
A New Algorithm for Constructing Orthogonal
and Nearly-Orthogonal Arrays

R. A. Lekivetz, D. Bingham, and R. R. Sitter
Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

M.S. Hamada, L.M. Moore, and J.R. Wendelberger
Los Alamos National Laboratory, Los Alamos, NM, 87545

Abstract

Orthogonal arrays are frequently used in industrial experi-
ments for quality and productivity improvement. Due to run-
size constraints and level combinations, an orthogonal array
may not exist, in which case a nearly-orthogonal array can be
used. Orthogonal and nearly-orthogonal arrays can be diffi-
cult to find. This poster will introduce a new algorithm for
the construction of orthogonal arrays and nearly-orthogonal
arrays with desirable statistical properties, and compare the
new algorithm to a pre-existing algorithm.

Introduction

Experimenters are often interested in studying a num-
ber of factors in a small number of runs. One way to do so
is through the use of orthogonal and nearly-orthogonal arrays.

For a general factorial design, we consider the standard
normal regression model for a design d,

Y = X0α0 + X1α1 + · · · + Xmαm + ǫ.

•Y is the vector of observations.

•αj the vector of j-factor interactions.

•Xj the matrix of coefficients for αj (column i corresponds
to the coefficient for the ith effect).

• ǫ iid N(0, σ2).

How do we measure ’near’ orthogonality?

A number of different approaches have been taken.

Xu and Wu [2] defined Aj(d) as a measure of the alias-
ing between the j-factor interactions and the general mean.
For Xj = [x

(j)
ik], let

Aj(d) =
1

N 2

∑

k

∣

∣

∣

∣

∣

∣

N
∑

i=1

x
(j)
ik

∣

∣

∣

∣

∣

∣

2

.

•Aj measures aliasing between j-factor interactions and
mean.

•Generalized minimum aberration sequentially minimizes
(A1, A2, A3, . . .).

•A2 = 0 if the design is an orthogonal array.

•An A2-optimal design will minimize A2 - our measure of
near-orthogonality.

For designs with balanced columns, two equivalent measures
of A2 for a design d are ave(χ2(d)) and J2(d).

Define

χ2
kl(d) =

sk−1
∑

a=0

sl−1
∑

b=0

[nkl(a, b) − N/(sksl)]
2

N/(sksl)
,

where column l has sl levels, and nkl(a, b) is the number of
times the level combination (a, b) occurs in columns k and l,
Ye and Sudjianto [3] use

ave(χ2(d)) =
∑

1≤k<l≤m

χ2
kl(d)/[m(m − 1)/2]. (1)

Define

δi,j(d) =
n

∑

k=1

wkδ(xik, xjk), 1 ≤ i, j ≤ N,

where δ(a, b) = 1 if a = b, 0 otherwise, wk is the weight of
the column, and δi,j(d) is a measure of the similarity between
these rows. Then

J2(d) =
∑

1≤i<j≤N

[δi,j(d)]2 (2)

ave(χ2(d)) is a summation over all columns while J2(d) is a
summation over all rows.

Balanced designs - minimizing (1) or (2) minimizes A2.

Algorithms

Xu’s algorithm [1]

• Sequentially add columns to a design.

•Adds a random balanced column.

•Look at all possible switches in new column, make best one.

•Try adding new column R times - choose best.

•Uses J2 criterion.

•Call R the number of restarts.

The New Algorithm

• Sequentially adds columns as well.

•New column created one element(row) at a time.

•Uses the χ2 criterion.

•Can ensure balance is maintained.

Define
d

(h)
lb∗ = [x

(h)
1 |x

(h)
2 | · · · |x

(h)
lb∗],

the first h rows, where x
(h)
lb∗ = (x1l, · · · , x(h−1)l, b

∗)′.

i.e. b∗ is in row h of column l.

Denote χ
2(hb∗)
l as the criterion evaluated with d

(h)
lb∗ for b∗ = 1, . . . , sl:

χ
2(hb∗)
kl = χ

2(h−1)
kl + 2[n

(h−1)
kl (xhk, b

∗) − N/(sksl)] + 1.

Considering all columns in the design,

χ
2(h)
l =

l−1
∑

k=1

χ
2(hb∗)
kl .

The algorithm proceeds as follows:

1. Specify an initial design d with columns (0, · · · , 0, 1, · · · , 1, · · · , s1 −
1, · · · , s1 − 1) and (0, · · · , s2 − 1, 0, · · · , s2 − 1, · · · , 0, · · · , s2 − 1).

