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Abstract

Two-level factorial and fractional factorial designs have played a prominent role in

the theory and practice of experimental design. Though commonly used in industrial

experiments to identify the significant effects, it is often undesirable to perform the

trials of a factorial design (or, fractional factorial design) in a completely random

order. Instead, restrictions are imposed on the randomization of experimental runs.

In recent years, considerable attention has been devoted to factorial and fractional

factorial plans with different randomization restrictions (e.g., nested designs, split-plot

designs, split-split-plot designs, strip-plot designs, split-lot designs, and combinations

thereof). Bingham et al. (2006) proposed an approach to represent the randomization

structure of factorial designs with randomization restrictions. This thesis introduces

a related, but more general, representation referred to as randomization defining con-

trast subspaces (RDCSS). The RDCSS is a projective geometric formulation of ran-

domization defining contrast subgroups (RDCSG) defined in Bingham et al. (2006)

and allows for theoretical study.

For factorial designs with different randomization structures, the mere existence

of a design is not straightforward. Here, the theoretical results are developed for

the existence of factorial designs with randomization restrictions within this unified

framework. Our theory brings together results from finite projective geometry to

establish the existence and construction of such designs. Specifically, for the existence

of a set of disjoint RDCSSs, several results are proposed using (t − 1)-spreads and
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partial (t−1)-spreads of PG(p−1, 2). Furthermore, the theory developed here offers a

systematic approach for the construction of two-level full factorial designs and regular

fractional factorial designs with randomization restrictions.

Finally, when the conditions for the existence of a set of disjoint RDCSSs are vio-

lated, the data analysis is highly influenced from the overlapping pattern among the

RDCSSs. Under these circumstances, a geometric structure called star is proposed

for a set of (t − 1)-dimensional subspaces of PG(p − 1, q), where 1 < t < p. This

experimental plan permits the assessment of a relatively larger number of factorial

effects. The necessary and sufficient conditions for the existence of stars and a collec-

tion of stars are also developed here. In particular, stars constitute useful designs for

practitioners because of their flexible structure and easy construction.
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Chapter 1

Introduction

In the initial stages of experimentation, factorial and fractional factorial designs are

commonly used to help assess the impact of several factors on a process. Ideally one

would prefer to perform the experimental trials in a completely random order. How-

ever, in many applications, experimenters impose restrictions on the randomization

of the trials. These restrictions are often due to limited resources or the nature of the

experiment. Thus, it is often infeasible or impractical to completely randomize the

trials. In recent years, experimenters have devoted considerable attention to factorial

and regular fractional factorial layouts with restricted randomization such as blocked

designs, split-plot designs, strip-plot designs and split-lot designs. The treatment

structure of these factorial designs is the same as that of their completely randomized

counterpart, but they differ in their randomization structure. Furthermore, because

of the different randomization restrictions the factorial designs have to be analyzed

differently.

A review of the literature reveals that separate approaches have been taken to con-

struct the common designs with randomization restrictions following factorial struc-

ture. For example, strip-plot designs have been constructed using Latin square frac-

tions (e.g., Miller, 1997), while graphical techniques were used to construct split-lot
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CHAPTER 1. INTRODUCTION 2

designs (e.g., Taguchi, 1987; Mee and Bates, 1998; Butler 2004). Blocking in dif-

ferent factorial designs have been extensively studied using different methods (e.g.,

Sitter, Chen and Feder, 1997; Mukerjee and Wu, 1999), and different split-plot designs

have been provided by Huang, Chen and Voelkel (1998); Bingham and Sitter (1999);

Bisgaard (2000); and Butler (2004).

Occasionally, attempts have been made to study factorial designs with several dif-

ferent randomization restrictions in an unified framework. For instance, Patterson and

Bailey (1978) used “design keys” to construct factorial designs with randomization

restrictions defined by blocked, nested, crossed structure and combinations thereof.

The notion of design keys was first introduced by Patterson (1965). Recently, Bing-

ham et al. (2006) proposed an approach to represent the randomization structure of

factorial designs with different randomization restrictions. This approach unifies the

representation of such designs, and can be viewed as a generalization of the block

defining contrast subgroup (Sun, Wu and Chen, 1997), except that there is a random-

ization defining contrast subgroup (RDCSG) for each stage of randomization. The

formulation proposed in Bingham et al. (2006) uses randomization restriction factors

instead of blocking factors.

This thesis proposes a related but, more general structure referred to as random-

ization defining contrast subspace (RDCSS). The RDCSS methodology is a projective

geometric formulation of RDCSG defined in Bingham et al. (2006), and allows for the-

oretical development of such designs. The RDCSS formulation allows us to study these

designs under this unified framework. For instance, it turns out that in some cases

the existence of good factorial designs with randomization restrictions is non-trivial.

In this thesis, we establish the necessary and sufficient conditions for the existence

of such designs. Of course, these designs are useful from a practitioner’s viewpoint

only if they can be constructed. Assuming the existence, we develop construction

algorithms for full factorial and regular fractional factorial designs with different ran-

domization restrictions. On the other hand, when a desired factorial design does not
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exist, alternative designs are proposed.

To find designs for a particular randomization structure, and establish whether

or not a design even exists, Bingham et al. (2006) had used an exhaustive computer

search. The formulation presented in this thesis does not require an exhaustive search

to conclude the existence of a desired design. In some cases, both the existence and

construction can be established directly, whereas in other cases, one can search for

the desired design in a reduced search space.

The designs obtained by Bingham et al. (2006) frequently did not allow the

assessment of all the factorial effects. This is because of the desire to use half-normal

plots to assess the effects, but many of the effects have a different variance. When there

are too few effects with identical null distribution one must sacrifice the assessment of

some of the effects. We propose new designs called stars and galaxies that are aimed

at assessing as many effects as possible. The results proposed here cover a wide range

of settings with both small and large run-size.

It is worth noting that designs with randomization restrictions often have larger

run-size than completely randomized designs. This is because at each stage of ran-

domization multiple experimental units are processed simultaneously, thus typically

reducing cost and time. For example, Jones and Goos (2007) used a 128-run D-

optimal split-split plot design to analyze the cheese-making experiment described in

Schoen (1999), and in the polypropylene experiment, Jones and Goos (2006) used a

100-run design. Mee and Bates (1998) have considered 64-wafer designs and 81-wafer

designs for the integrated circuit experiment. To identify the significant factors in the

battery cell experiment, Vivacqua and Bisgaard (2004) performed a 64-run design.

Bingham and Sitter (2001) have used a 64-run design for the wood product experi-

ment, and Bingham et al. (2006) have used a 32-run design to analyze the plutonium

alloy experiment.

This thesis is organized in the following manner. The next chapter starts with an

overview of common factorial designs with different randomization restrictions and
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then a review of the finite projective geometric representation of factorial designs.

Later in Chapter 2, we elaborate on the notion of RDCSS. A framework is proposed

in Chapter 3 that can be used to express the response models for factorial designs

with different randomization restrictions under the unified notion first introduced in

Bingham et al. (2006). Furthermore, the impact of RDCSS structure on the linear

regression model for factorial designs is discussed. The main results of this chapter

demonstrate that the distribution of an effect estimate depends upon its presence in

different RDCSSs. This in turn motivates one to find disjoint subspaces of the effect

space P that can be used to construct RDCSSs (where P is the set of all factorial

effects in a 2p full factorial design, or a 2n−k regular fractional factorial design with

p = n − k). In Chapter 4, conditions for the existence of a set of disjoint subspaces

of P are derived. The construction algorithms are also developed here for factorial

designs claimed to exist. When these necessary and sufficient conditions are violated,

overlapping among the RDCSSs cannot be avoided. Since the assessment of factorial

effects on a process is the objective of the experimentation, it may appear that the

overlapping among the RDCSSs is a problem. This is often the case, but it turns out

that one can propose design strategies that use the overlap among different RDCSSs

as an advantage. Both the existence and construction of such designs are developed

in Chapter 5.

Finally, the work done for this thesis focuses on full factorial layouts, however

the main results are easily extendable to regular fractional factorial designs. This is

briefly outlined at the end of Chapter 4. Moreover, the results developed in Chapter

4 and 5 are presented for two-level factorial designs only. These results can be easily

generalized to q-level factorial designs.



Chapter 2

Preliminaries and Notations

Two-level full factorial and fractional factorial designs are widely used in industrial

(Box, Hunter and Hunter, 1978) and agricultural (Kempthorne, 1952; Cochran and

Cox, 1957) experiments to assess the impact of factorial effects on a process. Though

an ideal choice, when designing a factorial experiment, it is often impossible or im-

practical to completely randomize the experimental units. The resulting experimental

plans have randomization restrictions on the trials, which impacts the data analysis.

We first provide an overview of the two-level factorial and fractional factorial de-

signs in Section 2.1. Then, a review of factorial designs with common randomization

restrictions (e.g., blocked designs, split-plot designs, strip-plot designs, split-lot de-

signs and combinations thereof) is presented in Section 2.2. In Section 2.3, a finite

projective geometric representation of factorial designs is outlined. This representa-

tion is specifically useful for unifying the factorial and fractional factorial designs with

different randomization restrictions, which is outlined in Section 2.4.

5



CHAPTER 2. PRELIMINARIES AND NOTATIONS 6

2.1 Factorial and fractional factorial designs

Factorial designs are widely used in experiments involving several factors where it

is necessary to study the impact of the factors or factor combinations on a process.

Special cases of the general factorial designs are widely used in scientific endeavors

and they form the basis for other designs of considerable practical value. The most

important among these special cases is the factorial design with p factors, each having

two levels. These levels may be quantitative or qualitative with levels corresponding

to the “high” and “low” levels of a factor, or perhaps the presence and absence of

a chemical. A full replicate of such a design requires 2p observations and is called

a 2p full factorial design. The set of all level combinations can be represented by a

2p × p matrix of −1’s and +1’s, where ±1’s represent the two levels of each factor,

respectively.

Example 2.1. Consider a factorial design with 3 two-level factors. The set of all level

combinations for the 3 independent factors can be written as:

D =




A B C

−1 −1 −1

−1 −1 1

−1 1 −1

−1 1 1

1 −1 −1

1 −1 1

1 1 −1

1 1 1




.

In general, for p independent factors, the matrix D obtained in a similar fashion is

called the 2p full factorial design matrix. The set of columns corresponding to all the

main effects and interactions is called the 2p full factorial model matrix, denoted by
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X. The corresponding model matrix X for the 23 design is given by

X =




A B C AB AC BC ABC

−1 −1 −1 1 1 1 −1

−1 −1 1 1 −1 −1 1

−1 1 −1 −1 1 −1 1

−1 1 1 −1 −1 1 −1

1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 −1

1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 1




.

This representation of the factor level combinations is convenient since the columns

of X denote the linear contrasts that estimate the main effects and interactions in

a normal linear regression model by X ′Y/2p, where Y is the vector of observations

corresponding to the factor level settings of each row of D (for details on the response

model of interest, see Chapter 3).

2.1.1 Fractional factorial designs

As the number of factors in a 2p factorial design increases, the number of trials required

for a full replicate of the design rapidly outgrows the resources available for many

experiments. In such cases, one cannot perform a full replicate of the design and a

fractional factorial design has to be run. If the experimenter can reasonably assume

that certain interactions involving a large number of factors are negligible, information

on the lower order effects can be obtained by running a suitable fraction of the 2p full

factorial design.

Two-level fractional factorial designs are broadly divided into regular and non-

regular fractional factorial designs (e.g., Tang and Deng, 1999). A regular fractional
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factorial design can be specified in terms of a set of defining contrasts. For example,

if there are only enough resources for 2p−k experimental trials, then the choice of

trials to be performed is determined by assigning k of the factors to the interaction

columns of the 2p−k full factorial model matrix. These p − k factors are frequently

called basic factors and the additional k factors are referred to as added factors (e.g.,

Franklin and Bailey, 1977; Cheng and Li, 1993; Bingham and Sitter, 1999). That is,

a 2p−k regular fractional factorial design is constructed from the full factorial design

generated from the p − k basic factors, which we call the base factorial design. For

the results presented in this thesis, we only consider regular fractional factorial designs.

Example 2.2. Suppose a two-level factorial design with 5 factors has to be performed

in 8 runs. That is, the design of interest is a 25−2 regular fractional factorial design.

The 3 basic factors in a 25−2 fractional factorial design are the three independent

factors (A,B, C) of the base factorial design (a 23 full factorial design). The two

added factors (D, E) are assigned to columns chosen from the remaining columns of

the model matrix for the base factorial design. One possible assignment is D = AC

and E = BC. That is, the level settings of D and E are determined by the columns

corresponding to AC and BC, respectively. Let I be the identity element (or, the

column of 1’s for the mean). Then,

I = ACD and I = BCE

are called the fractional generators. From every k independently chosen fractional

generators, 2k−k− 1 more relations are derived. For example, I = ABDE is derived

from I = ACD and I = BCE. The entire set of 2k − 1 relations,

I = ACD = BCE = ABDE,

forms the defining contrast subgroup, and the terms ACD, BCE and ABDE are called

words. The number of factors in a word is called the length of a word (or word-length).



CHAPTER 2. PRELIMINARIES AND NOTATIONS 9

Thus, a 2p−k regular fractional factorial design is constructed by choosing k inde-

pendent fractional generators from the set of all factorial effects in a 2p full factorial

layout. Two distinct sets of fractional generators (or equivalently, defining contrast

subgroups) generate distinct 2−k fractions of a 2p full factorial design. That further

introduces the notion of ranking among different 2−k fractions of a 2p full factorial

design. The ranking criteria are generally based on a few operating assumptions that

are common to many experiments:

• The effect sparsity principle: only a few effects in a factorial experiment are

likely to be significant.

• The hierarchical ordering principle: lower order effects are more likely to be

significant than higher order effects.

• The effect heredity principle: interactions involving significant main effects are

more likely to be active than other interactions.

Many of the ranking criteria are functions of the sequence of word-lengths (known

as word-length pattern) in the defining contrast subgroup. The conventional criteria

for ranking two-level regular fractional factorial designs are (i) maximum resolution

(Box and Hunter, 1961), (ii) minimum aberration (Fries and Hunter, 1980), and (iii)

maximum number of clear effects (Chen, Sun and Wu, 1993; Wu and Chen, 1992).

The procedure for assessing the significance of the main effects and interactions

does not depend on the “goodness” of the fraction. If the design used is a replicated

factorial or fractional factorial design, the assessment of the factorial effects can be

done by using the usual hypothesis tests based on the analysis of variance. For

unreplicated factorial and fractional factorial designs, the significant factorial effects

can be identified using approaches such as half-normal plots (Daniel, 1959) or, for

example, permutation tests (Loughin and Noble, 1997; Loeppky and Sitter, 2002).

Half-normal plots were introduced by Daniel (1959) for assessing the significance
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of factorial effects in unreplicated 2p factorial and fractional factorial experiments.

This is a plot of the ordered absolute value of effect estimates against the percentiles

of the half-normal distribution, where all the factorial effects are negligible under the

null hypothesis and the data is assumed to be i.i.d. normal. In this thesis, we as-

sume that the data comes from a normal distribution and the half-normal plot will be

used as the main analysis tool. The following example (Montgomery, 2001) illustrates

the use of a half-normal plot for identifying significant effects in a factorial experiment.

Example 2.3. An unreplicated full factorial experiment is carried out in a pilot plant

to study the factors expected to influence the filtration rate of a chemical product

produced in a pressure vessel. The 4 two-level factors are temperature (A), pressure

(B), concentration of formaldehyde (C) and stirring rate (D). Table 2.1 displays

the effect estimates for the 15 factorial effects obtained from the unreplicated 24

completely randomized full factorial design.

Table 2.1: Factorial effect estimates for the chemical experiment.

Effects Estimates Effects Estimates
A 21.625 B 3.125
C 9.875 D 14.625
AB 0.125 AC -18.125
AD 16.625 BC 2.375
BD -0.375 CD -1.125
ABC 1.875 ABD 4.125
ACD -1.625 BCD -2.625
ABCD 1.375

The corresponding half-normal plot is shown in Figure 2.1. If none of the effects are

important, the effect estimates should all fall on a straight line. The effects detected

to be far away from the straight line suggested by the bulk of the estimates can be

considered significant. In Figure 2.1, all the effects except A,C,D,AC and AD appear

to fall on a straight line. These five effects would be considered active.
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Figure 2.1: The half-normal plot for the 15 factorial effects.

An important assumption of the half-normal plot approach is that all the effects used

in a half-normal plot have the same variance with mean zero (i.e., under the null

hypothesis of no active effects, all the effect estimates are i.i.d. normal).

For the above example, it was assumed that the trials were performed in a com-

pletely random order, which ensures that the effect estimates are independent and

identically distributed under the null hypothesis. Thus, only one half-normal plot is

required to assess the significance of all the factorial effects. If there are restrictions

on the randomization of the experimental runs, the i.i.d. assumption is likely to be

violated. To assess the significance of effects in the restricted randomization case, one

would use separate half-normal plots for sets of effects having identical distributions

under the null hypothesis. Indeed, this a very important issue that motivates much of
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the work in this thesis. As a matter of choice, one would elect to run a design where

half-normal plots are constructed with a reasonable number of effects per plot.

