## STAT475/675 TUT04

http://www.sfu.ca/~zza115/teaching.html http://people.stat.sfu.ca/~joanh/stat475-675web.html Zhiyang Zhou (zhiyang_zhou@sfu.ca)

2018-01-30

## Recall

| Probabilities |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Disease $(Y)$ |  |  |
| Group $(X)$ | $\mathrm{Y}(1)$ | $\mathrm{N}(2)$ |  |
| $\mathrm{M}(1)$ | $\pi_{11}$ | $\pi_{12}$ | $\pi_{1+}$ |
| $\mathrm{F}(2)$ | $\pi_{21}$ | $\pi_{22}$ | $\pi_{2+}$ |
|  | $\pi_{+1}$ | $\pi_{+2}$ | 1 |

- How to compare $p_{1}$ and $p_{2}$ ?
- $p_{1}=\operatorname{Pr}($ disease in $\mathrm{M} \mid \mathrm{M})=\pi_{11} / \pi_{1+}$
- $p_{2}=\operatorname{Pr}($ disease in $\mathrm{F} \mid \mathrm{F})=\pi_{21} / \pi_{2+}$
- Relative risk (RR)

$$
R R=\frac{p_{1}}{p_{2}}=\frac{\pi_{11} / \pi_{1+}}{\pi_{21} / \pi_{2+}}
$$

- Odds ratio (OR)

$$
O R=\frac{\pi_{11} / \pi_{12}}{\pi_{21} / \pi_{22}}=\frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}
$$

| $y=1$ |  |  | $y=2$ |
| :---: | :---: | :---: | :---: |
| $x=1$ | $n_{11}$ | $n_{12}$ | $n_{1+}$ |
| $x=2$ | $n_{21}$ | $n_{22}$ | $n_{2+}$ |
|  | $n_{+1}$ | $n_{+2}$ | $n$ |

- Probability Models
- binomial sampling (given row total $N_{i+}=n_{i+}$ )
- multinomial sampling (given $N=n$ )
- MLE
$-\widehat{R R}=\frac{n_{11} / n_{1+}}{n_{21} / n_{2+}}$
$-\widehat{O R}=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}$
- Estimating $\operatorname{var}(\ln \widehat{R R})$ and $\operatorname{var}(\ln \widehat{O R})$
$-\hat{\sigma}_{\ln \widehat{R R}}^{2}=\widehat{\operatorname{var}}(\ln \widehat{R R})=n_{11}^{-1}-n_{1+}^{-1}+n_{21}^{-1}-n_{2+}^{-1}$
$-\hat{\sigma}_{\ln \widehat{O R}}^{2}=\widehat{\operatorname{var}}(\ln \widehat{O R})=\sum_{i, j} n_{i j}^{-1}$
- Approximate $(1-\alpha)$ Wald CIs of $\ln R R$ and $\ln O R$
$-\ln \widehat{R R} \pm Z_{1-\alpha / 2} \hat{\sigma}_{\ln } \widehat{R R}$
$-\ln \widehat{O R} \pm Z_{1-\alpha / 2} \hat{\sigma}_{\ln } \widehat{O R}$
- Approximate $(1-\alpha)$ CIs of $R R$ and $O R$
$-\left(\widehat{R R} \exp \left\{-Z_{1-\alpha / 2} \hat{\sigma}_{\ln } \widehat{R R}\right\}, \widehat{R R} \exp \left\{Z_{1-\alpha / 2} \hat{\sigma}_{\ln \widehat{R R}}\right\}\right)$
$-\left(\widehat{O R} \exp \left\{-Z_{1-\alpha / 2} \hat{\sigma}_{\ln } \widehat{O R}\right\}, \widehat{O R} \exp \left\{Z_{1-\alpha / 2} \hat{\sigma}_{\ln } \widehat{O R}\right\}\right)$


## Hypothesis testing on independence

- $H_{0}: X \Perp Y$ vs $H_{1}: X \not \Perp Y$
- or, equivalently, $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all $i, j$ vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some $i, j$
- $2 \times 2$
$-X \Perp Y \Leftrightarrow R R=1 \Leftrightarrow O R=1$
- $H_{0}: R R=1$ vs $H_{1}: R R \neq 1$ (or $H_{0}: O R=1$ vs $H_{1}: O R \neq 1$ )
- estimate $R R$ (or $O R$ ) and corresponding $(1-\alpha) \mathrm{CI}$
- reject $H_{0}$ if CI doesn't cover 1 at the significance level $\alpha$ and otherwise do not reject $H_{0}$ at the significance level of $\alpha$
- $I \times J$
$-R R$ and $O R$ are unapplicable
- general testing procedures
* Pearson's chi-squared ( $\chi^{2}$-) test (K. Pearson, 1900)
* likelihood ratio test (LRT)