2. For l = 3, . . . , n, do the following:

i. Randomize the rows of d. Let h = 1.

ii. Let d
(h)
lb∗ be the first h rows, where x

(h)
lb∗ = (x1l, · · · , x(h−1)l, b

∗)′.

iii. For b∗ = 0, · · · , sl − 1, calculate χ
2(hb∗)
l . Use the best b∗ such that

nkl(a, b∗) ≤ N/(sksl) for k = 1, · · · , l − 1. If no such choice exists,
take the best b∗ with nkl(a, b∗) > N/(sksl). In the case of equally
good choices, take the largest or randomly choose between them.

iv. Repeat Steps ii.-iii. for h = 1, · · · , N .

v. If χ2(d) = 0 go to vii.

vi. Repeat i. - v. R times and choose the best c which minimizes χ2(d+).

vii. Add column c as the lth column of d.

3. Return the final N × n design d.

Figure 1: Illustration of new algorithm.

• Want to make best choice for each row.

• Not using all possible switches - saves time.

• Can keep track if expected value is exceeded.

• χ2 is influenced by number of columns - J2 not.

• Xu’s algorithm also adapted for χ2 - changes speed?

Results and Conclusions

Orthogonal Arrays: A simulation study was performed
on mixed-level orthogonal arrays with small runs using various
number of restarts. Table 1 compares the algorithms in terms
of best expected time to find an OA (# time OA found / total
time spent).

Table 1. Best expected time (in secs) to OA for each algorithm.
OA New Xu-χ2 Xu-J2 Best Algorithm

OA(20, 219) 0.01773 0.01335 0.01149 0.01149 Xu-J2

OA(16, 215) 0.00217 0.00162 0.00115 0.00115 Xu-J2

OA(16, 8128) 0.00037 0.00079 0.00086 0.00037 New
OA(16, 45) 0.00210 0.02012 0.03428 0.00210 New

OA(18, 6136) 0.01359 0.02925 0.04579 0.01359 New
OA(20, 5128) 0.02391 0.02064 0.02689 0.02064 Xu-χ2

OA(24, 223) 0.19994 0.10361 0.09150 0.09150 Xu-J2

OA(24, 41220) 0.08880 0.05605 0.05414 0.05414 Xu-J2

OA(24, 31216) 1.98565 0.72308 0.73488 0.72308 Xu-χ2

OA(24, 121212) 0.00325 0.01045 0.01193 0.00325 New
OA(24, 4131213) 0.88230 0.42285 0.48003 0.42285 Xu-χ2

OA(25, 56) 0.01844 0.12614 0.33263 0.01844 New
OA(27, 9139) 0.02161 0.02726 0.05068 0.02161 New
OA(27, 313) 129.03000 23.34500 41.72750 23.34500 Xu-χ2

OA(28, 227) 56.31000 5.93750 6.52250 5.93750 Xu-χ2

OA(32, 161216) 0.02403 0.10725 0.12935 0.02403 New
OA(32, 8142218) 0.49383 0.15462 0.23916 0.15462 Xu-χ2

OA(40, 201220) 0.26325 1.15383 1.62917 0.26325 New

Nearly-Orthogonal Arrays: To consider NOAs, looked
at A2 for best designs found with the new algorithm with
300, 500, and 1000 restarts and compare this to those found
by Xu[1].

•Designs found comparable to Xu’s in terms of A2.

•Order to add columns has impact:

–NOA(12, 2732) finds A2 = 0.861.

–NOA(12, 3227) finds A2 = 0.792.

•Usually best to start with higher-level columns.

•Most designs found within seconds.

Recommendations: The new algorithm tends to work
better when the number of factors is small relative to the run
size - in these situations, Xu’s algorithm with the χ2 criterion
shows an improvement as well. Although Xu’s algorithm
performs good with 50-100 restarts compared to 500-1000 for
the new, a restart with the new algorithm is much faster.

Conclusion: The new algorithm performs well overall
in constructing both orthogonal and nearly-orthogonal ar-
rays. There is no clear winner between the new algorithm
and Xu’s algorithm - sometimes we see an improvement,
sometimes not. A thorough discussion is avaiable [4].

References

1. Xu, H. (2002). “An Algorithm for Constructing Orthogonal and Nearly-orthogonal
Arrays With mixed levels and small runs ”, Technometrics, 44, 356-368.
2. Xu, H., and Wu, C.F.J. (2001). “Generalized Minimum Aberration for Asymmetrical
Fractional Factorial Designs”, The Annals of Statistics, 29, 549-560.
3. Ye, K. and Sudjianto, A. (2003). “The Use of Cramer V 2 Optimality for Experiments
with Qualitative Levels”, under revision, submitted to IIE Transactions.
4. Lekivetz, R. (2006). “A New Algorithm for Obtaining Mixed-Level Orthogonal and
Nearly-Orthogonal Arrays”, M.Sc. Thesis, Dept. of Statistics and Actuarial Science,
Simon Fraser University.