2.2 Factorial and fractional factorial designs with

randomization restrictions

The inability to perform the trials of a factorial experiment in a completely random

order is often due to imposed randomization restrictions on the experiment trials.

In recent years, considerable attention has been devoted to factorial and fractional

factorial layouts with restricted randomization, such as blocked designs (Bisgaard,

1994; Sitter, Chen and Feder, 1997; Sun, Wu and Chen, 1997; Cheng, Li and Ye,

2004), split-plot designs (Addelman, 1964; Box and Jones, 1992; Huang, Chen and

Voelkel, 1998; Bingham and Sitter, 1999; Bisgaard, 2000; Trinca and Gilmour, 2001;

Kowalski, Cornell and Vining, 2002; Ju and Lucas, 2002; Jones and Goos, 2006),

strip-plot designs (Miller, 1997), and split-lot designs (Mee and Bates, 1998; Butler,

2004). Although the treatment structure of these designs are identical, they differ

in the randomization structures. These designs are often larger than the completely

randomized designs. The following is a brief review of some common designs.

2.2.1 Block designs

In many situations it is impossible to perform all of the trials of an experiment under

homogeneous conditions. In other cases, it might be desirable to deliberately vary

the experimental conditions to ensure that the treatments are equally effective (or,

robust) across different situations that are likely to be encountered in practice. The

design technique frequently used in such situations is blocking. Because the only

randomization of treatments is within the blocks, the blocks are said to represent the

restrictions on randomization.
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Common block designs are randomized complete block designs (RCBD), Latin

square designs (LSD) and Graeco-Latin square designs (GLSD). In particular, for

an unreplicated 2p factorial experiment, blocking induces incomplete block designs

(ICBD) called blocked factorial designs. The technique used for arranging the trials

of a 2p factorial design in blocks is known as confounding. This technique causes

information about certain factorial effects (preferably higher order interactions) to be

confounded with blocks. To be precise, in a 2p factorial design with blocks of size 2p−k

each, 2k − 1 factorial effects become confounded with blocks. The technique used for

partitioning the 2p experimental units into 2k blocks is similar to the construction of

a 2p−k regular fractional factorial design. Indeed, Lorenzen and Wincek (1992) refer

to blocking as a special case of fractionation. The following example illustrates the

construction of a blocked factorial design.

Example 2.4. Consider a 26 factorial experiment, where the available resources consist

of batches of only 16 homogeneous experimental units. Thus, one has to run a blocked

factorial design in 4 blocks of size 16 units each. Let b1 = ABCD and b2 = CDEF

be the two independent blocking factors (Bisgaard, 1994; Sitter, Chen and Feder,

1997). Then, the third blocking factor is derived from the two independent ones:

b1b2 = ABEF . The resulting treatment structure is shown in Table 2.2.

Table 2.2: The arrangement of 64 experimental units in 4 blocks.

(1) ab
cd ef

ace acf
ade adf
bce bcf
bde bdf
cdef abcd
abef abcdef

a b
acd aef
ce cf
de df

abce abcf
abde abdf
acdef bcd

bef bcdef

c abc
d cef

ae af
acde acdf

be bf
bcde bcdf

def abd
abcef abdef

e abe
cde f
ac acef
ad adef
bc bcef
bd bdef
cdf abcde
abf abcdf

The presence of factorial structure in a blocked factorial design makes the analysis
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relatively easy compared to other incomplete block designs. The blocking arrangement

for this example causes the 3 four-factor interactions (b1 = ABCD, b2 = CDEF and

b1b2 = ABEF ) to be confounded with the block effects. The orthogonality among

the columns of the model matrix ensures that the error variances of the remaining

factorial effects are not impacted by the blocking effects. So, the significance of the

remaining 60 effects can be assessed using a half-normal plot.

2.2.2 Split-plot designs

In many applications, an ideal choice is to run all possible treatment combinations in

a completely randomized order. However, it may be difficult to change the levels for

some of the factors. In such situations, the experimenter restricts the randomization

by fixing the levels of the hard-to-change factors and then run all combinations or a

fraction of all combinations of the remaining factors. Such a strategy may lead to a

split-plot design. As a convention, the hard-to-change factors are called the whole-plot

factors and the easy-to-change factors are called the sub-plot (or split-plot) factors.

This design was first developed and used for mainly agronomic experiments (Yates,

1937), but is applicable in many fields of experimental research.

In a 2p split-plot design there are two types of factors: p1 whole-plot (WP) factors

and p2 sub-plot (SP) factors, where p = p1 + p2. The experimental units where WP

factors are applied are called whole-plots, and the experimental units where SP fac-

tors are applied are called sub-plots. We describe a 2p full factorial split-plot design

using a simple example.

Example 2.5. Consider the cheese-making example in Bingham, Schoen and Sitter

(2004). Here, the authors studied the quality characteristics for the production of

cheeses, where the cheese making process consists of two stages. In the first stage,

milk is processed into batches of curds. These curds are then processed to produce
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cheese. The 4 two-level factors A,B, q and r were suspected to be responsible for the

poor quality of cheese, where p1 = 2 of these factors (A,B) affected the processing

of the milk in the first stage, and the remaining p2 = 2 factors (q, r) were related

to the processing conditions to generate the curds used to make cheese. A designed

experiment was used to investigate the impact of these factors on the resulting cheese

quality. Since milk in a single tank gives rise to several batches of curds, they treated

the milk in a tank under a randomly selected setting of A,B as whole-plots, and the

randomly selected settings of the processing conditions q, r as sub-plot factors (see

Figure 2.2).

Figure 2.2: The split-plot design configuration.

Here, WP1 represents the first tank of milk and SP1,... ,SP4 denote the four batches

of curds obtained from the first tank of milk. In a completely randomized design,

the variation is only due to the variability between plots. However, in split-plot
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designs, there are two sources of variation: between plot variability (WP variability)

and within plot variability (SP variability). In matrix notation, a regression model

for the split-plot experimental design is

Y = Xβ + εwp + εsp,

where the mean term Xβ consists of the regression parameters for all the factorial

effects, and εwp, εsp are the whole-plot and sub-plot error vectors respectively. It

is assumed that the error terms are mutually independent and normally distributed

random variables. Furthermore, the analysis of a split-plot design is different than

that of the completely randomized design. The complete analysis of variance table

for a 2p1+p2 factorial split-plot design with r replicates is shown in Table 2.3.

Table 2.3: The analysis of variance table for a split-plot design.

Sources of Variation df
Replicates r − 1
Whole-plot analysis:

WP effects 2p1 − 1
WP error (r − 1)(2p1 − 1)
Subplot analysis:

WP*SP interaction effects 2p − 2p1

SP error (r − 1)(2p − 2p1)
Total r2p − 1

Similar to block designs, the set of n experimental units are divided into subsets

(sub-plots). However, no prior information is available regarding the significance of

the factors used for partitioning the experimental units. Thus all the factorial effects

have to be assessed. If the design is replicated r > 1 times, then the usual ANOVA

based hypothesis tests can be performed. If the design is unreplicated, two separate

half-normal plots are required to assess the significance of the 2p − 1 factorial effects

(one for the WP effects and one for the SP effects).
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2.2.3 Strip-plot designs

Strip-plot configurations can be an economically attractive option in situations where

the process being investigated can be separated into two distinct stages, and it is

possible to apply the second stage simultaneously to groups of first-stage outcomes.

It is common to represent a strip-plot structure as a rectangular array of experimen-

tal units where one set of factors is applied to the rows and another set of factors is

applied to the columns (e.g., see Mead 1988). These designs are also known as row-

column designs. Strip-plot designs are also called strip-block designs (e.g., Vivacqua

and Bisgaard, 2004).

Example 2.6. Consider the washer-dryer example in Miller (1997). Here, a manu-

facturer of household appliances wanted to investigate different methods of reducing

the wrinkling of clothes being laundered. In the first stage of the experiment, sets

of cloth samples were run through one of four washing machines. Once the cloth

samples were washed, the samples were divided into four groups such that each group

contained exactly one sample from each washer. In the second stage, each group of

samples were assigned to one of four dryers. Once dry, the extent of wrinkling on each

sample was evaluated. Let the washer configuration be represented by a 22 design

in factors (A,B), and the dryer configurations by a 22 design in factors (a, b). The

design structure for this experiment is illustrated in Figure 2.3.
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Figure 2.3: The row-column design arrangement.

The entire experiment requires only four washer loads and four dryer loads, producing

16 observations, whereas a completely randomized design using four washer loads and

four dryer loads would only produce four observations. That is, the strip-plot design

allows a larger number of treatment combinations to be investigated for the same

amount of experimental resources. A model to describe this setting is

Y = Xβ + εr + εc + ε,

where Xβ is the mean term consisting of the regression parameters for the factorial

effects, εr and εc are the error vectors associated with the rows and columns respec-

tively, and ε is the replication error associated with the experimental units. All three

error terms are assumed to be mutually independent and normally distributed. While

convenient in resource usage, the analysis of the data obtained from the experiment

can be relatively complex compared to the case of a completely randomized design.

The analysis of variance table of a replicated 2p1+p2 factorial strip-plot design with p1

row factors, p2 column factors and r replicates is shown in Table 2.4.
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Table 2.4: The analysis of variance table for a strip-plot design.

Sources of Variation df
Replicates r − 1
Row analysis:

Row effects 2p1 − 1
Error (row) (r − 1)(2p1 − 1)
Column analysis:

Column effects 2p2 − 1
Error (column) (r − 1)(2p2 − 1)
Unit analysis:

Row*Column interaction effects (2p1 − 1)(2p2 − 1)
Error (unit) (r − 1)(2p1 − 1)(2p2 − 1)
Total r2p − 1

Similar to split-plot designs, the factorial effects involved in the grouping of the ex-

perimental units into rows and columns are analyzed separately.

2.2.4 Split-lot designs

Split-lot factorial designs are useful for experiments where the product is formed in

a number of distinct processing stages with each stage containing a certain number

of factors. This can be viewed as a generalization of strip-plot designs with 2 or

more stages. The design is set up so that the settings of the factors at each processing

stage are used on multiple experimental units. Consequently, at each processing stage

the design has a split-plot (or split-unit) structure. As with split-plot designs, the

split-lot structure allows for economical use of resources with some additional analysis

complexity.

A review of the literature indicates that split-lot factorial designs were first con-

sidered by Taguchi (1987) under the name of multiway split-unit designs. The con-

struction of split-lot factorial designs was pioneered by Mee and Bates (1998). They
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used split-lot designs for the fabrication of integrated circuits in the semiconductor

industry. In their article, Mee and Bates found designs in cases where there are many

processing stages, with potentially many factors. Another important application of

split-lot designs is in product assembly. In (Bisgaard, 1997), the processing stages

were the various parts of a product and the factors were certain specifications of each

part. At each processing stage, the design is equivalent to a split-plot design where

the factors for that stage are the whole-plot factors. The experimental units are thus

separated at each stage into whole-plots (or sub-lots), which are processed together for

that stage. More recently, Butler (2004) proposed a construction method for split-lot

designs using a grid representation technique. The designs found by Butler (2004)

have minimum aberration under the split-lot structure and in some sense minimize

the confounding of main effects and two-factor interactions with the sub-lots.

Example 2.7. Consider a 24 full factorial experiment where the experimental units are

processed together in 3 stages. At Stage 1, the 16 experimental units are split into two

sub-lots (B11, B12) consisting of eight units each. These two sub-lots are processed

separately and in random order: one at the low level of A, and the other at the high

level of A. Once the processing is done for Stage 1, all of the experimental units move

to Stage 2. The 16 units are again split into two sub-lots (B21, B22) of size eight each

such that B21 consists of four units chosen from B11 and four units randomly chosen

from B12. Then, the two sub-lots (B21, B22) are processed separately at the low level

and high level of B. Similarly, at Stage 3, the sub-lots (B31, B32) of size eight each

are formed such that B31 consists of four units from B11 that are a combination of

two units each from B21 and B22. Finally, the other four units of B31 are from B12

such that there are two units each from B21 and B22. A realization of the allotment

of all the experimental units in different sub-lots is shown in Figure 2.4.
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Figure 2.4: A split-lot design structure for a three-stage process.

The numbers {1, ..., 16} in Figure 2.4 denote the 16 experimental units. Although

the design configuration shown in Figure 2.4 seems simple, splitting the experimental

units into sub-lots using the method described can sometimes be challenging. The

following methodology is a general approach for splitting the experimental units into

different sub-lots.

In Example 2.7, let all of the 16 factor combinations be randomly assigned to the

16 experimental units as indicated in Table 2.5.
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Table 2.5: A design matrix for a 24 full factorial experiment.
A B C D

y1 -1 -1 -1 -1
y2 -1 -1 -1 1
y3 -1 -1 1 -1
y4 -1 -1 1 1
y5 -1 1 -1 -1
y6 -1 1 -1 1
y7 -1 1 1 -1
y8 -1 1 1 1
y9 1 -1 -1 -1
y10 1 -1 -1 1
y11 1 -1 1 -1
y12 1 -1 1 1
y13 1 1 -1 -1
y14 1 1 -1 1
y15 1 1 1 -1
y16 1 1 1 1

Then, the experimental units can be assigned to the sub-lots using the following rule:

B11 = {yi : θA(i) = −1}, B12 = {yi : θA(i) = 1},
B21 = {yi : θB(i) = −1}, B22 = {yi : θB(i) = 1},
B31 = {yi : θC(i) = −1}, B32 = {yi : θC(i) = 1},

where θδ(i) is the entry in the i-th row of the column corresponding to the factorial

effect δ in the model matrix X. This technique can be used to construct sub-lots

for complex situations. One can view this as blocking or split-plotting at each stage.

More complex examples on factorial and fractional factorial split-lot designs are given

in Chapter 4 and 5. The following model can be used to describe a split-lot design

with m levels of randomization

Y = Xβ + ε1 + ε2 + · · ·+ εm + ε,

where the n × 1 vector εk represents the error associated with the k-th stage of

randomization and ε is the replication error vector. It is assumed that the m + 1
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error terms are mutually independent and normally distributed. While useful for large

experiments, the analysis of the data obtained becomes somewhat more complex than

for a completely randomized design. The analysis of variance table for the 23 split-lot

example is shown in Table 2.6.

Table 2.6: The analysis of variance table for the 23 split-lot example.

Sources of Variation df
Stage 1 analysis:

Effects (A, BC) 2
Stage 2 analysis:

Effects (B, CA) 2
Stage 3 analysis:

Effects (C, AB) 2
Other effects:

Effects (ABC) 1
Total 7

In a 2p factorial split-lot designs, the factorial effects used in the partitioning of n

experimental units into sub-lots are analyzed together. The total number of separate

analyses depends on the structure of the sets of effects used at each of the m stages

of randomization. Nonetheless, at least m separate analyses have to be done.

2.3 Finite projective geometric representation

We use the finite projective geometric representation of factorial designs (Bose, 1947)

to develop results for the existence and construction of factorial designs with random-

ization restrictions. Consider a factorial experiment involving p factors F1, ..., Fp, each

having q levels, where q ≥ 2 is a prime or prime power. Let GF (q) be a finite field

with q elements. Here q is called the order of the field. Let V p
q be the p-dimensional
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vector space over GF (q), i.e., V p
q = {(v1, ..., vp) : vi ∈ GF (q) for i = 1, ..., p}. The

canonical basis elements of the vector space V p
q can be identified with the p factors of

a qp factorial experiment. A factorial effect δ can be expressed in the form

δ = F v1
1 · · ·F vp

p , where vi ∈ GF (q) for i = 1, ..., p.

The effect δ is an r-factor interaction if exactly r entries of the vector v = (v1, ..., vp) are

nonzero (δ is a main effect or a factor if r = 1). For instance, if q = 2 and p = 3, then

(100), (001) and (101) represent A, C and AC respectively. Any t independent effects

δ1, ..., δt (or equivalently, t linearly independent vectors in V p
q ) generate a subspace of

size qt contained in the vector space V p
q .

The projective space PG(p − 1, q) is the geometry whose {points, lines, planes,

... , hyperplanes} are the subspaces of V p
q of rank {1, 2, 3, ..., p − 1}. A (t − 1)-

dimensional subspace of PG(p − 1, q) is a t-dimensional subspace of V p
q . The 1-

dimensional subspaces of V p
q are the points, and the 2-dimensional subspaces are the

lines of PG(p − 1, q). Each point of PG(p − 1, q) can be represented by a non-zero

vector u of V p
q , provided any non-zero scalar multiple of u represents the same point.

That is, for two vectors u and v in V p
q , if there exists α ∈ GF (q) and α 6= 0 such that

u = αv, then u and v are said to be equivalent. In general, the (t − 1)-dimensional

objects described by t-dimensional subspaces of V p
q are also known as (t− 1)-flats or

(t− 1)-dimensional subspaces in PG(p− 1, q). The number of points in PG(p− 1, q)

is equal to (qp − 1)/(q − 1) = qp−1 + · · · + 1, and the number of distinct (t− 1)-flats

in PG(p− 1, q), called the Gaussian number [pt ]q, is given by:
[ p

t

]
q

=
(qp − 1)(qp−1 − 1) · · · (qp−t+1 − 1)

(qt − 1)(qt−1 − 1) · · · (q − 1)
.

