STAT475/675 TUT08

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html

Zhiyang Zhou (zhiyang_zhou@sfu.ca)

Poisson Model for Counts

- $Y|\mathbf{x}$ from $Poisson(\mu(\mathbf{x}))$
- Used to model number of occurrences in an interval of time (or space) and good at modelling rare events
- $Binom(n, \theta) \approx Poisson(n\theta)$ when $n \gg n\theta$
- $Poisson(\mu) \approx N(\mu, \mu)$ for large μ

Inference with Poisson distribution

- Given $Y_1, \ldots, Y_n \sim Possion(\mu)$ and interested in μ
- MLE $\hat{\mu} = \bar{Y}$
- $\widehat{\operatorname{var}}(\hat{\mu}) = \hat{\mu}/n = \bar{Y}/n$
- Confidence interval for μ
 - Wald:

$$\hat{\mu} \pm Z_{1-\alpha/2} \sqrt{\frac{\hat{\mu}}{n}}$$

- Score-type:

$$\left(\hat{\mu} + \frac{Z_{1-\alpha/2}^2}{2n}\right) \pm Z_{1-\alpha/2} \sqrt{\frac{1}{n} \left(\hat{\mu} + \frac{Z_{1-\alpha/2}^2}{4n}\right)}$$

- Clopper-Pearson (exact)

$$\left(\frac{\chi_{2n\hat{\mu},\alpha/2}^2}{2n}, \frac{\chi_{2n\hat{\mu},1-\alpha/2}^2}{2n}\right)$$

Poisson Regression Model (Loglinear Model)

• Consider $Y|x_1,\ldots,x_K \sim Possion(\mu(x_1,\ldots,x_K))$ and assume that

$$\ln(\mu(x_1,\ldots,x_K)) = \beta_0 + \beta_1 x_1 + \cdots + \beta_K x_K$$

or equivalently,

$$\mu(x_1,\ldots,x_K) = \exp(\beta_0 + \beta_1 x_1 + \cdots + \beta_K x_K)$$

- Interpretation for β_i with fixed $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_K$: when $x_i \to x_i + c$,
 - * $c\beta_i = 0 \Rightarrow \mu(x_1, \dots, x_K)$ stays still
 - * $c\beta_i > 0 \Rightarrow \mu(x_1, \dots, x_K) \uparrow \mu(x_1, \dots, x_K) \exp(c\beta_i)$
 - * $c\beta_i < 0 \Rightarrow \mu(x_1, \dots, x_K) \downarrow \mu(x_1, \dots, x_K) \exp(c\beta_i)$

- Inference for $\frac{\mu(x_1,...,x_K)}{\mu(x'_1,...,x'_K)}$

* Estimate var($\hat{\beta}_1(x_1 - x_1') + \dots + \hat{\beta}_K(x_K - x_K')$), i.e. the variance of $\ln \frac{\mu(x_1, \dots, x_K)}{\mu(x_1', \dots, x_K')}$ * Compute 95% Wald CI for $\ln \frac{\mu(x_1, \dots, x_K)}{\mu(x_1', \dots, x_K')}$: $\ln \frac{\hat{\mu}(x_1, \dots, x_K)}{\hat{\mu}(x_1', \dots, x_K')} \pm 1.96 \sqrt{\widehat{\text{var}}(\hat{\beta}_1(x_1 - x_1') + \dots + \hat{\beta}_K(x_K - x_K'))}$ * 95% CI for $\frac{\mu(x_1, \dots, x_K)}{\mu(x_1', \dots, x_K')}$: $\exp \left(\ln \frac{\hat{\mu}(x_1, \dots, x_K)}{\hat{\mu}(x_1', \dots, x_K')} \pm 1.96 \sqrt{\widehat{\text{var}}(\hat{\beta}_1(x_1 - x_1') + \dots + \hat{\beta}_K(x_K - x_K'))}\right)$

Categorical Explanatory Variables

- Follow the underlying order
- Score the categories as objectively as possible
- Default coding Scheme used in R: e.g., study how Y depends on two categorical variables X and Zwith model

$$\ln \mu(i,k) = \beta_0 + \beta_i^X + \beta_k^Z + \beta_{ik}^{XZ}$$

for i = 1, ..., I, k = 1, ..., K, with $\beta_1^X = \beta_1^Z = \beta_{1k}^{XZ} = \beta_{i1}^{XZ} = 0$. Or, alternatively,

$$\ln \mu(x_2, \dots, x_I, z_2, \dots, z_K) = \beta_0 + \sum_{i=2}^I \beta_i^X x_i + \sum_{k=2}^K \beta_k^Z z_k + \sum_{(i,k)=(2,2)}^{(I,K)} \beta_{ik}^{XZ} x_i z_k$$

with 0-1 binary dummy variables x_2, \ldots, x_I for X and z_2, \ldots, z_K for Z.

Demo

Consider the data "VonBort" in R-package "vcd". It was recorded by von Bortkiewicz (1898), given by Andrews & Herzberg (1985), on number of deaths by horse or mule kicks in 14 corps of the Prussian army.

Two-Way Contingency Table with Poisson-distributed Cell Counts

- Cell count N with marginal X and Y
- $\mu_{ij} = E(N_{ij}) = E(N|X=i, Y=j)$
- Assume $N_{ij} \sim Possion(\mu_{ij})$
- Consider a loglinear regression model, where N is the response and X and Y are the explanatory

$$\ln \mu_{ij} = \beta_0 + \beta_i^X + \beta_j^Y + \beta_{ij}^{XY},$$

for
$$i = 1, ..., I, j = 1, ..., J$$

- number of non-redundant parameters: IJ
- independence of X and Y

 - * $X \perp \!\!\!\perp Y \Rightarrow \beta_{ij}^{XY} = 0$ for all i, j* with 2×2 tables, $OR = \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}} = 1 \Leftrightarrow \beta_{ij}^{XY}$ for all i, j