## $\chi^{2}$-test (with purposive or multinomial sampling)

- $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all $i, j$ vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some $i, j$
- Test statistic:

$$
\chi_{\mathrm{obs}}^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}
$$

with $\hat{\mu}_{i j}=n_{i+} n_{+j} / n$

- Caculate $p$-value $=\operatorname{Pr}_{H_{0}}\left(\chi^{2} \geq \chi_{\text {obs }}^{2}\right)$ based on $\chi^{2} \sim \chi^{2}(d f)$ approximately under $H_{0}$ with $d f=$ $(I-1)(J-1)$
- Draw conclusion
- $p$-value $<\alpha$ : there is a strong evidence against $H_{0}$, i.e., there is a signficant association between $X$ and $Y$
- Remark
- The $\chi^{2}$-approximation is good usually when $\mu_{i j} \geq 5$ for all $i, j$.


## LRT (with purposive or multinomial sampling)

- $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ for all $i, j$ vs $H_{1}: \pi_{i j} \neq \pi_{i+} \pi_{+j}$ for some $i, j$
- Test statistic:

$$
G_{\mathrm{obs}}^{2}=2 \sum_{i, j} n_{i j} \ln \frac{n_{i j}}{\hat{\mu}_{i j}}
$$

with $\hat{\mu}_{i j}=n_{i+} n_{+j} / n$

- Caculate $p$-value $=\operatorname{Pr}_{H_{0}}\left(G^{2} \geq G_{\text {obs }}^{2}\right)$ based on $G^{2} \sim \chi^{2}(d f)$ approximately under $H_{0}$ with $d f=$ $(I-1)(J-1)$
- Draw conclusion
- $p$-value $<\alpha$ : there is a strong evidence against $H_{0}$, i.e., there is a signficant association between $X$ and $Y$
- Remark
- The $\chi^{2}$-approximation is good usually when $\mu_{i j} \geq 5$ for all $i, j$.


## Exercise

The table below was taken from the 2002 General Social Survey.

|  |  | Party Identification |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | democrat | independent | republican | Total |
| Race | White | 871 | 444 | 873 | 2188 |
|  | Black | 302 | 80 | 43 | 425 |
|  | Total | 1173 | 524 | 916 | 2613 |

- Conduct the Pearson's $\chi^{2}$ - test for independence bewtween party identificaiton and race and interpret the result.
- Conduct the LRT for independence bewtween party identificaiton and race and interpret the result.


## Matched pairs data

|  |  | Method I |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Success | Failure | Total |
| Method II | Success | 4 | 6 | 10 |
|  | Failure | 3 | 3 | 6 |
|  | Total | 7 | 9 | 16 |

- Probability model: $\left(N_{11}, N_{12}, N_{21}, N_{22}\right) \sim \operatorname{multinom}\left(n ; \pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)$
- Interested in $\pi_{1+}-\pi_{+1}$
$-\pi_{1+}=\pi_{11}+\pi_{12}$ : probability of success of Method I
$-\pi_{+1}=\pi_{11}+\pi_{21}$ : probability of success of Method II
- MLE for $\pi_{1+}-\pi_{+1}$

$$
\hat{\pi}_{1+}-\hat{\pi}_{+1}=\frac{n_{12}-n_{21}}{n}
$$

- Estimating $\operatorname{var}\left(\hat{\pi}_{1+}-\hat{\pi}_{+1}\right)$

$$
\widehat{\operatorname{var}}\left(\hat{\pi}_{1+}-\hat{\pi}_{+1}\right)=\frac{\hat{\pi}_{12}+\hat{\pi}_{21}+\left(\hat{\pi}_{12}-\hat{\pi}_{21}\right)^{2}}{n}=\frac{n_{12}+n_{21}}{n^{2}}+\frac{\left(n_{12}-n_{21}\right)^{2}}{n^{3}}
$$

- Confidence interval
- Wald:

$$
\hat{\pi}_{1+}-\hat{\pi}_{+1} \pm Z_{1-\alpha / 2} \sqrt{\widehat{\operatorname{var}}\left(\hat{\pi}_{1+}-\hat{\pi}_{+1}\right)}
$$

* diffpropci.Wald.mp() from the PropCIs package
- Agresti-Min: add 0.5 to each cell in the table and compute a Wald confidence interval using these adjusted counts
* diffpropci.mp() from the PropCIs package
- Test on $H_{0}: \pi_{1+}=\pi_{+1}$ vs $H_{1}: \pi_{1+} \neq \pi_{+1}$
- Wald
* test statistic

$$
Z_{\mathrm{obs}}=\frac{\hat{\pi}_{1+}-\hat{\pi}_{+1}}{\sqrt{\widehat{\operatorname{var}\left(\hat{\pi}_{1+}-\hat{\pi}_{+1}\right)}}}
$$

