STAT475/675 TUT10

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html

Zhiyang Zhou (zhiyang_zhou@sfu.ca)

2018-03-18

Model checking

- Data $\{(y_i, x_{i1}, \dots, x_{ip}) : i = 1, \dots, I\}$
 - logit model: use the data in aggregated form, i.e., y_i is the realization of $Y_i \sim \text{Binom}(n_i, \pi_i(x_{i1}, \ldots, x_{ip}))$, aka the number of successes with n_i trials and treatment (x_{i1}, \ldots, x_{ip})
 - loglinear model: y_i is the count associated with (x_{i1}, \ldots, x_{ip}) , as the realization of $Y_i \sim \text{Pois}(\mu_i(x_{i1}, \ldots, x_{ip}))$
 - rule of thumb: regroup the data to make sure that
 - * logit model: $n_i \ge 5$ and $n = \sum_i n_i \gg 1$
 - * loglinear model: $\mu_i(x_{i1}, \ldots, x_{ip})$ is as large as possible
 - $\ast\,$ different grouping leads to different conclussions
- Inferential method
 - $-H_0: M$ is correct vs $H_1:$ otherwise
 - * special case: checking independence for contingency tables
 - -r is the number of non-redundant parameters in M
 - Pearson's χ^2 -test: under H_0 with $df_M = I r$,

$$\mathcal{K}^2 = \sum_{i=1}^{I} \frac{(y_i - \hat{y}_i)^2}{\hat{y}_i} \approx \chi^2(\mathrm{df}_M)$$

- LRT: under
$$H_0$$
 with $df_M = I - r$,

$$\mathcal{G}^2 = 2\sum_{i=1}^{I} y_i \ln \frac{y_i}{\hat{y}_i} \approx \chi^2(\mathrm{df}_M),$$

- Graphical method: residual plots
 - Pearson's residual:

$$e_i = \frac{y_i - \hat{y}_i}{\sqrt{\widehat{\operatorname{var}}(Y_i)}}$$

- * logit model: $\hat{y}_i = n_i \hat{\pi}_i$ and $\widehat{\operatorname{var}}(Y_i) = n_i \hat{\pi}_i (1 \hat{\pi}_i)$ * loglinear model: $\hat{y}_i = \hat{\mu}_i = \widehat{\operatorname{var}}(Y_i) = \frac{y_i - \hat{y}_i}{\sqrt{\widehat{\operatorname{var}}(Y_i)}}$
- standardized (adjusted) Pearson's residual (approximately normal-distributed):

$$e_i^* = \frac{e_i}{\sqrt{1 - h_{ii}}} = \frac{y_i - \hat{y}_i}{\sqrt{\widehat{\operatorname{var}}(Y_i - \hat{Y}_i)}}$$

where h_{ii} is the *i*-th observation's leverage: the *i*-th diagonal element of $H = V^{\frac{1}{2}} X (X^{\mathrm{T}} V X)^{-1} X^{\mathrm{T}} V^{\frac{1}{2}}$ with $V = \operatorname{diag}(\widehat{\operatorname{var}}(Y_1), \ldots, \widehat{\operatorname{var}}(Y_I))$

extreme residuals: implies extra variability not well-explained by the model:
* size of residuals

- · $|e_i| \ge 2$ (or $|e_i^*| \ge 2$): 5% if the model is correct
- $|e_i| \geq 3$ (or $|e_i^*| \geq 3$): extremely rare (0.1%) if the model is correct
- $|e_i| \ge 4$ (or $|e_i^*| \ge 4$): unexpected at all if the model is correct
- * graph of residual vs explanatory variable · check the appropriateness of the form of explanatory variables
- * graph of residual vs \hat{y} or $q(\hat{y})$
 - · check the appropriateness of link function $q(\cdot)$

Model comparison and variable selection

• LRT: to compare a "smaller" model to a "larger" model, i.e., with $M_0 \subset M_1$,

 $H_0: M_0 \text{ vs } H_1: M_1$

- under H_0 , $\mathcal{G}^2(M_0|M_1) = \mathcal{G}^2(M_0|M_s) \mathcal{G}^2(M_1|M_s) = -2\ln \frac{\max L_{M_0}}{\max L_{M_1}} \approx \chi^2(\mathrm{df}_{M_0} \mathrm{df}_{M_1})$ $-M_s$ is the saturated model
- $df_{M_0} df_{M_1} =$ the difference on numbers of non-redundant parameters
- $-M_0$ ought to be nested into M_1
- Information criteria: to achieve the min AIC, or corrected AIC or BIC

general form

$$IC(k) = -2\ln(L(\hat{\beta}|data)) + kr$$

with r non-redundant parameters

- Akaike's Information Criterion (AIC):

$$AIC = IC(2) = -2\ln(L(\hat{\beta}|data)) + 2r$$

- corrected AIC (AIC_c):

$$AIC_{c} = IC\left(\frac{2n}{I-r-1}\right) = -2\ln(L(\hat{\beta}|data)) + \frac{2Ir}{I-r-1}$$

- Bayesian information criterion (BIC; Schwarz criterion):

$$BIC = IC(\ln I) = -2\ln(L(\hat{\beta}|data)) + r\ln I$$

- R functions
 - * computation: AIC() and BIC()
 - * model auto-selection: step() with options
 - "scope": the range of models examined in the search
 - · "direction": "both", "backward", or "forward". If "scope" is missing, "direction" is always "backward".
 - "k": the k for IC(k)

Demo I

Data "UCBAdmissions" (included in R default Package "datasets") is on applicants to graduate school at Berkeley for the six largest departments in 1973 classified by admission and sex.

- Admit: Admitted, Rejected
- Gender: Male, Female
- Dept: A, B, C, D, E, F

Demo II

 $250\ {\rm groups}$ went to a park for fishing. Each group was questioned about

- count (integer): number of fishes they caught;
- persons (integer): number of people were in the group;
- camper (categorical): whether or not they brought a camper;
- livebait (categorical): whether or not they used live bait;
- child (categorical): number of children were in the group.

See https://stats.idre.ucla.edu/r/dae/zip/ for more details.