Thus, for t = 1, the number of points (or, 0-flats) in PG(p−1, q) is [p1]q. For a detailed

discussion on finite projective spaces, see Hirschfeld (1998). The following example

explains the geometric structure of PG(p− 1, q).
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Example 2.8. As a simple illustration consider the classical projective space PG(2, 2)

with the smallest finite field GF (2). The number of (t − 1)-dimensional subspaces

in PG(2, 2) can be computed using the Gaussian number formula. The number of

points (t = 1) in PG(2, 2) is 7, and the number of lines (t = 2) is 7. Each line has 3

points, and each point is on three lines. In addition, each pair of distinct points is on

a unique line, and any pair of two distinct lines meets at a unique point. The resulting

geometric structure, frequently called the Fano plane, is shown in Figure 2.5. Here,

each line represents a 1-dimensional subspace of PG(2, 2).

Figure 2.5: The Fano plane.

The points are denoted by 3-dimensional vectors in V 3
2 : {(100), (010), (001), (110), . . . ,

(111)}, and the lines (1-flats) are the 2-dimensional subspaces of V 3
2 : {(100, 110, 010),

(100, 101, 001), (010, 011, 001), . . . , (110, 011, 101)}. In other words, for a factorial ex-

periment with 3 two-level factors A,B, and C, the points correspond to {A,B,C,AB,

. . . , ABC}, and the 1-dimensional projective subspaces are {(A,AB, B), (A,AC, C),

(B,BC, C), (A,BC,ABC), (B, AC, ABC), (C,AB, ABC), (AB, BC,AC)}. It is ob-

vious to see from Figure 2.5 that there does not exist two disjoint subspaces of size 3

each in a 23 full factorial layout, as that would require 2 lines that do not intersect.
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For applications of projective geometry in factorial designs see Bose (1947); Dey and

Mukerjee (1999); and Mukerjee and Wu (2001). In factorial designs, these projective

points are also referred to as pencils. A typical pencil belonging to a factorial effect

is a non-null p-dimensional vector b over GF (q). For α 6= 0 ∈ GF (q), b and αb

represent the same pencil carrying q − 1 degrees of freedom. A pencil b represents

an r-factor interaction if b has exactly r nonzero elements (e.g., Bose, 1947; Dey and

Mukerjee, 1999, Ch.8). Therefore, the set of all p-dimensional pencils over GF (q)

forms a (p− 1)-dimensional finite projective geometry, denoted by PG(p− 1, q).

Since the two-level factorial designs are the most common designs in practice, this

thesis will focus on q = 2, though most of the results presented in Chapters 4 and

5 hold for general q. For q = 2, a pencil b with r nonzero elements corresponds to

an unique r-factor interaction in a 2p factorial design. Thus, the set of all effects

(excluding the grand mean) of a 2p factorial design is equivalent to PG(p − 1, 2),

which we call the effect space P .

2.4 Randomization restrictions and subspaces

Suppose an experiment with p factors each at two levels is to be performed. An ideal

choice is a 2p factorial experiment with the trials performed in completely random

order. However, it is not always possible to perform the experimental trials in a

completely random order, and often randomization restrictions are imposed. So far the

bulk of the literature focuses on different approaches for constructing regular factorial

designs with different randomization restrictions. For example, Taguchi (1987) used

linear graphs for the construction of split-lot designs while, Mee and Bates (1998)

developed separate tools for different run-size factorial experiments under the split-

lot design setting. Butler (2004) uses a grid-representation technique to construct

some specific split-lot designs. Miller (1997) discusses the construction of strip-plot
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designs via Latin square fractions, and split-plot designs have also been found in a

variety of ways (Huang, Chen and Voelkel, 1998; Bingham and Sitter, 1999; Bisgaard,

2000). Blocking in factorial and fractional factorial designs have also been studied

in many different ways (e.g., Sitter, Chen and Feder, 1997; Mukerjee and Wu, 1999;

Chen and Cheng, 1999).

Imposing restrictions on the randomization of experimental runs amounts to group-

ing the experimental units into sets of trials. We consider the usual approach of

forming these sets for factorial experiments by using independent effects from P . For

example, blocked factorial designs use the 2t (t < p) combinations of t blocking factors

(independent effects from P) to divide 2p treatment combinations into 2t blocks (e.g.,

Lorenzen and Wincek, 1992).

Example 2.9. Consider a 26 full factorial design with four blocks, where the six factors

are given by (A,B, ..., F ). Let the two independent blocking factors be b1 = ABCD

and b2 = CDEF . Then, the 64 experimental units are partitioned into 4 blocks

Bi, i = 1, ..., 4 of size 16 each. The block B1 consists of experimental units given by

{yi : (θb1(i), θb2(i)) = (0, 0)}.

Recall that, θδ(i) is the i-th row entry of the column corresponding to the effect δ

in the model matrix X. The remaining experimental units are assigned to the three

blocks B2, B3 and B4 such that (θb1(i), θb2(i)) = (1, 0), (0, 1) and (1, 1), respectively.

Similarly, we consider the setting where 2p experimental runs are partitioned into

sets of trials (e.g., blocks, batches, lots, or sub-plots) by using a set of t independent

effects of P that represent the imposed randomization restrictions, or equivalently the

t randomization restriction factors (Bingham et al., 2006).

The set of all non-null linear combinations of these t randomization restriction

factors in P over GF (2) forms a (t − 1)-dimensional subspace of P = PG(p − 1, 2).
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We define such subspaces as randomization defining contrast subspace (RDCSS). The

RDCSS structure can be used to study factorial and fractional factorial designs with

different randomization restrictions under one framework. As an alternative, but

related, one could use “design keys” proposed by Patterson and Bailey (1978) to study

factorial and regular fractional factorial designs with several different randomization

restrictions.

Frequently, there is more than one stage of randomization in a factorial experi-

ment, where the randomization structure can be characterized by its RDCSSs. For

a 2p factorial design with m levels of randomization, the m RDCSSs can be denoted

by the projective subspaces S1, . . . , Sm contained in the corresponding effect space

P = PG(p− 1, 2). Let the size of Si be 2ti − 1 for 0 < ti < p. Then, the experimental

units are partitioned into 2ti sets (e.g., batches or blocks) due to Si, where the size of

each set is (|P|+ 1)/(|Si|+ 1).

Example 2.10. Consider a 25 factorial experiment with randomization structure de-

fined by a split-plot design, where A,B are whole-plot factors, and C, D,E are subplot

factors. This is sometimes referred to as a 22+3 factorial experiment (Bisgaard, 2000).

Under this setting, the effect space is P = 〈A,B, C, D, E〉 and the only RDCSS, S1,

is given by S1 = 〈A,B〉. Here 〈a1, . . . , ak〉 denotes the projective space spanned by

a1, . . . , ak. That is, S1 = {A,B,AB}. Since, |S1| = 22− 1, the set of all experimental

units are partitioned into 4 subsets (batches) and each subset consists of 25/22 ex-

perimental units. These four subsets B1, B2, B3 and B4 consist of experimental units

corresponding to (θA(i), θB(i)) = (0, 0), (1, 0), (0, 1) and (1, 1), respectively.

Example 2.11. Consider a 25 factorial experiment with randomization structure char-

acterized by a strip-plot design (Miller 1997), where the row configurations are repre-

sented by a 22 design in factors (A,B), and the column configurations are represented
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by a 23 design in factors (C, D,E). Under this setting, the RDCSSs are S1 = 〈A,B〉,
S2 = 〈C, D, E〉, and the effect space is P = 〈A, B, C, D, E〉.

Although the treatment structure for both examples are same, the randomization re-

striction induces different error structures (Milliken and Johnson, 1984, Ch.4). There-

fore, the distribution of the factorial effect estimates are different. Consequently, the

half-normal plot procedure for assessing the significance of the factorial effects in the

effect space P will be different in these two examples. That is, the number of half-

normal plots and the sets of factorial effects for these plots are likely to be different.

We elaborate on this in the next chapter.



Chapter 3

Linear Regression Model and

RDCSSs

The normal linear regression model is typically used for the analysis of factorial de-

signs. These statistical models are a way of characterizing relationships between the

response variable, y, and a set of p independent factors, x = (x1, ..., xp). A regression

model for the data is a combination of the systematic part of the relationship between

x and y, along with the variation, or noise in the measurement of the response.

When the experimental trials are performed in a completely random order, the

regression model usually contains one source of variability, the replication error. If

restrictions are imposed on the randomization of the experiment, variation in the

observations is a combination of several components. This impacts the distribution

of the parameter estimates of the regression model. It turns out that the distribution

of parameter estimates can be characterized by the underlying RDCSS structure of

the factorial design.

In this chapter, we first propose a framework in Section 3.1 that can be used to

express the response models for the factorial designs with different randomization

restrictions under the unified notion (Section 2.5) first introduced in Bingham et

30
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al. (2006). Next, the impact of the RDCSS structure on linear regression models

for factorial designs is discussed. The main result of this chapter indicates that the

distribution of an effect estimate depends upon its presence in different RDCSSs.

The corresponding analysis using half-normal plots motivates a design strategy. In

particular, we desire non-overlapping subspaces of the effect space P that can be used

for constructing RDCSSs. This is illustrated through an example in Section 3.2.

3.1 Unified Model

Consider an unreplicated two-level regular full factorial design with p independent

factors. The response model of interest is the linear regression model,

Y = Xβ + ε, (3.1)

where X denotes the n × 2p model matrix and β = (β0, β1, ..., β2p−1)
′ is the 2p × 1

vector of parameters corresponding to the factorial effects of the 2p factorial design.

Since the trials are performed using an unreplicated full factorial design, the number

of experimental units n is 2p. Without loss of generality, the columns of X can be

written as X = {c0, c1, . . . , cp, cp+1, . . . , cn−1}, where c0 is a column vector of all 0’s

corresponding to the grand mean, columns labelled c1, . . . , cp, refer to the p indepen-

dent factors and the remaining columns of X represent the interactions obtained via

addition of subsets of {c1, . . . , cp} modulo 2. For the results in this section, we recode

the factor levels 0 and 1 as +1 and −1, respectively.

For a factorial design with m levels of randomization, where the RDCSSs are

denoted by Si, i = 1, . . . , m, the error ε in model (3.1) can be divided into m + 1

independent error terms, ε = ε0 + ε1 + · · · + εm. The n × 1 vector ε0 denotes the

replication error, and the vector εi (1 ≤ i ≤ m) is the error vector associated with the

randomization restriction characterized by Si, where |Si| = 2ti − 1. The restriction

defined by Si creates a partition of the set of n experimental units into |Si| + 1
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batches (or blocks, for example). Thus, the error vector εi (1 ≤ i ≤ m) can be further

simplified to Niεi, where εi is a 2ti × 1 vector corresponding to the error associated

with each of the 2ti batches,

ε = ε0 + ε1 + · · ·+ εm, (3.2)

= ε0 + N1ε1 + · · ·+ Nmεm, (3.3)

and ε0 = ε0 is the vector of replication errors. The coefficient Ni is an n× 2ti matrix

referred to as the i-th incidence matrix, with elements defined as:

(Ni)rl = 1, if r-th experimental unit belongs to the l-th batch at i-th

stage of randomization, (3.4)

= 0, otherwise,

for i = 1, . . . , m; l = 1, . . . , 2ti and r = 1, . . . , n. The following example illustrates

the different parts of the model.

Example 3.1. Consider a 24 full factorial design with the effect space P = 〈A,B, C,D〉,
where the randomization structure is characterized by the subspaces S1 = 〈A,B, C〉
and S2 = 〈B, C, D〉. Under these settings, the design matrix D is given by:

D = {c1, . . . , c4} =




A B C D

1 1 1 1

1 1 1 −1

1 1 −1 1

1 1 −1 −1

1 −1 1 1

1 −1 1 −1

1 −1 −1 1

1 −1 −1 −1

−1 1 1 1

−1 1 1 −1

−1 1 −1 1

−1 1 −1 −1

−1 −1 1 1

−1 −1 1 −1

−1 −1 −1 1

−1 −1 −1 −1




,
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and the incidence matrix, N1, for the first stage of randomization can be written as

N1 =




B11 B12 B13 B14 B15 B16 B17 B18

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




.

Here, B1j denotes the j-th batch formed due to the randomization restriction defined

by subspace S1. Since the size of S1 is 23−1 = 7, the experimental units are partitioned

into 8 batches of 2 experimental units, and therefore the restriction error associated

with the batches formed due to S1 is ε1 = (ε11, . . . , ε18)
′. Note that N1 indicates which

experimental unit appears in which batch. Similarly, ε2 = (ε21, . . . , ε28)
′ is the restric-

tion error associated with the batches formed due to S2. The error ε1 associated with

the experimental units due to the randomization restriction defined by the subspace S1

is given by ε1 = {ε11, ε11, ε12, ε12, ε13, ε13, ε14, ε14, ε15, ε15, ε16, ε16, ε17, ε17, ε18, ε18}. Sim-

ilarly, ε2 = {ε21, ε22, ε23, ε24, ε25, ε26, ε27, ε28, ε21, ε22, ε23, ε24, ε25, ε26, ε27, ε28} is the error

associated with the experimental units due to S2.

We now use the incidence matrices to help derive the distribution of parameter esti-

mates corresponding to the factorial effects in the model. The most natural way to

estimate the regression parameters is using the generalized least square (GLS) esti-

mator β̂ = (X ′Σ−1
y X)−1X ′Σ−1

y Y , where,

Σy = Var(ε) = σ2I +
m∑

i=1

σ2
i NiN

′
i . (3.5)
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The independence and normality assumptions among the restriction errors implies

that the distribution of the parameter estimate vector β̂ is normal with mean β and

variance (X ′Σ−1
y X)−1.

Note that finding the distribution of individual effect estimates involves computa-

tion of the inverse of X ′Σ−1
y X. It turns out that one can avoid the inversion by using

the ordinary least square (OLS) estimator of β, β̃ = (X ′X)−1X ′Y . The equality of the

two estimators of β can be established by verifying necessary and sufficient conditions

(Anderson, 1948; Watson, 1955; Zyskind, 1967; Rao, 1967; Alalouf and Styan, 1984;

Puntanen and Styan, 1989;). In the next result, we propose to use one such condition

to establish the equality of the estimators.

Theorem 3.1. For an unreplicated 2p full factorial design, β̂ = β̃ under model (3.1).

Proof: Let X be the model matrix for the factorial design and Y be the column

vector of all the observations arising from model (3.1). Then, the GLS estimator of

Xβ can be written in terms of the OLS estimator of Xβ, as,

Xβ̂ = Xβ̃ −HΣyM(MΣyM)+Y,

where Σy is the variance covariance matrix (3.5), H = X(X ′X)−1X ′, M = I − H,

and (MΣyM)+ is the Moore-Penrose inverse of MΣyM (e.g., see Albert, 1973; Rao,

1973; Pukelsheim, 1977; Baksalary and Kala, 1978 for details). For a 2p full facto-

rial design, the model matrix X can be viewed as a Hadamard matrix of order n.

Therefore, X ′X = nI and XX ′ = nI implies that H = I (or equivalently, M = 0),

i.e., HΣyM = 0. Since the Moore-Penrose inverse of a null matrix is its transpose

(Harville, 1997, Ch. 20), M = 0 implies that (MΣyM)+ = 0. Hence, the equality of

GLS and OLS estimators of Xβ is verified. Since the model matrix X has full column

rank and the covariance matrix Σy is positive definite, then β̂ = β̃. 2
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Theorem 3.1 shows that the regression coefficients of model (3.1) can be estimated

by OLS. Consequently, the variance of the effect estimates is Var(β̂) = Var(β̃) =

(X ′ΣyX)/n2, and thus β̂ ∼ N(β, X ′ΣyX/n2). This theorem is useful for finding the

distribution of individual effect estimates in so far as we now only need to consider

the OLS estimator.

For a 2p factorial design with r > 1 replicates, the hat matrix, H, in Theorem 3.1

simplifies to 1
r
(Jr×r ⊗ I2p×2p), where ⊗ is the Kronecker product. Although M 6= 0

for this case, simple calculation using a Kronecker representation of the corresponding

incidence matrices (equation (3.2)-(3.4)) in the covariance matrix Σy (equation (3.5))

shows that HΣyM = 0. This further implies that HΣyM(MΣyM)+ = 0. Haberman

(1975) showed that the condition HΣ−1
y M = 0 is a necessary and sufficient condition

for the equality of OLS and GLS estimators of Xβ. This involves inversion of the

covariance matrix, which we wanted to avoid. Thus, the equality of OLS and GLS

estimators is ensured from the condition used in the proof of Theorem 3.1 even if the

design is replicated.

The presence of NiN
′
i in the expression of Σy (equation (3.5)) suggests that the dis-

tribution of the effect estimates, or equivalently the simplification of Var(β̃), depends

on the overlapping structure among the Si’s. Since the Si’s are subspaces contained

in P , it may be possible to have Sij = Si∩Sj 6= φ. While not obvious at the moment,

these cases are of specific interest in our setting. It turns out that when this condition

does not hold, the variances of the effects in Sij will be impacted by both σ2
i and σ2

j .

