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Abstract
Computer experiments commonly use space-filling designs.
As the number of factors increases, the sparsity of the de-
sign points increase. Space-filling designs place all the points
about the same distance (quite far) apart. If the spatial corre-
lation length is also small relative to the spacing, there are no
points close enough together to give reliable estimates of the
correlation parameters. Handcock (1991) introduced cascad-
ing Latin hypercube designs (CLHD) to alleviate this issue.
We develop systematic methods for constructing a rich class
of CLHDs.

Introduction
Computer experiments are performed to explore complex
computer codes. The goals are often:

•Screening

•Building an emulator of the simulator

•Optimization

•Model calibration

•We consider screening problem

•The rule of thumb for run-size is 10 times dimensions

•We use Gaussian process model with the power exponential
family of correlation functions
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Figure 1: Boxplots of 10d-run Maximin LHDs with d factors, correlation parameters
are set to be 1.0

Problem of using space-filling designs:

•The spatial correlation length between any two design
points decreases dramatically as the number of factors
increases as shown in Figure 1.

Our approach

• introduce a new representation of CLHDs

• provide a basic method for constructing CLHDs

• offer a generalization construction method

• demonstrate the value of CLHDs.

Notation
• n and m represent the run size and the number of factors, respectively

• The levels are chosen to be centered, equally-spaced and integer-valued

• −(n − 1)/2, . . . ,−1, 0, . . . , (n − 1)/2 if n is odd

• −n + 1,−n + 3, . . . ,−1, 1, . . . , n − 1 if n is even

Definitions
Definition (Handcock,1991): A CLHD of size
n =

∏p
k=1 nk in m dimensions with levels (n1, . . . , np) is

a np-point LHD about each point in the (n1, . . . , np−1)
centered CLHD.

New Definition: Define a matrix U of LHD(n,m) =
(Lij) to have (i, j)-th element

Uij =

{

⌈(Lij + n)/(2n2)⌉, if n is even;
⌈(Lij + (n + 1)/2)/(n2)⌉, if n is odd,

where ⌈q⌉ be the nearest integers greater than or equal to
q. A LHD is then termed a two-level CLHD of n points in
m-dimensional with level (n1, n2) if matrix U has n1 distinct
rows and each distinct row has n2 replicates. p-level CLHD
can be defined in a similar manner.
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Figure 2: Cascading Latin hypercube design with 27 points in levels (9, 3).
The 9 diamonds are a centered LHD on a 9 × 9 grid in [0, 1) × [0, 1). Around each of
these diamonds is a LHD of size 3. The corresponding U matrix is 3 replicates of rows

(1, 1), (2, 5), (3, 8), (4, 3), (5, 6), (6, 9), (7, 2), (8, 4), (9, 7).

Construction Methods

Define

•A be an n1 × m1 design with aij ± 1

•B be an n2 × m2 Latin hypercube design

•C be an n1 × m1 Latin hypercube design

•D be an n2 × m2 design with dij ± 1

•α and β be any positive real number

•⊗ represents Kronecker product

Basic Method:

L = αA ⊗ B + βC ⊗ D. (1)

Generalization Method: For each j = 1, . . . ,m1, let Bj

be an n2 × m2 LHD.

L = (αaijBj + βcijD)
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Remarks:

•Method (2) is proposed for better projection property

• If design C are constructed via (1) or (2), the resulting
design L in (1) or (2) will be a three-level CLHD

•A ⊗ B (or aijBj) and C control the design points locally
and globally, respectively

•The proposition below tells us the value of α, β and design
D in (1) and (2) in order to obtain a two-level CLHD.

Proposition: Let D be an n2×m2 matrix of unit elements.
A design L, formed as in (1) and (2), is a two-level CLHD of
n = n1n2 points in m-dimensional (m = m1m2) with level
(n1, n2) if α and β are chosen in the following way,

•α = 1 and β = n2 if both n1 and n2 are even or odd,

•α = 2 and β = n2 if n1 is even and n2 are odd,

•α = 1 and β = 2n2 if n1 is odd and n2 are even.

Example

Let n1 = 9, n2 = 3,m1 = 4,m2 = 3. Design D is a 3 × 3
matrix of unit elements. Designs A, B and C are defined as
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Let Bj be a row permutation of B. Set α = 1 and β = 3 based
on the aforementioned proposition. The resulting design L via
(2)is a two-level CLHD with 27 points in levels (9, 3). The first
and fifth columns of design L correspond to the 27 circles in
Figure 2.

Results and Conclusions
Results:

In Figure 2,

•Consider large input dimensions, d = 20

•CLHDs with 192 points in level (48, 4), (24, 8) and (16, 12)
are generated

•Maximin LHD with 192 points is generated

•Power exponential correlation function with θi = 1 is used

•The average correlation between each design point and its
k-nearest neighbors is computed, k = 4, 8, 12

•Euclidean distance is used to find k-nearest neighbors

•We observe that when the dimension of inputs is relatively
large, maximin Latin hypercube designs fail to provide close
design points

•Cascading Latin hypercube designs have close design points
to detect the relationship between the inputs

Figure 3: Comparisons of average correlation between each design point and its
k-nearest points, k = 4, 8, 12. CLHD 4, MLHD 4 represent the boxplots with k = 4 for
CLHD and MLHD, respectively. CLHD 8, MLHD 8 are similar for k = 8. CLHD 12,

MLHD 12 are for k = 12.

Conclusion:

•When the input dimension is large, design points provided
by space-filling designs are too sparse for Gaussian process
to be effective

•We provide methods for systematically constructing a rich
class of designs with cascading structure

•Cascading Latin hypercube designs provide local clustered
points to enhance estimation of correlation parameters

•The reliable estimation of correlation parameters allows us
to achieve the goal of screening factors
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