* reject $H_{0}$ if $\left|Z_{\text {obs }}\right|>Z_{1-\alpha / 2}$
- McNemar
* simplify the denominator of $Z_{\text {obs }}$ to $n^{-1} \sqrt{n_{12}+n_{21}}$
* mcnemar.test()


## Simple logistric regression

- binary response $Y$ (e.g. success (1)/failure (0)) with one explanatory variable $X$
- $Y \mid X=x \sim \operatorname{Bernoulli}(\pi(x))$
- Model

$$
\operatorname{logit}(\pi(x))=\ln \frac{\pi(x)}{1-\pi(x)}=\alpha+\beta x
$$

or, equivalently,

$$
\pi(x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)} \in[0,1]
$$

$-\pi(x) \approx \alpha+\frac{\pi(x)}{x} x=\alpha+\beta x \pi(x)(1-\pi(x))$
$-X \Perp Y$ if $\beta=0$
$-\beta=\ln O R$ if $X$ is binary, e.g male(1)/female (0), and $O R$ is the odds ratio of success with male vs female

- Inference
- estimate $\alpha, \beta$ and $\pi(x)$
* MLE $\hat{\alpha}, \hat{\beta}$ and

$$
\hat{\pi}(x)=\operatorname{logit}^{-1}(\hat{\alpha}+\hat{\beta} x)=\frac{\exp (\hat{\alpha}+\hat{\beta} x)}{1+\exp (\hat{\alpha}+\hat{\beta} x)}
$$

- CI for $\alpha, \beta$ and $\pi(x)$
* estimate asymptotic variances $A V_{\hat{\alpha}}$ and $A V_{\hat{\beta}}$
* $95 \%$ Wald CI
- $\hat{\alpha} \pm 1.96 A S E_{\hat{\alpha}}$ with $A S E_{\hat{\alpha}}=\sqrt{A V_{\hat{\alpha}}}$
- $\hat{\beta} \pm 1.96 A S E_{\hat{\beta}}$ with $A S E_{\hat{\beta}}=\sqrt{A V_{\hat{\beta}}}$
- $\operatorname{logit}^{-1}\left((\hat{\alpha}+\hat{\beta} x) \pm 1.96 A S E_{\hat{\alpha}+\hat{\beta} x}\right)$ with $A S E_{\hat{\alpha}+\hat{\beta} x}=\sqrt{A V_{\hat{\alpha}}+x^{2} A V_{\hat{\beta}}+2 x \widehat{\operatorname{Cov}}(\hat{\alpha}, \hat{\beta})}$
- test on on $H_{0}: \beta=\beta_{0}$ vs $H_{1}: \beta \neq \beta_{0}$
* Wald: $Z=\left(\hat{\beta}-\beta_{0}\right) / A S E_{\hat{\beta}} \sim N(0,1)$


## Exercise

The failure of an O-ring on the space shuttle Challenger's booster rockets led to its destruction in 1986.

- Use logistic regression to model the probability of an O-ring failure as a function of temperature at launch. Data is included in "orings" in package faraway.


## Review for Midterm I

- One Bernoulli r.v.
- inference on probability of success $\pi$
* MLE for $\pi$
* CIs for $\pi$
- Wald, Wlison (score type), Agresti-Coull and Clopper-Pearson (exact)
- interpretation
- comparison: true confidence level
- Two Bernoulli r.v.s and $2 \times 2$ contingency table
- interested in $R R$ (or $O R$ ) (with binomial or multinomial sampling)
* MLE
- interpretation
* $\widehat{\operatorname{var}}(\ln \widehat{R R})($ or $\widehat{\operatorname{var}}(\ln \widehat{O R}))$
* approximate $(1-\alpha)$ Wald CI of $\ln R R($ or $\ln O R)$
* approximate $(1-\alpha)$ Wald CI of $R R$ (or $O R$ )
interpretation
- interested in $\pi_{1+}-\pi_{+1}$ (for matched pairs data, with multinomial sampling)
* MLE
$* \widehat{\operatorname{var}}\left(\hat{\pi}_{1+}-\hat{\pi}_{+1}\right)$
* CI
- Wald
- Agresti-Min
* Test on $H_{0}: \pi_{1+}=\pi_{+1}$ vs $H_{1}: \pi_{1+} \neq \pi_{+1}$
- Wald
- McNemar
- Testing on independence of two r.v.s
$-2 \times 2$ contingency table
* test on whether $R R$ (or $O R$ ) equals 1
$-I \times J$ contingency table (with purposive or multinomial sampling)
* Pearson's $\chi^{2}$-test
* likelihood ratio test
- Simple logistic regression