On the other hand, we show that when Sij = φ, the variances of all the effects in Si are

not functions of σ2
j . We now propose results to formally explain the impact of over-

lapping patterns among the RDCSSs on the distribution of individual effect estimates.

Theorem 3.2. Consider a 2p full factorial design, where the randomization restric-

tions are defined by subspaces S1, . . . , Sm in P. Then, for any two effects E1 and
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E2 in the effect space P, the corresponding parameter estimators β̂E1 and β̂E2 have

independent normal distributions.

Proof: Since β̂ has a multivariate normal distribution, it is enough to show that

cov(β̂E1 , β̂E2) = 0. From equation (3.5) and the fact that X ′X = nI, the variance of

β̃ can be written as a product of 1/n2 and

X ′ΣyX = nσ2I +
m∑

i=1

σ2
i X

′NiN
′
iX.

Let δs denote the factorial effect corresponding to s-th column (s > 1) of X. Then,

by applying the definition of Ni,

(X ′Ni)st = ±ni , if δs ∈ Si,

= 0 , otherwise,

where ni = 2p−ti is the number of 1’s in each column of Ni. The positive and negative

sign of ni varies with the columns of Ni. Thus, entries of the s-th row of X ′Ni are

±ni if δs is contained in Si, and zero otherwise. This further implies that the s-th

diagonal entry of (X ′Ni)(N
′
iX) is n2

i 2
ti = n · ni, if δs ∈ Si. For s 6= t, s, t > 1, and

1 ≤ i ≤ m, orthogonality of the two columns Xs and Xt implies that the (s, t)-th

entry of (X ′Ni)(N
′
iX) is zero. That is, X ′ΣyX is a sum of diagonal matrices and

thus, cov(β̂E1 , β̂E2) = 0. 2

The effect estimates, therefore, follow independent normal distributions. However,

the distributions of all the factorial effects are not necessarily identical. Next, we

propose the main result of this section which establishes the relationship between the

variance of the effect estimates and the presence of effects in different RDCSSs.

Theorem 3.3. Consider a 2p full factorial design, where the randomization restric-

tions are defined by S1, . . . , Sm in P. Define a sequence of index sets {TE, E ∈ P}
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such that TE = {i : 1 ≤ i ≤ m, E ∈ Si}. Then, for any given effect E ∈ P,

Var(β̂E) =





σ2

n
+

∑
{i : i∈ TE}

ni

n
σ2

i , if E ∈ {S1 ∪ · · · ∪ Sm},
σ2

n
, if E ∈ P\{S1 ∪ · · · ∪ Sm},

where σ2 is the replication error variance and σ2
i is the i-th restriction error variance.

Proof: Define an 2p × 1 column vector ηE such that (ηE)s = 1 if the s-th col-

umn of X corresponds to effect E and zero otherwise. Then, for a given effect

E ∈ P , η′EX ′NiN
′
iXηE = nni whenever E ∈ Si, for i ∈ {1, ..., m}. From equation

(3.5) and the multivariate normal distribution of β̂, we get Var(β̂E) = Var(δ′Eβ̂) =

σ2

n
+

∑
{i : i∈ TE}

ni

n
σ2

i . If instead E ∈ P\{S1 ∪ · · · ∪ Sm}, η′EX ′NiN
′
iXηE = 0 for all i

in {1, ..., m}. As a result, Var(β̂E) = σ2

n
. 2

Corollary 3.1. Consider a 2p full factorial design, where the randomization restric-

tions are defined by subspaces S1, . . . , Sm in P and Si ∩ Sj = φ for all i 6= j. Then,

for any given effect E ∈ P,

Var(β̂E) =





σ2

n
+ ni

n
σ2

i , if E ∈ Si,

σ2

n
, if E ∈ P\{S1 ∪ · · · ∪ Sm}

.

Proof: Note that, for any effect E ∈ P , there exists a unique i such that E ∈ Si.

That is, η′EX ′NiN
′
iXηE is nonzero for a unique i ∈ {1, ..., m}, hence the result. 2

These results show that the distribution of effect estimates depends on an effect’s

presence in different RDCSSs. For instance, consider the plutonium example setup in

Bingham et al. (2006). Here, the authors performed a split-lot design with 3 levels of
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randomization in a 25 full factorial experiment, where S1 = {A,B,AB, CDE, ACDE,

BCDE, ABCDE}, S2 = {C,AD, BE, ACD, BCE, ABDE, ABCDE}, S3 = {D,E,

DE, ABC,ABCD,ABCE, ABCDE}, and the effect space is P = 〈A,B,C, D,E〉.
Then, from Theorem 3.3, the variance of parameter estimates corresponding to the

factorial effects in Si’s are given by

Var(δ̂) =





4
32

σ2
1 + 1

32
σ2 for δ ∈ S1\(S1 ∩ S2 ∩ S3)

4
32

σ2
2 + 1

32
σ2 for δ ∈ S2\(S1 ∩ S2 ∩ S3)

4
32

σ2
3 + 1

32
σ2 for δ ∈ S3\(S1 ∩ S2 ∩ S3)

4
32

(σ2
1 + σ2

2 + σ2
3) + 1

32
σ2 for δ ∈ S1 ∩ S2 ∩ S3

,

whereas for the rest of the effects in P , Var(δ̂) = σ2/32. For effects in unreplicated

factorial experiments with randomization restrictions, separate analyses (for instance

half-normal plots) are required. That is, Theorem 3.3 categorizes the factorial effects

for separate analyses based on the overlapping pattern among the RDCSSs. Next, we

discuss the impact of the size of the overlap among the RDCSSs on the analysis.

3.2 Motivation for disjoint RDCSSs

A common strategy for the analysis of factorial designs is the use of half-normal plots

(Daniel, 1959). To do this, the effects appearing on the same plot must have the same

error variance. From Theorem 3.3 and Corollary 3.1, m separate half-normal plots are

required if Si’s are pairwise disjoint and P = {∪m
i=1Si}. If instead P\{∪m

i=1Si} 6= φ,

m + 1 such plots have to be constructed to assess the significance of the effects. On

the other hand, if Sij = Si ∩ Sj 6= φ for some i, j ∈ {1, ..., m}, then the effects in Sij

will have a variance that is a linear combination of σ2
i and σ2

j .

In the plutonium example (Bingham et al., 2006) setup described above, since

the three RDCSSs S1, S2 and S3 overlap, the effect space can be categorized into

five groups G1, ..., G5, with effects having identical distributions within groups, which
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should therefore be analyzed together (see Table 3.1).

Table 3.1: The ANOVA table for the 25 split-lot design in a two-stage process.

Effects Variance Degrees of Freedom
G1 = S1 ∩ S2 ∩ S3

4
32

(σ2
1 + σ2

2 + σ2
3) + 1

32
σ2 1

G2 = S1\(S1 ∩ S2 ∩ S3)
4
32

σ2
1 + 1

32
σ2 6

G3 = S2\(S1 ∩ S2 ∩ S3)
4
32

σ2
2 + 1

32
σ2 6

G4 = S3\(S1 ∩ S2 ∩ S3)
4
32

σ2
3 + 1

32
σ2 6

G5 = P\(S1 ∪ S2 ∪ S3)
1
32

σ2 12

The factorial effects in G2, G3, G4 and G5 were assessed using four separate half-

normal plots. Clearly, G1 has too few effects for constructing a useful half-normal

plot. Therefore, one sacrifices the ability to assess the significance of effects in G1.

Indeed, for unreplicated experiments, assessing the significance of effects in Sij

may have to be sacrificed due to a lack of degrees of freedom. To get the most out of

the experiment it is preferable to have Sij = φ. That is, one prefers disjoint RDCSSs.

Finding such a design is equivalent to finding a set of disjoint subspaces that satisfies

the experimenter’s requirement. It turns out that this is not always easy. In the next

chapter, we develop results that specify the conditions for the existence of designs

with non-overlapping RDCSSs.



Chapter 4

Factorial designs and Disjoint

Subspaces

Several half-normal plots are required to assess the significance of the factorial effects

in an unreplicated factorial experiment with randomization restrictions. Only effects

with the same variance may appear together on the same plot. From the discussion

in Chapter 3, it is preferable to find disjoint subspaces for constructing RDCSSs. In

most applications, the desired number and size of the RDCSSs, or equivalently the

subspaces of the effect space P = PG(p − 1, 2), are pre-determined. Surprisingly,

determining the existence of disjoint subspaces of P for constructing RDCSSs (or

equivalently, finding the design with the desired randomization and analysis proper-

ties) is a fairly complex task.

In this chapter, the conditions for the existence of disjoint subspaces of P are first

derived. The results presented focus on the existence of a set of disjoint subspaces of

both equal and unequal sizes that span the entire effect space P of a two-level factorial

design. Next, the main theoretical result is developed in Section 4.1.2. Construction

methods are proposed in Section 4.2. Finally, in Section 4.3, we develop existence

results for regular fractional factorial designs with randomization restrictions. The

40
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results are constructive and thus allow experimenters to find designs in practice. It

should be noted that the results presented here for two-level factorial designs can

easily be extended to q-levels.

4.1 Existence of RDCSSs

We first start by exploring the available geometric structures that can be used to

establish the existence of a set of disjoint subspaces. These results focus on equal sized

subspaces or experiments with blocks (or batches) of the same size at the m stages of

randomization. In Section 4.1.2, new results are developed for disjoint subspaces of

different sizes.

4.1.1 RDCSSs and (t− 1)-spreads

In many applications, the number of stages of randomization (m) is pre-specified by

the experimenter. Thus, if one can obtain a set of pairwise disjoint equal sized sub-

spaces (say S) with |S| ≥ m, an appropriate subset of S can be selected that satisfies

the criteria of the RDCSSs required by the experimenter. It turns out that one can

establish conditions for the existence of a set of disjoint (t−1)-dimensional subspaces

where a set S partitions the effect space P = PG(p− 1, 2). The next definition is due

to André (1954).

Definition 4.1. For 1 ≤ t ≤ p, a (t − 1)-spread of the effect space P is a set S of

(t− 1)-dimensional subspaces of P which partitions P.

That is, every element of P is contained in exactly one of the (t − 1)-dimensional

subspaces. A (t − 1)-spread S is said to be nontrivial if t > 1. In other words, S is

nontrivial if the size of every element of S is at least 3. When a (t − 1)-spread of P
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exists, the size of S is |S| = (2p − 1)/(2t − 1), which is the maximum size of a set of

disjoint (t− 1)-dimensional subspaces of P . For example, in a 26 full factorial design

(or equivalently in PG(5, 2)), there exists up to 9 disjoint subspaces of size 7 each.

If the required number of RDCSSs, m, is less than |S|, then one can select a subset

of S to construct the RDCSSs. However, the existence of a (t− 1)-spread in general

is not guaranteed and depends on a necessary and sufficient condition established by

André (1954).

Lemma 4.1. A (t− 1)-spread S of PG(p− 1, 2) exists if and only if t divides p.

That is, if p is a prime number (e.g., in 25, 27 factorial experiments), there does

not exist any nontrivial (t− 1)-spread S of P . Nevertheless, the required number of

disjoint subspaces is determined by the experimental setting. If there does not exist

a (t − 1)-spread of P , one would be interested in knowing the maximum number of

disjoint (t−1)-dimensional subspaces that can be obtained in the effect space P . This

is called a partial (t− 1)-spread in finite projective geometry.

Definition 4.2. A partial (t − 1)-spread S of the effect space P is a set of (t − 1)-

dimensional subspaces of P that are pairwise disjoint.

Similar to (t − 1)-spreads, effort has been devoted in establishing the existence of a

maximal partial (t − 1)-spread of P (e.g., Beutelspacher, 1975; Drake and Freeman,

1979; Eisfeld and Storme, 2000; Govaerts, 2005). The following result summarizes

the upper bounds available on the maximum number of pairwise disjoint (t − 1)-

dimensional subspaces of P (see Govaerts, 2005).
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Lemma 4.2. Let P be the projective space PG(p − 1, 2), with p = kt + r, for posi-

tive integers k, t, r such that r < t < p, and S be a partial (t − 1)-spread of P with

|S| = 2r 2kt−1
2t−1

− s, where s is known as the deficiency. Then,

(a) s ≥ 2r − 1, if r = 1.

(b) s ≥ 2r−1 − 1, if r > 1 and t ≥ 2r.

(c) s ≥ 2r−1 − 22r−t−1 + 1, if r > 1 and t < 2r.

Lemma 4.2 provides upper bounds on the maximum number of disjoint (t − 1)-

dimensional subspaces of PG(p − 1, 2) for different combinations of t and r. This

is of particular interest when no (t− 1)-spread exists (i.e., t does not divide p). It is

worth noting that these bounds may not be tight.

Example 4.1. Consider a 25 full factorial experiment with randomization restrictions

defined by S1, S2 and S3, such that S1 ⊃ {A,B}, S2 ⊃ {C} and S3 ⊃ {D, E}. From

the discussion in Chapter 3, one needs at least three half-normal plots. The exact

number depends on the overlapping pattern among the Si’s. To use a half-normal plot

for assessing significant effects one requires at least six or seven effects for each plot

(Schoen, 1999). In this setting, only 1 or 2 effects are assumed to be more active than

others. Therefore, since the Si’s are subspaces, one useful randomization structure

would be where |Si| = 23−1 for all i, and the Si’s are all pairwise disjoint. Here, p = 5

and t = 3, so Lemma 4.1 implies that there does not exist a 2-spread of P = PG(4, 2).

Moreover, from Lemma 4.2, k = 1 and r = 2 implies that the maximum number of

disjoint 2-dimensional subspaces of P is bounded above by 2. However, there is no

certainty from the theorem regarding the existence of even two disjoint 2-dimensional

subspaces, indeed, there is not.

This example motivates the need for further exploration of the subspace structure in
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P . In the next section, we develop results for the existence of sets of pairwise disjoint

(t−1)-dimensional subspaces of P when a spread does not exist. In practice this means

that effects appearing in multiple RDCSSs will inherent the variance component from

each of the overlapping subspaces. Though the set of disjoint subspaces may not

be maximal, the designs obtained using the results in the next section can be easily

constructed and are thus useful to experimenters.

4.1.2 RDCSSs and disjoint subspaces

First, necessary and sufficient conditions for the existence of a set of disjoint (t− 1)-

dimensional subspaces are established. Then, these conditions are generalized for the

existence of sets of m disjoint subspaces of unequal sizes (i.e., different size RDCSSs).

This latter case is important in multistage experiments, where the number of units in

a batch or block are not the same at each stage.

Theorem 4.1. Let P be the projective space PG(p− 1, 2) and S1, S2 be two distinct

(t− 1)-dimensional subspaces of P, for 0 < t < p.

(a) If t ≤ p/2, there exists S1 and S2 such that S1 ∩ S2 = φ.

(b) If t > p/2, for every S1, S2 ∈ P, |S1 ∩ S2| ≥ 22t−p − 1 and there exists S1, S2

such that the equality holds.

The proof of Theorem 4.1 will be shown in a more general setup (Theorem 4.3).

Along with the conditions for the existence of disjoint subspaces, the result proposed

in Theorem 4.1 also provides the size of minimum overlap when there does not exist

even two (t − 1)-dimensional subspaces. It turns out that when t ≤ p/2, one can

obtain more than two disjoint (t − 1)-dimensional subspaces of P . From Section

3.2, it is obvious that the subspaces required for constructing RDCSSs should be

large enough to construct useful half-normal plots. This indicates that in two-level
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factorial designs, t ≥ 3 is desirable, which further implies that if t ≤ p/2, the value

of p is bounded below by 6. Since designs with randomization restrictions are often

larger than completely randomized designs, these results are useful to a practitioner.

When t does not divide p, one can assume that p = kt + r for positive integers

k, t, r satisfying 0 < r < t < p and k ≥ 1. It can be tempting to work with a (t− 1)-

spread S0 (say) of PG(kt− 1, 2), which is embedded in P . The following new result

demonstrates the existence of a set of disjoint subspaces based on S0.

Lemma 4.3. Let P be the projective space PG(p − 1, 2) for p = kt + r. Then,

there exists m subspaces S1, . . . , Sm in P such that |Si| = 2t − 1, i = 1, ..., m, where

m = 2kt−1
2t−1

, and the Si’s are pairwise disjoint. Furthermore, there exists Sm+1 such

that |Sm+1| = 2r − 1 and Sm+1 ∩ Si = φ for all i = 1, . . . , m.

Proof of Lemma 4.3 follows from the existence of a (t − 1)-spread of PG(kt − 1, 2).

Since S0 is constructed from a (t − 1)-spread of a subspace which is a proper subset

of P , the set of disjoint (t− 1)-subspaces in P can be expanded. The following result

due to Eisfeld and Storme (2000) ensures the existence of a relatively larger set of

disjoint (t− 1)-dimensional subspaces of P .

Lemma 4.4. Let P be the projective space PG(p− 1, 2), for p = kt + r. Then, there

exists a partial (t− 1)-spread S of P with |S| = 2r 2kt−1
2t−1

− 2r + 1.

