STAT475/675 TUT06

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html

Zhiyang Zhou (zhiyang_zhou@sfu.ca)
2018-02-18

Recall: Hypothesis testing on independence for $I \times J$ contingency table

- $H_{0}: X \Perp Y$ vs $H_{1}: X \not \Perp Y$
- or, equivalently, $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all i, j vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some i, j
- Testing procedures
- Pearson's chi-squared (χ^{2}-) test
- likelihood ratio test (LRT)

Recall: χ^{2}-test (with purposive or multinomial sampling)

- $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all i, j vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some i, j
- Test statistic:

$$
\chi_{\mathrm{obs}}^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}
$$

with $\hat{\mu}_{i j}=n_{i+} n_{+j} / n$

- Caculate p-value $=\operatorname{Pr}_{H_{0}}\left(\chi^{2} \geq \chi_{\text {obs }}^{2}\right)$ based on $\chi^{2} \sim \chi^{2}(d f)$ approximately under H_{0} with $d f=$ $(I-1)(J-1)$
- Draw conclusion
- p-value $<\alpha$: there is a strong evidence against H_{0}, i.e., there is a signficant association between X and Y
- Remark
- The χ^{2}-approximation is good usually when $\mu_{i j} \geq 5$ for all i, j.

Recall: LRT (with purposive or multinomial sampling)

- $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all i, j vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some i, j
- Test statistic:

$$
G_{\mathrm{obs}}^{2}=2 \sum_{i, j} n_{i j} \ln \frac{n_{i j}}{\hat{\mu}_{i j}}
$$

with $\hat{\mu}_{i j}=n_{i+} n_{+j} / n$

- Caculate p-value $=\operatorname{Pr}_{H_{0}}\left(G^{2} \geq G_{\text {obs }}^{2}\right)$ based on $G^{2} \sim \chi^{2}(d f)$ approximately under H_{0} with $d f=$ $(I-1)(J-1)$
- Draw conclusion
- p-value $<\alpha$: there is a strong evidence against H_{0}, i.e., there is a signficant association between X and Y
- Remark
- The χ^{2}-approximation is good usually when $\mu_{i j} \geq 5$ for all i, j.

Multi-way contingency table

- Categorical variables X (of I levels), Y (of J levels), and Z (of K levels)
- Study pairs $(X, Y),(X, Z)$ and (Y, Z) using two-way contingency tables
- two-way partial table: all the cell counts associated with two of the three variables and with the 3rd variable fixed at a level
- two-way marginal table: combining the two-way partial tables according to the 3rd variable

$2 \times 2 \times K$ contingency table

- $X-Y$ conditional OR: describe $X-Y$ association conditional on $Z=k$

$$
\theta_{X Y(k)}=\frac{\pi_{11 k} / \pi_{12 k}}{\pi_{21 k} / \pi_{22 k}}
$$

estimated by

$$
\hat{\theta}_{X Y(k)}=\frac{n_{11 k} / n_{12 k}}{n_{21 k} / n_{22 k}}
$$

- $\theta_{X Y(k)} \equiv$ constant for all $k \Rightarrow$ "homogeneous" conditional $X-Y$ association
- $X-Y$ marginal OR: describe $X-Y$ association conditional on $Z=k$

$$
\theta_{X Y}=\frac{\pi_{11+} / \pi_{12+}}{\pi_{21+} / \pi_{22+}}
$$

estimated by

$$
\hat{\theta}_{X Y}=\frac{n_{11+} / n_{12+}}{n_{21+} / n_{22+}}
$$

- $X \Perp Y \mid Z \Leftrightarrow \theta_{X Y(k)}=1$ for all $k \Leftrightarrow \frac{\pi_{11 k}}{\pi_{1}+k}=\frac{\pi_{21 k}}{\pi_{2}+k}$ for all k
- $X \Perp Y \Leftrightarrow \theta_{X Y}=1 \Leftrightarrow \frac{\pi_{11+}}{\pi_{1++}}=\frac{\pi_{21+}}{\pi_{2++}}$
- $X \Perp Y \nLeftarrow X \Perp Y \mid Z$ in general
- Simpson's paradox

Demo

The data included in "Arthritis" in package "vcd" is from Koch \& Edwards (1988) after a double-blind clinical trial investigating a new treatment for rheumatoid arthritis.

- Check the dependence between the treatment and improvement.

