

∗ size of residuals
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· |ei| ≥ 2 (or |e∗
i | ≥ 2): 5% if the model is correct

· |ei| ≥ 3 (or |e∗
i | ≥ 3): extremely rare (0.1%) if the model is correct

· |ei| ≥ 4 (or |e∗
i | ≥ 4): unexpected at all if the model is correct

∗ graph of residual vs explanatory variable
· check the appropriateness of the form of explanatory variables

∗ graph of residual vs ŷ or g(ŷ)
· check the appropriateness of link function g(·)

Model comparison and variable selection

• LRT: to compare a “smaller” model to a “larger” model, i.e., with M0 ⊂M1,

H0 : M0 vs H1 : M1

– under H0, G2(M0|M1) = G2(M0|Ms)− G2(M1|Ms) = −2 ln max LM0
max LM1

≈ χ2(dfM0 − dfM1)
– Ms is the saturated model
– dfM0 − dfM1 = the difference on numbers of non-redundant parameters
– M0 ought to be nested into M1

• Information criteria: to achieve the min AIC, or corrected AIC or BIC
– general form

IC(k) = −2 ln(L(β̂|data)) + kr

with r non-redundant parameters
– Akaike’s Information Criterion (AIC):

AIC = IC(2) = −2 ln(L(β̂|data)) + 2r

– corrected AIC (AICc):

AICc = IC
(

2n
I − r − 1

)
= −2 ln(L(β̂|data)) + 2Ir

I − r − 1

– Bayesian information criterion (BIC; Schwarz criterion):

BIC = IC(ln I) = −2 ln(L(β̂|data)) + r ln I

– R functions
∗ computation: AIC() and BIC()
∗ model auto-selection: step() with options

· “scope”: the range of models examined in the search
· “direction”: “both”, “backward”, or “forward”. If “scope” is missing, “direction” is always

“backward”.
· “k”: the k for IC(k)

Demo I

Data “UCBAdmissions” (included in R default Package “datasets”) is on applicants to graduate school at
Berkeley for the six largest departments in 1973 classified by admission and sex.

• Admit: Admitted, Rejected
• Gender: Male, Female
• Dept: A, B, C, D, E, F
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Demo II

250 groups went to a park for fishing. Each group was questioned about

• count (integer): number of fishes they caught;
• persons (integer): number of people were in the group;
• camper (categorical): whether or not they brought a camper;
• livebait (categorical): whether or not they used live bait;
• child (categorical): number of children were in the group.

See https://stats.idre.ucla.edu/r/dae/zip/ for more details.
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