That is, there always exists a set of disjoint (t−1)-dimensional subspaces of cardinal-

ity |S|. The proof developed below is more concise than the one provided in Eisfeld

and Storme (2000). Most importantly, the proof is useful insofar as it outlines the

construction of the partial (t− 1)-spread of P claimed to exist in the lemma.
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Proof: Define a sequence {si}k
i=1 such that si = it + r − 1 for i = 1, . . . , k, and

Pi = PG(2si + 1, 2) for i = 1, . . . , k − 1. Note that si + t = si+1 for i = 1, . . . , k − 1

implies that the effect space P is PG(sk−1 + t, 2) = P ′k. Let Uk−1 be an (sk−1)-

dimensional subspace of P ′k. Then, from Lemma 4.1, there exists an (sk−1)-spread

S ′k−1 of Pk−1. Moreover, it is possible to construct an S ′k−1 that contains Uk−1, which

will be shown in Section 4.2.2. So, Sk−1 =
{
S ∩ P : S ∈ S ′k−1\{Uk−1}

}
is a set of

disjoint (t−1)-dimensional subspaces in P . Next, define P ′k−1 = Uk−1 and let Uk−2 be

an (sk−2)-dimensional subspace of P ′k−1. Assuming the existence of a (sk−2)-spread

S ′k−2 of Pk−2 that contains Uk−2, define Sk−2 =
{
S ∩ P : S ∈ S ′k−2\{Uk−2}

}
. Following

the recursion steps in a similarly fashion, we obtain the sets S1, . . .Sk−1, such that

the set of disjoint (t− 1)-spaces of P is

S =

(
k−1⋃
i=1

Si

)
∪ S0,

where S0 is a (t − 1)-dimensional space of U1. Therefore, the number of disjoint

(t − 1)-dimensional subspaces in P is given by |S| = 1 +
∑k−1

i=1

(
22(si+1)−1
2(si+1)−1

− 1
)

=

1 +
∑k−1

i=1 2(si+1) = 2r 2kt−1
2t−1

− 2r + 1. 2

Though the proof provided above is constructive for the most part, the steps where

one has to obtain spreads that satisfy certain requirements, imposed by the experi-

menter, are nontrivial and thus elaborated on in Section 4.2.2. The following example

summarizes the results on partial (t− 1)-spreads.

Example 4.2. Consider a 28 full factorial design with m stages of randomization char-

acterized by RDCSSs given by S1, ..., Sm. For analyzing the data, the size of each

RDCSS should be more than six or seven, i.e., |Si| ≥ 7 for i = 1, .., m. Since

t = 3, r = 2, and we are interested in 2-dimensional subspaces of P , the result

presented in Lemma 4.2(c) indicates the size of the maximal partial 2-spread of P is
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bounded above by 34. Lemma 4.3 guarantees the existence of only 9 disjoint subspaces

of size 7 each, whereas from Lemma 4.4, the existence of a partial 2-spread with 33

disjoint subspaces is ensured. Since the disjoint subspaces obtained in Lemma 4.3 are

constructed from a 2-spread of PG(5, 2) which is a proper subset of PG(7, 2), and

Lemma 4.4 finds a set of disjoint 2-dimensional subspaces in PG(7, 2), there is such

a difference. This example illustrates that either the bound in Lemma 4.2(c) is not

tight or there exist more disjoint 2-spaces of P .

For t = 2 and p odd (e.g., p = 2k + 1 for some positive integer k), Addleman

(1962) proved that the bound |S| ≤ (2p − 5)/3 is tight (same as |S| in Lemma 4.4).

Thus, the bound provided in Lemma 4.2(c) is not tight at least for general t, k and

r. A construction of (2p − 5)/3 disjoint 1-dimensional subspaces of P = PG(2k, 2),

proposed in Wu (1989), is based on the existence of two permutations of the effect

space satisfying certain properties. These results were established in the context of

constructing 2m4n factorial designs (for non-negative integers m and n) using two-

level factorial designs. The construction provided in Wu (1989) is only for t = 2 and

q = 2, whereas, Lemma 4.4 holds for general t and is easily extendable for arbitrary

prime, or prime power q in PG(p− 1, q).

The results discussed so far in this chapter focus on the existence of disjoint sub-

spaces of the same size, however, it is likely to have requirements for disjoint subspaces

of different sizes (e.g., the battery cell experiment in Vivacqua and Bisgaard, 2004;

the plutonium example in Bingham et al., 2006). Before developing conditions for the

existence of a set of disjoint subspaces of unequal sizes, we propose a useful interme-

diate result.

Theorem 4.2. Let P be the projective space PG(p − 1, 2) and Si be a (ti − 1)-

dimensional subspace of P, where 0 < ti < p for i = 1, 2. Then, |〈S1, S2〉| = 2p − 1,
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whenever |S1 ∩ S2| = 2t1+t2−p − 1 for t1 + t2 > p.

Proof: Let S̄ denote a set of factorial effects (or points) contained in the subspace S

that generates S, i.e., 〈S̄〉 = S. Also, for any two non-disjoint subspaces Si and Sj,

let (Si ∩ Sj) ⊂ S̄i for i 6= j. Then,

A1 = 〈S̄1 \ (S1 ∩ S2)〉, A2 = 〈(S1 ∩ S2)〉 and A3 = 〈S̄2 \ (S1 ∩ S2)〉

are pairwise disjoint subspaces. If |S1 ∩ S2| = 2t1+t2−p − 1, then A2 is equivalent to a

PG(t1 + t2− p− 1, 2) contained in the effect space P . Similarly, A1 and A2 are equiv-

alent to PG(p− t2 − 1, 2) and PG(p− t1 − 1, 2) respectively. Since Ai’s are pairwise

disjoint subspaces, the span of S1 and S2 is 〈S1, S2〉 = 〈A1, A2, A3〉 = PG(p− 1, 2). 2

This theorem implies that if t1 + t2 > p and |S1 ∩ S2| = 2t1+t2−p − 1, then 〈S1 ∪ S2〉
covers the entire effect space P . Furthermore, it is clear from the proof that if

|S1 ∩ S2| > 2t1+t2−p − 1, the size of 〈S1 ∪ S2〉 is less than 2p − 1 and thus 〈S1, S2〉 is a

proper subset of P . Next, we develop conditions for the existence of a pair of unequal

sized disjoint subspaces of the effect space P .

Theorem 4.3. Let P be the projective space PG(p − 1, 2) and Si be a (ti − 1)-

dimensional subspace of P, where 0 < ti < p for i = 1, 2.

(a) If t1 + t2 ≤ p, there exists S1 and S2 such that S1 ∩ S2 = φ.

(b) If t1 + t2 > p, for every S1, S2 in P, |S1 ∩ S2| ≥ 2t1+t2−p − 1 and there exists

S1, S2 such that the equality holds.

Proof: Let the effect space be P = 〈F1, . . . , Fp〉, where the Fi’s are the independent

factors of a 2p full factorial design. Since t1 + t2 ≤ p, part (a) holds by defining

S1 = 〈F1, . . . , Ft1〉 and S2 = 〈Ft1+1, . . . , Ft1+t2〉. For part (b), S1 = 〈F1, . . . , Ft1〉



CHAPTER 4. FACTORIAL DESIGNS AND DISJOINT SUBSPACES 49

and S2 = 〈Fp−t2+1, . . . , Ft1 , Ft1+1, . . . , Fp〉 provides the minimum possible overlap of

S1 ∩ S2 = 〈Fp−t2+1, . . . , Ft1〉 with |S1 ∩ S2| = |PG(t1 + t2 − p − 1, 2)| = 2t1+t2−p − 1.

In addition, if S1, S2 are such that t1 + t2 > p and |S1 ∩ S2| < 2t1+t2−p − 1, then

according to Theorem 4.2, |〈S1, S2〉| > 2p−1. This contradicts the fact that if S1 ⊂ P
and S2 ⊂ P , then 〈S1, S2〉 should also be contained in P . 2

This theorem is directly applicable for designs with two stages of randomization,

for example, row-column designs, strip-plot designs, two-stage split-lot designs. For

t1 = t2 = t, this theorem simplifies to Theorem 4.1. It is easy to verify that one

can have at most one (t − 1)-space with t > p/2. For instance, in a 25 factorial

experiment (Example 4.1), there does not exist even two disjoint subspaces of size 7

each. Bingham et al. (2006) discovered this through an exhaustive computer search,

whereas Theorem 4.1 identifies this directly. It turns out that when t1 + t2 ≤ p, one

can expect more disjoint subspaces of size 2t − 1 if t < p − max(t1, t2). The next

theorem is the main new result of this section.

Theorem 4.4. Let P be the projective space PG(p − 1, 2) and S1 be a (t1 − 1)-

dimensional subspace of P with p > t1 > p/2. Then, there exists m − 1 subspaces

S2, . . . , Sm such that |Si| = 2ti − 1 for ti ≤ p− t1, 2 ≤ i ≤ m, and Si, i = 1, ..., m are

all pairwise disjoint, where m = 2t1 + 1.

Proof: Define s = t1 − 1 and t = (p − t1) − 1. Then, the effect space P is a

PG(s + t + 1, 2) and S1 is an s-dimensional subspace of P . Since s > t, define

P ′ = PG(2s + 1, 2) so that P ′ ⊇ P , and let S ′ be an s-spread of P ′ that contains S1.

The construction of such a spread is non-trivial, and is shown in Section 4.2.3. Then

the set of disjoint t-dimensional subspaces of P is given by S = {S ∩ P : S ∈ S ′\{S1}},
which further implies that the elements of S can be denoted by S2, S3, . . . , Sm for
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m = |PG(2s+1,2)|
|PG(s,2)| . As required, the experimenter can obtain a (ti − 1)-dimensional

subspace of Si if ti − 1 ≤ t (or equivalently, ti ≤ p− t1) for i = 2, . . . , m. 2

Theorem 4.4 proposes the existence of 2t1 +1 disjoint subspaces of P with one (t1−1)-

dimensional subspace (t1 > p/2) and 2t1 disjoint subspaces Si’s with |Si| = 2ti − 1,

where ti ≤ p − t1. Thus, according to the requirements of the experiment, one can

construct designs with the randomization restriction defined by up to 2t1 +1 RDCSSs

of different sizes. Furthermore, as we shall see, the proof points to a construction

strategy for 2t1+1 disjoint subspaces of unequal sizes (see Section 4.2.3 for an elaborate

construction). Though Lemma 4.4 is not a special case of Theorem 4.4, the two

construction techniques are similar (see Sections 4.2.2 and 4.2.3).

Thus far, we have established necessary and sufficient conditions for the existence

of a set of disjoint subspaces of the same and also different sizes. If the desired number

of stages of randomization (m) is less than or equal to the number of subspaces

guaranteed to exist from one of the results, one can obtain an appropriate subset of

S that satisfies the restrictions imposed by the experimenter. Next, we propose a

construction approach for factorial designs with m levels of randomization.

4.2 Construction of Disjoint Subspaces

First, the construction for equal sized subspaces is presented, followed by the con-

struction of disjoint subspaces of different sizes. The subspaces themselves have no

statistical meaning until the factors have been assigned to columns of the design ma-

trix, or equivalently to points in PG(p− 1, 2). The set of disjoint subspaces obtained

from an arbitrary assignment may not directly satisfy the experimenter’s restrictions

on RDCSSs. Consequently, we propose an algorithm that transforms a set of disjoint

subspaces obtained from the construction to another set of disjoint subspaces that

satisfies the properties of the desired experimental design.
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4.2.1 RDCSSs and (t− 1)-spreads

When t divides p, the existence of a (t− 1)-spread of P = PG(p− 1, 2) is guaranteed

from Lemma 4.1. The construction of a spread starts with writing the 2p− 1 nonzero

elements of GF (2p) in cycles of length N (Hirschfeld, 1998). For any prime or prime

power q, an element w is called primitive if {wi : i = 0, 1, ..., q − 2} = GF (q)\{0}.
A primitive element of GF (2p) is a root of a primitive polynomial of degree p for

over GF (2) (for details see Artin, 1991). The 2p − 1 elements of the effect space P ,

or equivalently, the nonzero elements of GF (2p), are wi, i = 0, ..., 2p − 2, where wi

can be written as a linear combination of the basis polynomials w0, ..., wp−1. The

element wi = α0w
p−1 + α1w

p−2 + · · · + αp−1 represents an r-factor interaction δ =

(α0, α1, ..., αp−1), for αi ∈ GF (2), if exactly r entries of δ are nonzero. For example,

let p = 4 and the primitive polynomial be w4 + w + 1. Then,

w0 = 1 = (0001) = D,

w1 = w = (0010) = C,

w2 = w2 = (0100) = B,

w3 = w3 = (1000) = A,

w4 = w + 1 = (0011) = CD,

w5 = w2 + w = (0110) = BC,

...

w14 = w3 + 1 = (1001) = AD.

Following this representation for the factorial effects in P and using shorthand nota-

tion k for wk, the cycles of length N can be written as shown in Table 4.1. Here, θ is

the number of distinct cycles and the entry (iN + j) denotes wiN+j for 0 ≤ i ≤ θ− 1,

0 ≤ j ≤ N − 1.
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Table 4.1: The elements of P using cyclic construction.

S1 S2 . . . . . . SN

0 1 . . . . . . N − 1
N N + 1 . . . . . . 2N − 1
...

...
...

...
(θ − 1)N (θ − 1)N + 1 . . . . . . θN − 1

The following result due to Hirschfeld (1998, Ch.4) presents a necessary and sufficient

condition for the existence of a set of (t − 1)-dimensional subspaces of size N which

depends on the greatest common divisor (gcd) of t and p.

Lemma 4.5. There exists a (t − 1)-space of cycle N less than |PG(p − 1, q)| if and

only if gcd(t, p) > 1, where, N = |PG(p−1,q)|
|PG(l−1,q)| and l = gcd(t, p).

Since t divides p, there exists 2t − 1 cycles of length N each. The Si’s are therefore

pairwise disjoint (t− 1)-dimensional subspaces of P . That is, the subspaces S1,...,SN ,

constitute a (t− 1)-spread S of the effect space P = PG(p− 1, 2). Given the spread,

an experimenter must now assign factors to the points in PG(p− 1, 2) to achieve the

desired design.

A (t − 1)-spread of PG(p − 1, 2), obtained above, distributes all the main effects

(or factors) evenly among all the |S| disjoint subspaces. However, restrictions on

the m stages of randomization are usually pre-specified by the experimenter. Indeed,

for a block design, an RDCSS will contain no main effects, whereas for a split-lot

design, one or more factors may be assigned to the subspace representing an RDCSS.

For example, consider a 26 full factorial experiment with the randomization structure

determined by a blocked split-lot design, where the trials have to be run in blocks of

size 8 each. Further suppose that the experimenter wishes to specify the factorial

effects ABC,BDE and CEF to be confounded with the blocks. In addition, let the

experimental units have to be processed into two steps, where the restrictions imposed
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by the experimenter on the two steps of randomization are such that S∗1 ⊃ {A,B}
and S∗2 ⊃ {D}. As a result, there are three restrictions on the randomization of

the experiment, one due to blocking the experimental units and the other two due

to splitting the experimental units into sub-lots. To use half-normal plots for the

assessment of the factorial effects on the process, it is desirable to have three disjoint

subspaces of size more than six or seven each, where the subspaces should satisfy the

restrictions on the three RDCSSs given by S∗1 , S∗2 and S∗3 = 〈ABC, BDE, CEF 〉. It

turns out that one can relabel the points of P such that the spread S∗ obtained from

the transformed space contains three disjoint subspaces satisfying the experimenter’s

requirement on the RDCSSs.

Although it is tempting to use an exhaustive search to find an appropriate rela-

belling of P that meets the experimenter’s requirement, if the number of independent

factors is large, computation time and resources can be expensive. A simpler approach

which works in many cases uses the structure of a (t−1)-spread to our advantage and

reduces the search space. Instead of randomly relabelling the points of P (or equiva-

lently the columns of the model matrix X), if we find a relabelling that preserves the

geometric structure among the points, the search space is significantly reduced. For

this purpose, a collineation (e.g., Coxeter, 1974; Batten, 1997) of the projective space

P is used to relabel its points. A collineation of PG(p − 1, q) is a permutation f of

its points such that (t− 1)-dimensional subspaces are mapped to (t− 1)-dimensional

subspaces, for 1 ≤ t ≤ p,

f : PG(p− 1, q) −→ PG(p− 1, q).

For example, in a 23 full factorial design, the set of seven factorial effects forms a

PG(2, 2), where the points {C1, ..., C7} can be denoted by {A,B,AB,C, ..., ABC}.
A feasible configuration for the set of lines of PG(2, 2) is {(A,B, AB), (B, C, BC), (A,

C,AC), (A,BC, ABC), (B, AC, ABC), (C, AB, ABC), (AB, BC, AC)}. Figure 4.1 dis-

plays a collineation of the projective space PG(2, 2).
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Figure 4.1: A collineation of PG(2, 2).

The existence of a collineation f that transforms a spread S to S∗ (or equivalently,

the effect space P to P∗), can be established by the existence of a p × p matrix M,

such that for every given z ∈ S, there is an unique z′ ∈ S∗ that satisfies zM = z′.

The collineation matrix for the transformation in this example is

M =




1 0 0

0 1 1

0 0 1


 .

Since the transformation of a spread amounts to relabelling the columns of the model

matrix, there may not exist an appropriate collineation under several circumstances.

