STAT475/675 TUT09

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html

Zhiyang Zhou (zhiyang_zhou@sfu.ca)
2018-03-11

Three-Way Contingency Table with Poisson-distributed Cell Counts

- Cell count N with marginal X, Y and Z
- $\mu_{i j k}=\mathrm{E}\left(N_{i j k}\right)=\mathrm{E}(N \mid X=i, Y=j, Z=k)$
- Assume $N_{i j} \sim \operatorname{Poisson}\left(\mu_{i j k}\right)$
- Saturated Loglinear Model (XYZ):

$$
\ln \mu_{i j k}=\beta_{0}+\beta_{i}^{X}+\beta_{j}^{Y}+\beta_{k}^{Z}+\beta_{i j}^{X Y}+\beta_{j k}^{Y Z}+\beta_{i k}^{X Z}+\beta_{i j k}^{X Y Z}
$$

- Number of non-redundant parameters: IJK
- Mutual independence of X, Y and $Z:$ LRT and χ^{2} - test
- Loglinear Model of Homogeneous Association ($X Y, Y Z, X Z$)

$$
\ln \mu_{i j k}=\beta_{0}+\beta_{i}^{X}+\beta_{j}^{Y}+\beta_{k}^{Z}+\beta_{i j}^{X Y}+\beta_{j k}^{Y Z}+\beta_{i k}^{X Z}
$$

- Number of non-redundant parameters: $I J K-(I-1)(J-1)(K-1)$
- When $I=J=2$,

$$
\ln \theta_{X Y(k)}=\ln \frac{\mu_{11 k} \mu_{22 k}}{\mu_{12 k} \mu_{21 k}}=\beta_{11}^{X Y}+\beta_{22}^{X Y}-\beta_{12}^{X Y}-\beta_{21}^{X Y}
$$

* $\theta_{X Y(k)}$ stays still for all k, i.e., homogeneous conditional OR holds
* if $\beta_{i j}^{X Y}=0$ for all i, j, then
- $\theta_{X Y(k)}=1$ for all k
- $X \Perp Y \mid Z$
- consider model ($Y Z, X Z$)
- Loglinear Model of Independence (X, Y, Z)

$$
\ln \mu_{i j k}=\beta_{0}+\beta_{i}^{X}+\beta_{j}^{Y}+\beta_{k}^{Z}
$$

- Number of non-redundant parameters: $1+(I-1)+(J-1)+(K-1)=I+J+K-2$

Demo I

Data "UCBAdmissions" (included in R default Package "datasets") is on applicants to graduate school at Berkeley for the six largest departments in 1973 classified by admission and sex.

- Admit: Admitted, Rejected
- Gender: Male, Female
- Dept: A, B, C, D, E, F

Poisson Rate Regression

- $Y \mid t, x_{1}, \ldots, x_{p} \sim \operatorname{Poisson}\left(\mu\left(t, x_{1}, \ldots, x_{p}\right)\right)$ and assume

$$
\ln \mu\left(t, x_{1}, \ldots, x_{p}\right)=\ln t+\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}
$$

or equivalently,

$$
\mathrm{E}\left(Y / t \mid t, x_{1}, \ldots, x_{p}\right)=\frac{\mu\left(t, x_{1}, \ldots, x_{p}\right)}{t}=\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}\right)
$$

or

$$
\mathrm{E}\left(Y \mid t, x_{1}, \ldots, x_{p}\right)=\mu\left(t, x_{1}, \ldots, x_{p}\right)=t \exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}\right)
$$

$-Y$: count of events
$-t$: measure of opportunity for events

Demo II

250 groups went to a park. Each group was questioned about

- count (integer): number of fishes they caught;
- persons (integer): number of people were in the group;
- camper (categorical): whether or not they brought a camper;
- livebait (categorical): whether or not they used live bait;
- child (categorical): number of children were in the group.

See https://stats.idre.ucla.edu/r/dae/zip/ for more details.
To-do:

- Predict the number of fish caught by loglinear models.
- Take variable "persons" as t and built a Poisson rate model.

Two Problems with Poisson Regression

- Overdispersion: the equality of mean and variance is violated
- solutions, e.g.
* negative binomial distribution
* quasi-likelihood estimation
- Zero inflation: too many zeros are observed in response
- solutions, e.g.
* zero-inflated Poisson (ZIP) model (Lambert, 1992): a mixture distribution of the form

$$
Y\left\{\begin{array}{l}
=0 \text { with probabity } \pi \\
\sim \operatorname{Poisson}(\mu) \text { with probabity } 1-\pi
\end{array}\right.
$$

or equivalently,

$$
\operatorname{Pr}(Y=y)=\left\{\begin{array}{l}
\pi+(1-\pi) \exp (-\mu), y=0 \\
\frac{(1-\pi) \mu^{y} \exp (-\mu)}{y!}, y \in \mathbb{N}
\end{array}\right.
$$

where $\pi=\pi\left(z_{1}, \ldots, z_{J}\right)=\operatorname{logit}^{-1}\left(\gamma_{0}+\gamma_{1} z_{1}+\cdots+\gamma_{J} z_{J}\right)$ and $\mu=\mu\left(x_{1}, \ldots, x_{p}\right)=\exp \left(\beta_{0}+\right.$ $\left.\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}\right)$

Demo II (Continued)

To-do:

- Consider a ZIP model and predict again the probability that a group caught zero fish.

Generalized Linear Models

- Special cases
- Ordinal linear model
- Logit model
- Baseline-category logit Model
- Cumulative logit Model
- Adjacent-categories logit Model
- Loglinear model
- Unified framework:

$$
g_{j}\left(\mu_{1}, \ldots, \mu_{I}\right)=\beta_{0}+\beta_{j 1} x_{1}+\cdots+\beta_{j p} x_{p}, \quad j=1, \ldots, J
$$

with $Y \sim f_{\mu_{1}, \ldots, \mu_{I}}$, a parametric distribution (belonging to the exponential family) characterized by $\mu_{i}=\mu_{i}\left(x_{1}, \ldots, x_{p}\right), \quad i=1, \ldots, I$

- random component: $Y \sim f_{\mu_{1}, \ldots, \mu_{I}}$
- systematic component: $\beta_{0}+\beta_{j 1} x_{1}+\cdots+\beta_{j p} x_{p}$
- link function (usually monotone and differentiable over the range of $\left.\left(\mu_{1}, \ldots, \mu_{I}\right)\right): g_{j}(\cdot)$

