STAT475/675 TUT02

> www.sfu.ca/~zza115/teaching
> Zhiyang Zhou (zhiyang_zhou@sfu.ca)
> 2018-01-15

Setting

- n independent Bernoulli trials
- identical unknown $\pi=\operatorname{Pr}$ (success) in each trial
- r.v. $W=\sum_{i=1}^{n} Y_{i} \sim B(n, \pi)$, number of successes out of the n trials, with $Y \sim B(1, \pi)$
- α and $1-\alpha$, respectively, significance level and confidence level

Wald confidence interval for π

$$
\hat{\pi} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}
$$

- Pros and cons
- easy to derive and compute
- When w is close to 0 or n, Calculated limits may be less than 0 or greater than 1 .
- When $w=0$ or 1 , lower and upper limits are exactly the same.

Wilson (score-type) confidence interval for π

$$
\tilde{\pi} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\tilde{\pi}(1-\tilde{\pi})}{n+Z_{1-\alpha / 2}^{2}}}
$$

with

$$
\tilde{\pi}=\frac{w+Z_{1-\alpha / 2}^{2} / 2}{n+Z_{1-\alpha / 2}^{2}}
$$

- Pros and cons
- always has limits between 0 and 1

Agresti-Coull confidence interval for π

$$
\tilde{\pi} \pm \frac{Z_{1-\alpha / 2} \sqrt{n}}{n+Z_{1-\alpha / 2}^{2}} \sqrt{\hat{\pi}(1-\hat{\pi})+\frac{Z_{1-\alpha / 2}^{2}}{4 n}}
$$

with

$$
\tilde{\pi}=\frac{w+Z_{1-\alpha / 2}^{2} / 2}{n+Z_{1-\alpha / 2}^{2}}
$$

- Pros and cons
- easier to calculate by hand than Wilson
- resembles the popular Wald interval
- may have limits less than 0 or greater than 1

Clopper-Pearson (exact) confidence interval for π

$$
\text { (quantile.beta }(\alpha / 2 ; w, n-w+1), \quad \text { quantile.beta }(1-\alpha / 2 ; w+1, n-w))
$$

- Pros and cons
- always conservative: the true confidence level is always equal to or greater than the stated level
- infeasible to compute by hand

Generic R function for computing confidence intervals

- binom::binom.confint()

Exercise (Q9 in Textbook pp.51)

79 out of 80 people oppose a new tax. Let π represent the probability that a randomly selected resident opposes the tax.

- Compute four different 95% CIs for π; interpret the results.
- Is it possible $\pi=1$?
- Which interval is prefered?

True confidence levels (coverage probabilies) for confidence intervals

- We assert that the 95% (Wald, Wlison, Agresti-Coull or Clopper-Pearson) CI covers the true value with probability 95%. But what is the truth?
- The true confidence level at π, say $C(\pi)$, is the sum of the binomial probabilities for all intervals that do contain π :

$$
C(\pi)=\sum_{w=0}^{n} I(w)\binom{n}{w} \pi^{w}(1-\pi)^{n-w}
$$

where $I(w)=1$ if the interval formed with w contains π and $I(w)=0$ otherwise.

Exercise (continued)

What are the true coverage probabilities for the four methods with $n=80$ and $\alpha=.05 ?$