For instance, one cannot find a collineation matrix M if the experimenter’s require-

ment is not achievable. For example, in a 25 full factorial split-lot design with 3 levels

of randomization, if the restrictions imposed on the three RDCSSs are S1 ⊃ {A,B},
S2 ⊃ {C, D} and S3 ⊃ {E,AD}, then there does not exist a collineation that meets

the requirements. Moreover, if the desired set of subspaces is non-isomorphic to the

spread we started with, then also there does not exist any relabelling of P to obtain

the desired design. However, finding an appropriate collineation matrix whenever

it exists is also nontrivial. Next, we propose an algorithm that finds a collineation

matrix M, if it exists, and concludes the nonexistence if one does not exist. The

algorithm is illustrated through an example.
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Consider the earlier setup of a 26 full factorial experiment with the blocked split-

lot design, where the RDCSSs are characterized by S∗1 ⊃ {A,B}, S∗2 ⊃ {D} and

S∗3 ⊃ {ABC,BDE,CEF}. For constructing useful half-normal plots, RDCSSs should

satisfy |S∗i | ≥ 7, for i = 1, ..., 3 and hence t = 3. Since t divides p, there exist 7 cycles

of length 9 each, or equivalently, 9 disjoint subspaces of size 7 each (i.e., a 2-spread of

P). The 2-spread S = {S1, ..., S9} obtained using the primitive polynomial, w6+w+1

is shown in Table 4.2.

Table 4.2: The 2-spread obtained using the cyclic construction.

S1 S2 S3 S4 S5 S6 S7 S8 S9

F E D C B A EF DE CD
BC AB AEF DF CE BD AC BEF ADE

CDEF BCDE ABCD ABCEF ABDF ACF BF AE DEF
CDE BCD ABC ABEF ADF CF BE AD CEF
BDE ACD BCEF ABDE ACDEF BCDF ABCE ABDEF ACDF
BCF ABE ADEF CDF BCE ABD ACEF BDF ACE

BDEF ACDE BCDEF ABCDE ABCDEF ABCDF ABCF ABF AF

Note that each element of S contains at most one main effect. To obtain a set of

disjoint subspaces satisfying the restrictions imposed on the 3 stages of randomization,

one has to find an appropriate 6× 6 collineation matrix M. An algorithm for finding

the matrix M is outlined as follows:

1. Select one of the
(
9
3

)
possible choices for a set of three disjoint subspaces from

the spread S. For example, S1, S3 and S7 are chosen such that, S1 −→ S∗1 ,

S3 −→ S∗2 and S7 −→ S∗3 .

2. Choose two effects from S1, one effect from S3 and three effects from S7 to

relabel these to the desired effects (A,B), D and (ABC,BDE,CEF ) in S∗1 , S∗2

and S∗3 respectively. For example, one choice among
(
7
2

)(
7
1

)(
7
3

)
different options

is {CDE, BCF, D, EF,AC, BF}. The collineation matrix is defined by the

mapping induced from CDE → A, BCF → B, D → D, . . ., BF → CEF .
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3. Construct a p2 × p2 matrix A and a p2 × 1 vector δ as follows. Denote the

(i, j)-th entry of the p × p matrix M as xk, where k = j + (i − 1)p. Then,

define the rows of matrix A and vector δ in the order of restrictions on the

transformation. For the example under consideration, the first (in general, s-

th) restriction (CDE)M = A can be written as:

(CDE)M = (100000)′. (4.1)

Then, the first (s-th) set of six (in general p) rows of δ are given by the right side

of equation (4.1). The corresponding rows of A can be written by first denoting

CDE = (001110)′ and defining

Ail = 1, if l = i + (τ − 1)p and the τ -th entry of (001110) is nonzero,

= 0, otherwise,

for p(s− 1)+1 ≤ i ≤ ps, 1 ≤ s ≤ p. Similarly, all the rows of the matrix A and

vector δ can be expressed using the p restrictions on the transformation.

4. If there exists a solution of Ax = δ, reconstruct the matrix M from the solution

x = A−Lδ and exit the algorithm, where A−L is a left inverse of A.

5. If there does not exist a solution of Ax = δ, go to Step 2 and if possible, choose

a different set of effects from the subspaces selected in Step 1.

6. If all possible choices for the set of effects from these three subspaces have been

exhausted, then go to step 1 and choose a different set of three subspaces.

7. If all the
(
9
3

)
different choices for a set of subspaces have been used and still a

solution does not exist, then either the two spreads S and S∗ are non-isomorphic,

or the experimenter’s requirement is not achievable. Thus, the desired spread

cannot be obtained from S.
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In the illustration used here, the factorial effects chosen for relabelling the columns

to achieve the desired design provide a feasible solution to Ax = δ. The collineation

matrix M, reconstructed from the solution x = A−Lδ, is given by

M =




0 0 1 1 0 1

0 0 1 1 0 0

0 1 1 0 1 1

0 0 0 1 0 0

1 1 1 1 1 1

0 0 0 1 1 1




.

For the example under consideration, an exhaustive search found that 45.7% of all

possible choices give a feasible solution to the equation Ax = δ. That is, an arbitrary

choice of p independent effects from S (according to Steps 1 and 2) results in a feasible

design only 45.7% of the time. The rest of the time, an arbitrarily chosen set of

effects lead to an infeasible solution by turning a full factorial design into a replicated

fractional factorial design. Note that the search space can be further reduced by

improving Step 2 to choose independent effects compared to an arbitrary set of effects

from the subspace Si.

Though necessary to search for a feasible choice of collineation matrix, the spread

acts as a template for the search to make it faster than the exhaustive relabelling of all

the factorial effects to find the design satisfying the experimenter’s requirement. For

this example, our algorithm may require at most
(
9
3

)(
7
2

)(
7
1

)(
7
3

)
different relabellings,

whereas an exhaustive relabelling approach can require up to (26 − 1)! different re-

labellings. To find the proportion of feasible relabellings out of
(
9
3

)(
7
2

)(
7
1

)(
7
3

)
different

choices, our Matlab 7.0.4 implementation of the algorithm took almost 67 hours on a

Pentium(R) 4 processor machine running Windows XP. The algorithm finds the first

feasible collineation matrix in 5.34 seconds on the same machine. It is worth noting

that the computation involved in the algorithm uses modular arithmetic.

In many cases, whenever t does not divide p, there does not exist a (t− 1)-spread
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of P = PG(p − 1, 2). However, a partial (t − 1)-spread S of P may be available.

Recall that if the number of stages of randomization (m) is less than |S|, then a set of

m disjoint subspaces can be constructed that satisfies the randomization restrictions.

Next we propose a construction for RDCSSs if m < |S|, and there does not exist a

(t− 1)-spread of P .

4.2.2 Partial (t− 1)-spreads

When t does not divide p, Lemma 4.4 guarantees the existence of |S| = 2r 2kt−1
2t−1

−2r+1

disjoint (t − 1)-dimensional subspaces of P , where p = kt + r. For constructing

these subspaces, one can use the steps outlined in the proof of Lemma 4.4 for the

most part. However, the proof assumes the existence of an (si)-spread S ′i of Pi that

contains Ui, where Ui is an (si)-dimensional subspace of P ′i+1, for si = it + r − 1,

Pi = PG(2si + 1, 2), and P ′i+1 = PG(si + t, 2), i = 1, . . . , k − 1. The construction

of the spread S ′i is nontrivial, and we develop a two step construction method: (a)

construct a (si)-spread S ′′i of Pi as described in Section 4.2.1, and then (b) transform

the spread S ′′i to S ′i by finding an appropriate collineation such that Ui ∈ S ′i. Thus, we

can construct a set of |S| disjoint (t− 1)-dimensional subspaces, or, a partial (t− 1)-

spread S of P , using the recursive construction method described in the proof of

Lemma 4.4. Finally, this partial spread S has to be transformed using an appropriate

collineation to obtain the m RDCSSs satisfying the experimenter’s requirement.

4.2.3 Disjoint subspaces of different sizes

A more general setting is when the RDCSSs are allowed to have different sizes. For a

2p full factorial design, Theorem 4.4 guarantees the existence of only one subspace S1

of size 2t1 − 1 with t1 greater than p/2, and 2t1 subspaces of size bounded above by

2t−1 where t ≤ p− t1. For constructing these 2t1 +1 pairwise disjoint subspaces of P ,

the proof of Theorem 4.4 requires constructing a (t1 − 1)-spread S ′ of PG(2t1 − 1, 2)
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that contains S1. The spread S ′ can be obtained by first constructing a (t1−1)-spread

of PG(2t1− 1, 2) and then by applying the appropriate collineation M0 found by the

algorithm described in Section 4.2.1. After S = {S ∩ P : S ∈ S ′\{S1}} is obtained,

one has to find a suitable collineation M1 so that the final set of subspaces satisfy the

experimenter’s restrictions on RDCSSs. The steps of the construction are illustrated

through an example.

Consider a 27 full factorial design with 3 stages of randomization. Let the re-

strictions imposed on the three RDCSSs be S1 ⊃ {A,B, C,D}, S2 ⊃ {E, F} and

S3 ⊃ {G}. Following the notation of Theorem 4.4, since p = 7 and t1 = 4 there

exists 17 pairwise disjoint subspaces with |Si| = 2ti − 1 for i = 1, ..., 17, where t1 = 4

and ti ≤ 3 for i = 2, ..., 17. Then, a 3-spread S ′′ of PG(7, 2) is constructed using

the method described in Section 4.2.1, and an appropriate collineation matrix M0 is

found which transforms S ′′ to S ′ such that S ′ contains S1 = 〈A,B,C,D〉. Table 4.3

contains some of the elements of S ′.

Table 4.3: The 3-spread S ′ obtained after applying M0 on S ′′.
S1 S2 · · · S16 S17

A BFGH · · · AH BCFGH
B DH · · · ACDEF H
C CDEF · · · ABDFH ABCDEF
D ADFH · · · BCDFG ABCDFH

AB BDFG · · · CDEFH BCFG
BC CEFH · · · BCEH ABCDEFH
CD ACEH · · · ACGH EH

ABD ABGH · · · BEGH ADGH
AC BCDEGH · · · BDF ADEGH
BD AF · · · ABEG ABCDF

ABC BCEG · · · ABCE ADEG
BCD ACDE · · · DEFGH E

ABCD ABCDEFGH · · · ADEFG BCEFGH
ACD ABCEFG · · · CG BCEFG

AD ABDG · · · ABCDFGH ADG

Given the spread S ′, we first obtain S = {S ∩ P : S ∈ S ′\{S1}}, and then the

collineation matrix M1 is obtained to accommodate other restrictions on S2, ..., Sm.
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The two collineation matrices used for the transformations are as follows:

M0 =




1 1 1 1 1 1 1 0

0 1 0 0 1 1 0 0

1 0 1 1 1 0 1 0

1 1 1 0 1 0 0 1

0 1 0 1 0 1 1 1

0 1 1 1 1 1 0 0

0 1 0 0 0 1 1 1

1 0 0 0 0 0 0 0




, M1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 1 1 0 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 0 1 0

1 0 0 1 1 1 0 1




.

As a result, the three disjoint subspaces that satisfy the experimenter’s requirements

are S1 = 〈A,B, C, D〉, S2 = 〈E, F, CG〉 and S3 = 〈G,BCF,ABCDEF 〉. Since the

construction algorithm does not involve any recursion, it can be made more efficient

by combining the problem of finding the two collineation matrices into one problem.

When transforming the 3-spread S ′′ to S ′ containing S1, we can impose other restric-

tions (S2 ⊃ {E, F} and S3 ⊃ {G}) in this step itself. Thus, {S ∩ P : S ∈ S ′\{S1}}∪S1

contains the required set of subspaces S1, ..., S3, for the 3 stages of randomization. The

grouping of effects based on its null distribution is shown in Table 4.4.

Table 4.4: The ANOVA table for the 27 full factorial design.

Effects Variance Degrees of Freedom

S1
23

27 σ
2
1 + 1

27 σ
2 15

S2
24

27 σ
2
2 + 1

27 σ
2 7

S3
24

27 σ
2
3 + 1

27 σ
2 7

P\(S1 ∪ S2 ∪ S3)
1
27 σ

2 98

The assessment of all the 127 effects can be done by using 4 half-normal plots.

The designs discussed so far in this chapter focus on full factorial experiments. Nev-

ertheless, fractional factorial designs are often desirable for experiments involving a
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large number of factors, and are therefore of interest. It turns out that the results

developed here for the existence and construction can easily be adapted for regular

fractional factorial designs with different randomization restrictions. In addition, the

RDCSS structure can be used to unify the fractionation of two-level regular factorial

designs with different randomization restrictions. We present a brief discussion on

such designs in the following section.

4.3 Fractional factorial designs

In this section, we first establish the existence of two-level regular fractional factorial

designs by constructing these designs using the existence results and construction

techniques developed so far in this chapter. Then, we focus on different ways of

fractionating a 2p full factorial design.

If the number of factors in a two-level factorial experiment is p and the resources

are enough for only a 2−k fraction of the complete set of 2p treatment combinations, a

2p−k regular fractional factorial design can be constructed. A 2p−k regular fractional

factorial design is constructed by assigning the k additional factors (added factors)

to the columns of the model matrix corresponding to (preferably) the higher order

interactions of the two-level full factorial design generated with p− k basic factors.

Recall from Chapter 2 that a full factorial design with randomization restrictions

can be characterized by its RDCSS structure. It turns out that one can use the set of

disjoint subspaces in the effect space of the base factorial design to construct a regular

fractional factorial design. In some cases, the fractional generators have to be chosen

from the RDCSSs of the base factorial design, whereas there are cases when a distinct

disjoint subspace is preferred to choose fractional generators from. Thus, the results

developed so far for a maximal set of disjoint subspaces of both equal and unequal

sizes can be used to construct regular fractional factorial designs with randomization

restrictions. The following examples illustrate the construction in both situations.
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Example 4.3. Consider a 28−2 fractional factorial experiment with randomization

structure characterized by a split-lot design. Further suppose that the experimen-

tal units have to be processed in 4 stages with randomization restrictions defined by

S1 ⊃ {A,B}, S2 ⊃ {C, D}, S3 ⊃ {E, F} and S4 ⊃ {G,H}. Then, the 6 (or, in gen-

eral, p− k) independent basic factors and their interactions, P = 〈A,B, ..., F 〉, form

a 26 full factorial split-lot design. Lemma 4.1 guarantees the existence of a 2-spread

of P , and the construction method outlined in Section 4.2.1 can be used to construct

3 RDCSSs that satisfies the restrictions defined by S1, S2 and S3. Table 4.5 shows the

transformed spread S = {S∗1 , ..., S∗9}, where S1 = S∗1 , S2 = S∗3 and S3 = S∗7 .

Table 4.5: The 2-spread of PG(5, 2) after transformation.

S∗1 S∗2 S∗3 S∗4 S∗5 S∗6 S∗7 S∗8 S∗9
DF BCD ABCEF BE DEF BF BCF ADEF ACF

BDF BDE C ABCDE CDE ABCD EF BCDE ABDE
AB ABE ABCDEF BCDF AC DE E CDF AE

ABDF ACDE D CDEF ACDEF BDEF BCEF ACE CEF
A ABC CD ABF AF ACEF BC ABD ABCDF
B CE ABEF ACD CF ACDF BCE ABCF BCDEF

ADF AD ABDEF AEF ADE ABCE F BEF BD

The collineation matrix used to transform the 2-spread (shown in Table 4.2) obtained

from the cyclic construction to S = {S∗1 , ..., S∗9} is given by

M =




0 1 0 0 0 1

0 0 0 1 1 1

0 1 0 0 1 0

1 1 1 0 1 1

0 1 1 1 0 0

0 0 0 1 0 1




.

Since a 2-spread of P consists of nine disjoint subspaces of size 7 each, S4 can be con-

structed using a subspace from the remaining six disjoint subspaces, S\{S1, S2, S3},
and then by assigning two interactions to the two added factors G and H. For ex-

ample, if we choose S4 = S∗8 and G = CDF , H = BEF , then the fraction defining
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contrast subgroup (FDCS) is

I = CDFG = BEFH = BCDEGH,

where the resulting design is of resolution IV. Of course, there are several options

for the two generators which further leads to different designs. These designs can be

ranked using different criteria, such as minimum aberration (Fries and Hunter, 1980),

maximum number of clear effects (Chen, Sun and Wu, 1993; Wu and Chen, 1992)

and V -criterion (Bingham et al., 2006). The technique used here for constructing a

fractional factorial design is simply an approach to label the higher order effects to

the added factors. To get all designs, or designs that are optimal according to some

criterion, one can avoid all possible relabellings by using the spread structure which

serves as a template to reduce the search space.

The above example presents a scenario where the availability of more than 3 disjoint

subspaces in P has been used to construct a regular fractional factorial design. In this

setup with 6 basic factors, one can have up to nine stages of randomization and disjoint

RDCSSs with Si’s large enough to perform useful half-normal plots. However, if more

than nine stages of randomization are required, overlapping among the RDCSSs can-

not be avoided. The next example presents a scenario where the added factors have to

be assigned to higher order factorial effects in the RDCSSs of the base factorial design.

Example 4.4. Consider a 28−2 regular fractional factorial design with the requirement

of 3 stages of randomization, where the imposed restrictions on the RDCSSs are

defined by S1 ⊃ {A,B}, S2 ⊃ {C, D,E} and S3 ⊃ {F, G,H}. In this case also, one

can start with the algorithm in Section 4.2.1 to construct a 2-spread of the effect space

for the base factorial design such that the spread consists of three disjoint subspaces

satisfying S1 ⊃ {A,B}, S2 ⊃ {C,D, E} and S3 ⊃ {F}. After transforming the 2-

spread (shown in Table 4.2) obtained from the cyclic construction, the resulting spread
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S = {S1, ..., S9} that satisfies the experimenter’s requirement for the base factorial

design is shown in Table 4.6.

Table 4.6: The 2-spread of PG(5, 2) after applying the collineation matrix M.

S1 S2 S3 S4 S5 S6 S7 S8 S9

A C BE DF BDF BF AC BCE BDEF
B D ABCF ABE CDF DEF BD ABCDF CEF

ABCDEF CE BEF ACF ABDE ABD ABDF BCF ABCE
BCDEF E F ACD AEF ADF BCDF EF ACDF

CDEF DE ABC BCDE ACDE AE CF ABCDE ADE
AB CD ACEF ABDEF BC BDE ABCD ADEF BCD

ACDEF CDE ACE BCEF ABCEF ABEF AF AD ABF

The collineation matrix M used for the transformation is given by

M =




0 1 0 0 0 1

0 1 0 1 0 1

0 0 0 1 0 1

0 1 0 0 1 0

0 0 1 0 0 0

1 0 0 0 0 0




.

Next, one can fractionate the subspace S3 by choosing two generators (or points) from

this subspace. For example, the two added factors G and H can be assigned to the

columns corresponding to interactions BEF and ACE respectively. As a result, the

fraction defining contrast subgroup is

I = BEFG = ACEH = ABCFGH.

The fractional factorial design obtained is of resolution IV, and the word length pat-

tern for this design is (0, 2, 0, 1). Similar to Example 4.3, designs obtained as a result

of different choices of feasible collineation matrices and (G,H) from the corresponding

S3’s can be ranked using a criteria that suits the experimenter.
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The two cases, (i) when a new RDCSS has to be constructed to assign the added

factors (Example 4.3), and (ii) when the added factors are chosen from the RDCSSs

of the base factorial design (Example 4.4), do not cover all possible types of fractional

factorial design. In fact, one of the most common design, a fractional factorial split-

plot (FFSP) design is different than the previous two types of fractionation. In this

case, the added factors are assigned to the interactions of basic factors contained

in Si’s and P\(∪m
i=1Si), where Si’s are the RDCSSs of the base factorial design. For

example, in a 2(4+4)−(1+1) FFSP design, the base factorial design is a 23+3 full factorial

split-plot design. To construct the 2(4+4)−(1+1) FFSP design, one needs to choose one

generator each from S1 = 〈A,B,C〉 and P\S1, where P = 〈A,B,C,D, E, F 〉. If

the two added factors G and H are assigned to the columns of the model matrix

corresponding to ABC and CDEF respectively, then the fraction defining contrast

subgroup is

I = ABCG = CDEFH = ABDEFGH.

The resulting 2(4+4)−(1+1) FFSP design is of resolution IV, and the corresponding word

length pattern is (0, 1, 1, 0, 1).

The ranking of fractional factorial designs using different criteria is often compu-

tationally expensive. Several efficient algorithms have been proposed in the past to

obtain fractional factorial designs with randomization restrictions that are optimal

in some sense (e.g., Bingham and Sitter, 1999; Butler, 2004). The RDCSS structure

can be used to shorten the computer search for finding such optimal designs. The

complexity of the algorithm can be further reduced by using the collineation matrices

for relabelling the effect space.
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4.4 Further applications

In this section, we provide a few illustrative industrial examples. The examples pre-

sented in this section bring out some of the main features of the theory developed

here that can be used in practical settings.

Example 4.5. Consider the battery cell experiment in Vivacqua and Bisgaard (2004).

A company manufacturing electric batteries had problems in keeping the open circuit

voltage (OCV) within specification limit. In this experiment, the authors sorted 6 two-

level factors that potentially could have impact on OCV. It turns out that the batteries

are manufactured in a two-stage process: (a) assembly process, and (b) curing process.

Vivacqua and Bisgaard (2004) performed a 26 full factorial experiment with 4 factors

(A,B, C,D) at the assembly process stage and 2 factors (E, F ) at the curing process

stage. After investigating some options, they chose a strip-block arrangement to

optimize the resources.

Note that the effect space for this factorial layout is P = 〈A, ..., F 〉, and the two

stages of randomization are characterized by subspaces S1 = 〈A, ..., D〉 and S2 =

〈E,F 〉. Vivacqua and Bisgaard (2004) chose a design where they could not assess the

significance of the effects in S2, because S2 was not large enough to construct useful

half-normal plot (see Table 4.7).

Table 4.7: The ANOVA table for the battery cell experiment.

Effects Variance Degrees of Freedom

S1
22

26 σ
2
1 + 1

26 σ
2 15

S2
24

26 σ
2
2 + 1

26 σ
2 3

P\(S1 ∪ S2)
1
26 σ

2 45

In cases like this, one can use the strategies developed here to construct designs that

will allow assessment of more factorial effects. As discussed earlier in this thesis,
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to construct useful half-normal plots, the set of effects with equal variance should

contain more than six or seven effects. This can be done by introducing an extra

blocking factor δ at the second stage of the process, i.e., S2 = 〈E, F, δ〉. However,

from Theorem 4.3(a), there does not exist two disjoint subspaces S1 and S2 of size

24− 1 and 23− 1 respectively. In addition, Theorem 4.3(b) indicates that the overlap

between S1 and S2 is at least 24+3−6 − 1. Keeping this is mind, one chooses δ to be a

higher order interaction in S1, for example δ = ABCD. The corresponding analysis

of variance table would be as shown in Table 4.8.

Table 4.8: The grouping of factorial effects for the battery cell experiment.

Effects Variance Degrees of Freedom

S1 ∩ S2
22

26 σ
2
1 + 23

26 σ
2
2 + 1

26 σ
2 1

S1\(S1 ∩ S2)
22

26 σ
2
1 + 1

26 σ
2 14

S2\(S1 ∩ S2)
23

26 σ
2
2 + 1

26 σ
2 6

P\(S1 ∪ S2)
1
26 σ

2 42

One can use 3 separate half-normal plots to assess the significance of all the factorial

effects, but information about the 4-factor interaction ABCD is sacrificed.

Example 4.6. Consider the setup of the chemical experiment in Schoen (1999). The

goal of this experiment was to identify significant factors from a list of potential

candidates that were suspected to impact the yield of a catalyst synthesized on gauze.

This experimental procedure involved 5 stages: (i) Gauze preparation (H, J), (ii)

Mixing components (D, E, G, P,K, L,M, N, Q), (iii) Treatment of mixture (A,B),

(iv) Synthesis (C) and (v) End of synthesis (O, F ), where the letters in the bracket

represent the factors associated with each stage of the experiment. There were a

total of 16 two-level factors to be screened, and it was decided to run 32 trials.

They performed a fractional factorial block design using 8 blocks of size 4 each, the
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data collected was analyzed using two half-normal plots. The distribution of effects

according to their variance is shown in Table 4.9.

Table 4.9: The ANOVA table for the chemical experiment.

Effects Variance Degrees of Freedom

Between block effects 23

26 σ
2
1 + 1

26 σ
2 7

Other effects 1
26 σ

2 24

This experimental setting and its nature is an ideal scenario for a fractional fac-

torial split-lot design with 5 stages of randomization. The 5 stages of randomization

can be represented by subspaces S ′1, ..., S
′
5 contained in the effect space P of the cor-

responding base factorial design. The 5 stages of the process imposes restrictions

on the randomization of the trials: S ′1 ⊃ {H, J}, S ′2 ⊃ {D, E,G, P, K, L, M,N, Q},
S ′3 ⊃ {A, B}, S ′4 ⊃ {C} and S ′5 ⊃ {O, F}. In order to construct useful half-normal

plots, the subspaces should contain more than six or seven effects, i.e., |S ′i| ≥ 23 − 1.

Since S ′2 should consists of at least 9 effects, one must construct S ′2 with |S ′2| ≥ 24−1.

However, we know from Theorem 4.3(a) that there does not exist two disjoint sub-

spaces of size 7 each in P = PG(4, 2). Thus, there does not exist an appropriate

design that can be used to analyze this experiment in 32 runs.

If a 64-run design is performed instead, one can construct a design that satisfies

the requirements. Let, a, ..., f be the 6 independent basic factors, and P = 〈a, ..., f〉
be the effect space for the corresponding base factorial design. For two subspaces

S∗1 , S
∗
2 in P with |S∗1 | = 25 − 1 and |S∗2 | = 24 − 1, Theorem 4.3(b) implies that

|S∗1 ∩ S∗2 | ≥ 23 − 1. The most obvious choice for S∗1 and S∗2 are S∗1 = 〈a, b, c, d, e〉 and

S∗2 = 〈a, b, c, f〉. Now, define S2 = S∗2 and construct Si, i = 1, 3, 4, 5 from S∗1 such that

the overlaps Si∩Sj for i 6= j are avoided. For instance, S1 = 〈b, d, ce〉, S3 = 〈b, e, acd〉,
S4 = 〈b, cd, ade〉 and S5 = 〈b, de, ae〉 provide the minimum pairwise overlap of only

one effect. These subspaces can now be mapped into subspaces containing the original

factors by relabelling: a → D, b → CDEGH, c → HC, d → H, e → A and f → E. Of
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course, one could use collineation matrix approach to find an appropriate relabelling

such that the RDCSSs meet the experimenter’s requirements. By defining S ′i = Si

for all i, the subspaces S ′1 = 〈CDEGH,H, ACH〉, S ′2 = 〈CDEGH, D, E, HC〉, S ′3 =

〈CDEGH, A, CD〉, S ′4 = 〈CDEGH, C, ADH〉 and S ′5 = 〈CDEGH,AH, AD〉 satisfy

the size requirements, which allow the assessment of significance for all the factorial

effects except CDEGH. The analysis of variance table is shown in Table 4.10.

Table 4.10: The grouping of effects for the chemical experiment.

Effects Variance Degrees of Freedom

{CDEGH} 22

26 σ
2
2 + 23

26 (σ
2
1 + σ2

3 + σ2
4 + σ2

5) + 1
26 σ

2 1

S ′1\{CDEGH} 23

26 σ
2
1 + 1

26 σ
2 6

S ′2\{CDEGH} 22

26 σ
2
2 + 1

26 σ
2 14

S ′3\{CDEGH} 23

26 σ
2
3 + 1

26 σ
2 6

S ′4\{CDEGH} 23

26 σ
2
4 + 1

26 σ
2 6

S ′5\{CDEGH} 23

26 σ
2
5 + 1

26 σ
2 6

P\(∪5
i=1S

′
i)

1
26 σ

2 24

To assign the 10 additional factors to higher order interactions in S ′i, i = 1, ..., 5, one

should choose one fractional generator from S ′1, six from S ′2, one from S ′3 and two

from S ′5. Note that the choice of generators should not include CDEGH because this

effect cannot be assessed for significance. One set of generators is given by

B = ACD, F = AH, J = CDEG, K = CGH, L = DEG,

M = CDH, N = CDEH, O = ACEGH, P = CEH, Q = EG.

These generators may not be the best possible set of generators. One can choose a

different sets of generators using the rule (one generator from S ′1, six from S ′2, one

from S ′3 and two from S ′5) to construct an optimal 216−6 fractional factorial split-lot

design in this setting.
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The results discussed here help an experimenter in determining when a design exists,

and how to construct one if it exists. The focus of this chapter was on results and

algorithms related to the existence and construction of disjoint subspaces. When the

conditions for the existence of a set of disjoint subspaces are not met, overlap among

many pairs of subspaces cannot be avoided. Under these circumstance, one must be

careful in deciding on the size of the overlap as well as the factorial effects that belong

to the intersecting set. In the next chapter, we develop factorial and fractional factorial

designs with randomization restrictions where the required number of RDCSSs, m, is

greater than the size of a maximal set of disjoint subspaces, |S|.



Chapter 5

Factorial Designs and Stars

An ideal choice for the randomization structure of a 2p full factorial design is to have

disjoint RDCSSs such that the Si’s corresponding to the RDCSSs are large enough

to construct useful half-normal plots. Often, there are limitations on the number

and size of the disjoint subspaces contained in the effect space P = PG(p − 1, 2).

As described in the previous chapter, under these circumstances one would like to

find a set of disjoint subspaces for constructing RDCSSs with different sizes. For the

existence of a set of m disjoint (t−1)-dimensional subspaces, the conditions developed

in Chapter 4 are based on the decomposition of p as p = kt + s, where k, t and s are

nonnegative integers. In this chapter, we assume that s is strictly positive, i.e., there

does not exist a (t− 1)-spread of P .

The results developed in Chapter 4 focus on the factorial designs where overlaps

among the RDCSSs are avoided. However, the desired number of disjoint subspaces

in the effect space P often can exceed the size of a maximal partial (t − 1)-spread,

which further causes RDCSSs to overlap. So, a few of the RDCSSs for different stages

of randomization must share some of the randomization restriction factors. This is

the main focus of this chapter.

When a (t − 1)-spread of PG(p − 1, 2) does not exist and m > |S|, the overlap

71
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among at least a few of the RDCSSs cannot be avoided. Given this situation, one

possibility is to maximize the number of disjoint RDCSSs, and then obtain a set

of subspaces that minimize the size of the overlap among the non-disjoint RDCSSs.

This combination of disjoint and overlapping subspaces of PG(p− 1, 2) resembles the

geometric structure called a (t− 1)-cover of P (Beutelspacher, 1975).

Recall that assessing the factorial effects for an unreplicated factorial experiment

requires constructing half-normal plots of size more than six or seven each. Since a

(t−1)-cover approach minimizes the overlap, one may have to sacrifice the assessment

of factorial effects present in multiple RDCSSs. For full factorial designs, if the effects

present in multiple RDCSSs are higher order interactions, one may not be too con-

cerned. However, if the number of effects in the intersection is large, then the loss of

information relating to lower order effects cannot be avoided. In this case, sacrificing

the assessment of all the effects in the overlap is not desirable.

It may appear that overlap among RDCSSs is a problem for the analysis of un-

replicated factorial designs with randomization restrictions. It turns out that one

can use an alternative strategy that uses overlapping among distinct subspaces as

an advantage, and allows one to assess the significance of all the factorial effects in

the effect space. For this purpose, we propose a geometric structure called a star,

which consists of a set of distinct (t− 1)-dimensional subspaces of PG(p− 1, 2) with

a common overlap on a (r − 1)-dimensional subspace in P .

This chapter is organized as follows. In Section 5.1, the focus is on the use of

(t− 1)-covers of the effect space P to construct designs when m > |S|. The existence

and construction of stars are developed in Section 5.2.1. The relationship between

stars and (t − 1)-covers is established in Section 5.2.2. A closer look at the class of

2p factorial designs with p = kt + s shows that the designs can be classified into two

different groups: (a) k = 1 and (b) k > 1. In the first case, Theorem 4.1 shows

that there does not exist even two disjoint (t − 1)-dimensional subspaces. Stars are

specifically beneficial for such cases. For the case k > 1, the maximum number of
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disjoint (t − 1)-dimensional subspaces available in PG(p − 1, 2) is often large (for

details, see Lemma 4.4). Therefore, for smaller experiments, the desired number of

RDCSSs (m) is usually less than the size of a maximal partial (t − 1)-spread S.

In contrast, for full factorial experiments with large run-size and fractional factorial

experiments with many factors, m can exceed |S|. A generalization of stars which

entertains large designs, called a finite galaxy, is proposed in Section 5.2.3. Again,

the results developed here focus on only two level factorial designs, but are easily

extended for q level factorial and regular fractional factorial designs.

5.1 Minimum overlap

In this section, geometric structures available in PG(p − 1, 2) are used to construct

designs that maximize the number of disjoint subspaces for constructing RDCSSs,

and minimize the size of overlaps among the intersecting subspaces. A closely related

geometric structure is called a (t− 1)-cover (Eisfeld and Storme, 2000) of P . A cover

of the effect space P is a set of distinct subspaces in P that contains all the factorial

effects.

Definition 5.1. A (t − 1)-cover C of PG(p − 1, 2) is a set of (t − 1)-dimensional

subspaces of PG(p− 1, 2) which covers all the points of PG(p− 1, 2).

Finding a set of subspaces that covers the entire effect space can be a stronger require-

ment compared to finding a pre-specified number of distinct subspaces. Nonetheless,

if it is easy to construct a larger set of subspaces, one can always obtain an appro-

priate subset to construct RDCSSs as per the requirement. For example, Lemma

4.4 guarantees the existence of 17 disjoint subspaces of size 7 each in the base fac-

torial design of a 220−13 regular fractional factorial layout. A 2-cover C of the base
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factorial design with maximum number of disjoint subspaces consists of 16 disjoint

subspaces and a set of 3 intersecting subspaces. Thus, if the experimenter needs less

than 19 RDCSSs, one can take an appropriate subset of C. Recall that, for the dis-

cussion in this chapter, m is supposed to be larger than the size of a maximal partial

(t − 1)-spread of P . Similar to Chapter 4, the subspaces obtained from a standard

(t − 1)-cover construction technique may not satisfy the requirements for RDCSSs.

Thus, the columns of the model matrix require relabelling to get the desired design.

From the definition of a (t − 1)-cover, it is apparent that there exists more than

one set of (t− 1)-dimensional subspaces that covers the effect space P . However, we

are interested in (t−1)-covers that maximize the number of disjoint subspaces. These

(t− 1)-covers are called minimal (t− 1)-covers of P (Eisfeld and Storme, 2000).

Definition 5.2. A set of (t − 1)-dimensional subspaces of P = PG(p − 1, 2) is said

to be a minimal (t − 1)-cover C of P if there does not exist a (t − 1)-cover C ′ of P
such that C ′ is a proper subset of C.

In other words, the set of subspaces in a minimal (t − 1)-cover cannot be further

shortened and still form a cover. Consequently, a minimal (t− 1)-cover C consists of

a maximum number of disjoint (t− 1)-dimensional subspaces of P that forms a cover

of P . The following result due to Eisfeld and Storme (2000) provides a lower bound

on the size of a (t− 1)-cover.

Lemma 5.1. A (t − 1)-cover of P = PG(p − 1, 2) contains at least 2s 2kt−1
2t−1

+ 1 ele-

ments, where p = kt + s for 0 < s < t < p.

A minimal (t− 1)-cover that attains this lower bound can be constructed using con-

struction techniques similar to that of a partial (t − 1)-spread developed in Section
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4.2.2. The next example illustrates the use of a minimal (t− 1)-cover in constructing

factorial designs when the desired number of subspaces for RDCSSs (m) is more than

the maximum number of disjoint subspaces (|S|) and less than the size of a minimal

(t− 1)-cover C.

Note that, for a regular fractional factorial design with at most 5 basic factors,

there does not exist even a pair of disjoint subspaces large enough to construct use-

ful half-normal plots. The regular fractional factorial designs with 6 basic factors is

not considered here because there exists a 2-spread of P , which is not the focus of

this chapter. Therefore, a two-level regular fractional factorial design, which allows

construction of at least two disjoint RDCSSs large enough to perform useful half-

normal plots where a (t− 1)-spread does not exist, consists of at least 7 basic factors.

Since multiple experimental units are processed together at each stage of randomiza-

tion, designs with randomization restrictions have usually much larger run-size than

completely randomized designs. Therefore, these designs are useful in practice.

Example 5.1. Consider a 220−13 fractional factorial split-lot design with 18 stages of

randomization. Suppose that the restrictions imposed by the experimenter on different

stages of randomization are characterized by S1 ⊃ {F1, F2, F3} and Si ⊃ {Fi+2}
for i = 2, ..., 18. To get useful half-normal plots, each RDCSS should contain the

necessary number of effects. Recall that the corresponding base factorial design is the

full factorial design constructed from the basic factors. By using Lemma 4.4 for the

base factorial design, p = 7 and t = 3 implies that there exist only 2(63/7)− 2 + 1 =

17 disjoint 2-dimensional subspaces. Therefore, for constructing 18 RDCSSs of size

7 each, one can have at most 16 disjoint subspaces. The other two 2-dimensional

subspaces must overlap.

It turns out that there exists a minimal 2-cover of P which consists of 16 disjoint

subspaces and a set of 3 non-disjoint subspaces overlapping on a common subspace

of size 3. Thus, 2 out of the 3 intersecting subspaces have to chosen to construct the
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desired RDCSS. However, the significance of the factorial effects contained in the 2

intersecting RDCSSs cannot be assessed if the factorial experiment is unreplicated.

Let Si, i = 1, ..., 16 represent the disjoint RDCSSs, and S17, S18 be the two overlapping

RDCSSs. Then, the analysis of variance is shown in Table 5.1.

Table 5.1: The ANOVA table for the 220−13 split-lot design in a 18-stage process.

Effects Variance Degrees of Freedom

S1
24

27 σ
2
1 + 1

27 σ
2 7

...
...

...
...

...
...

S16
24

27 σ
2
16 + 1

27 σ
2 7

S17\(S17 ∩ S18)
24

27 σ
2
17 + 1

27 σ
2 4

S18\(S17 ∩ S18)
24

27 σ
2
18 + 1

27 σ
2 4

S17 ∩ S18
24

27 (σ
2
17 + σ2

18) + 1
27 σ

2 3

P\ (∪18
i=1Si)

1
27 σ

2 4

Since the total number of distinct (t− 1)-dimensional subspaces in a minimal (t− 1)-

cover C is less than any other (t − 1)-cover, the non-disjoint subspaces overlap on a

smallest possible intersecting set. If the size of the common overlap in Example 5.1

was smaller (e.g., |S17 ∩ S18| = 1), then by assigning a higher order interaction to

the effect in the intersecting set one could sacrifice the assessment of this one effect

and assess the significance for the rest of the effects. Here, it is unlikely that all

15 effects in S17 ∪ S18 and P\ (∪18
i=1Si) are negligible. Thus, one would not want to

sacrifice the assessment of all these effects. In particular, for constructing regular

fractional factorial designs, it is often preferable to assign added factors to higher

order interactions of the corresponding base factorial design. Therefore, it is desirable

to develop a new strategy to assess the significance of more factorial effects.

Overlap among the RDCSSs may appear to cause problems in assessing the sig-

nificance of factorial effects if the factorial design is unreplicated. Next, we develop
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a new overlapping strategy resulting in a geometric structure called a star. When

k = 1 (i.e., there does not exist even a pair of disjoint (t− 1)-dimensional subspaces),

a star is geometrically similar to a minimal (t− 1)-cover but flexible enough to allow

different sizes of the common overlap.

5.2 Overlapping strategy

In this section, we first highlight the features of the RDCSS structure of a factorial

design that are required to efficiently assess the significance of factorial effects. This

further motivates the geometric structure of the new design called a star. Necessary

and sufficient conditions will be developed to establish the existence of stars. Next, an

algorithm is proposed for constructing stars. Since the geometry of stars is similar to

that of a minimal (t−1)-cover, we establish a relationship between the two geometric

structures. Finally, the notion of stars is generalized to accommodate larger designs.

In order to use the overlap among the RDCSSs to our advantage, the size of the

overlaps themselves should be large enough. The idea here is that when an overlap

must occur, we shall require the number of effects in the overlap to be large enough

to construct a separate half-normal plot. Furthermore, one must remember that the

variance of an effect estimate depends on its presence in different RDCSSs (Theorem

3.3). The following properties summarize the requirements of a good factorial design

when overlap among RDCSSs cannot be avoided.

• The size of each overlap should be more than six or seven. Recall from Chapter 2

that the factorial effects with equal variance are plotted on separate half-normal

plots. In addition, more than six or seven effects are required to construct an

informative half-normal plot (Schoen, 1999). Therefore, from Theorem 3.3, the

effects contained in an overlap have to be plotted together on a separate half-

normal plot. If Sij = Si ∩ Sj is non-null, then the size of Sij should be at least
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23 − 1. As a result, the size of Si and Sj should be more than 24 − 1.

• All non-disjoint subspaces are preferred to have a common overlap. Let Si,

Sj and Sk be three RDCSSs such that Sij, Sik and Sjk are non-empty, where

Si1i2 = Si1 ∩ Si2 , for i1, i2 ∈ {i, j, k}. Then, the factorial effects in Si\(Sij ∪ Sik)

have distribution that differs from those of the factorial effects in Sij or Sik

(Theorem 3.3). Thus, if all the pairwise intersections among the m RDCSSs

are different,
(

m
2

)
+ m separate half-normal plots are required. The geometric

structure formed as a result is known as the conclave of planes (Shaw and Maks,

2003). If all the overlaps are identical, only m + 1 distinct half-normal plots are

needed to assess the significance of factorial effects contained in the RDCSSs.

In addition to the inefficiency in assessing the factorial effects on a process, a mini-

mal (t − 1)-cover approach addresses subspaces of equal size only. The RDCSSs are

often characterized by the experimenters and are likely to be of different sizes. The

next example (Vivacqua and Bisgaard, 2004) presents a scenario where subspaces of

different sizes are desirable.

Example 5.2. Consider the battery cell experiment described in Example 4.5. Here,

the experimenter had to sacrifice the assessment of the effect in overlap between S1

and S2. There exists a better strategy that uses the overlapping between subspaces as

an advantage, and leads one to construct a design that allows the assessment of all the

factorial effects in the effect space. Of course, this is not a big issue because it is likely

that the 4-factor interaction (ABCD) is negligible. However, if this was an 8-factor

design with 64 runs with two additional factors G and H in the curing stage, one

would have to choose two fractional generators from S2. Under these circumstances,

assigning two interactions from S2 = 〈E, F,ABCD〉, considered in Example 4.5, may

cause ABCD to be aliased with a 2-factor interaction. Since the size of overlap

between S1 and S2 is too small to construct half-normal plots, one would have to
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sacrifice information on a 2-factor interaction. Instead, one can allow a larger overlap

between S1 and S2 to construct useful half-normal plots. For example, by defining

S1 = 〈A, BC, CD, AB〉 and S2 = 〈E, F,BC, CD, AB〉 with the additional factor being

G = ABEF and H = CDF , the resulting design allows more enlightening analysis.

The grouping of effects based on their distribution under the null hypothesis is shown

in Table 5.2. Specifically, notice that all of the factorial effects can be assessed using

4 half-normal plots.

Table 5.2: The distribution of factorial effects for the battery cell experiment.

Effects Variance Degrees of Freedom

S1 ∩ S2
22

26 σ
2
1 + 21

26 σ
2
2 + 1

26 σ
2 7

S1\(S1 ∩ S2)
22

26 σ
2
1 + 1

26 σ
2 8

S2\(S1 ∩ S2)
21

26 σ
2
2 + 1

26 σ
2 24

P\(S1 ∪ S2)
1
26 σ

2 24

Other than the two properties described above, it is preferable to have a factorial

design that entertains unequal sized RDCSSs. Considering the three features (two

properties on the overlapping pattern among the RDCSSs, and the flexibility among

the sizes of the different RDCSSs), we propose stars for full factorial and regular

fractional factorial designs with p basic factors.

5.2.1 Stars

The notion of stars was first introduced by Shaw and Maks (2003) in a specific context

for a set of 1-dimensional subspaces with a common overlap on a point in P . In

this section, we formalize the notion of stars and further generalize this concept for

(t − 1)-dimensional subspaces of P = PG(p − 1, 2). First, we discuss the different

components of a star for both equal and unequal sized subspaces, then the existence

and construction of stars are established.
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A star consists of two components: (a) a set of (t − 1)-dimensional subspaces

(πt’s) in P , that are referred to as rays of the star, and (b) the common overlap on a

(r − 1)-dimensional subspace (πr) is called the nucleus of the star, where r < t. The

star formed from these subspaces (or rays) constitutes a (t − 1)-cover of P if these

subspaces span the effect space P . Next, we define the geometric structure called a

star in a general setup.

Definition 5.3. A star St(µ, πt, πr) is a set of µ rays consisting of (t−1)-dimensional

subspaces (πt’s) in P, and the nucleus πr, a (r−1)-dimensional subspace, where r < t.

If a star St(µ, πt, πr) exists, the maximum number of rays in St(µ, πt, πr) is given by

µ = (2p−2r)/(2t−2r). Consequently, the smaller the nucleus is, the fewer the number

of rays (µ). The following example illustrates the details of stars.

Example 5.3. Consider the setup of the plutonium example in Bingham et al. (2006).

The authors performed a designed experiment to identify the factors which have sig-

nificant impact on the plutonium alloy. They used a 25 full factorial design with 3

stages of randomization characterized by S1 ⊃ {A,B}, S2 ⊃ {C} and S3 ⊃ {D,E}.
The factors (A,B) represent the casting mechanism for creating a type of plutonium

alloy, and (C, D, E) are the heat treatments applied to the three stages of the manu-

facturing process. The data analysis using a half-normal plot approach requires each

RDCSS to have more than six or seven effects. From Theorem 4.1 , it is obvious that

there does not exist even two disjoint subspaces of size 7 each in this effect space.

Bingham et al. (2006) used an exhaustive computer search to reach this conclusion.

They chose to sacrifice the assessment of one effect ABCDE. The design proposed

by Bingham et al. (2006) is equivalent to a St(5, π3, π1). By defining the nucleus of

a star to be the 0-dimensional subspace, π1 = {ABCDE}, and assuming that the
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rays of the star are 2-dimensional subspaces of P , the maximum number of rays is

µ = 25−21

23−21 = 5. The five rays S1 = 〈A,B, πr〉, S2 = 〈C, AD, πr〉, S3 = 〈D, E, πr〉,
S4 = 〈AC, AE, πr〉 and S5 = 〈BC, BD, πr〉 constitute the star. The data analysis was

done using four separate half-normal plots for the four sets of effects given by Si\πr,

for i = 1, ..., 3 and P\(∪3
i=1Si) (see Table 5.3).

Table 5.3: The ANOVA table for the plutonium alloy experiment.

Effects Variance Degrees of Freedom

S1\{ABCDE} 22

25 σ
2
1 + 1

25 σ
2 6

S2\{ABCDE} 22

25 σ
2
2 + 1

25 σ
2 6

S3\{ABCDE} 22

25 σ
2
3 + 1

25 σ
2 6

{ABCDE} 22

25 (σ
2
1 + σ2

2 + σ2
3) + 1

25 σ
2 1

P\(S1 ∪ S2 ∪ S3)
1
25 σ

2 12

Instead of sacrificing the assessment of one effect, if all the factorial effects are to be

assessed, the size of the common overlap among the RDCSSs has to be large enough,

e.g., |πr| ≥ 7 and that further implies that |Si| ≥ 15. It turns out that one can

construct a star with the desired features. For r = 3 and t = 4, the number of rays

is bounded above by µ = 25−23

24−23 = 3. Let the nucleus be πr = 〈AB, DE,ACD〉.
Then, one feasible choice for the set of three rays is S1 = 〈A, πr〉, S2 = 〈C, πr〉 and

S3 = 〈D, πr〉. Since the resulting star St(3, π4, π3) covers P , only 4 half-normal plots

are required to analyze the data. The analysis of variance is shown in Table 5.4.

Table 5.4: The sets of effects having equal variance in the 25 split-lot design.

Effects Variance Degrees of Freedom

S1\πr
21

25 σ
2
1 + 1

25 σ
2 8

S2\πr
21

25 σ
2
2 + 1

25 σ
2 8

S3\πr
21

25 σ
2
3 + 1

25 σ
2 8

πr
21

25 (σ
2
1 + σ2

2 + σ2
3) + 1

25 σ
2 7
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The overlapping among the RDCSSs turned out to be an advantage for the assessment

of factorial effects. However, the effects in the common overlap (πr) have relatively

large variance. That is, there is a tradeoff between the ability to assess the significance

of factorial effects and the variance of the effect estimates. Thus, if the design under

consideration is an unreplicated full factorial, one may prefer to sacrifice a few effects

by minimizing the overlap. In some cases, availability of stars with different sized

nuclei can be useful. For instance, when a regular fractional factorial design has to be

constructed from the base factorial design (e.g., in a three-stage 26−1 split-lot design),

the added factors are assigned to the columns corresponding to preferably higher order

interactions of the basic factors.

The notion of stars can be further generalized for a set of subspaces of unequal

sizes with a common overlap. Without loss of generality, let µi be the number of

(ti − 1)-dimensional rays in P = PG(p − 1, 2), for i = 1, ..., k, and the common

overlap be a (r − 1)-dimensional subspace in P . Such a star can be denoted by

St(µ1, ..., µk, πt1 , ..., πtk , πr). Recall that if ti +tj ≤ p for any pair i, j, then there exists

a set of disjoint subspaces (Theorem 4.3), which is not the focus in this chapter, and

thus we assume that 0 < r < ti < p and ti > p/2 for all i ∈ {1, ..., k}.
A star is said to be balanced if all of its rays are of same size, while a star with

different sized rays is called an unbalanced star. The geometric structure of two stars

can be compared by ordering their rays according to its size. Without loss of gen-

erality, let Ω be a star St(µ1, ..., µk, πt1 , ..., πtk , πr) in P = PG(p − 1, 2) such that

r < t1 < t2 < · · · < tk < p. Next, we develop the geometric equivalence between two

stars Ω1 and Ω2.

Definition 5.4. Two stars Ω1 and Ω2 in PG(p− 1, 2), with nuclei of same size, are

said to be geometrically equivalent if

(t
(1)
1 , ..., t

(1)
k ) = (t

(2)
1 , ..., t

(2)
k ) and (µ

(1)
1 , ..., µ

(1)
k ) = (µ

(2)
1 , ..., µ

(2)
k ).
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Here, the superscripts (1) and (2) correspond to the parameters of star Ω1 and Ω2

respectively. Although the stars have a flexible geometric structure that uses over-

lapping among the RDCSSs to our advantage, and are generalizable for subspaces of

different dimensions, the existence of stars is non-trivial. Even for a balanced star, the

existence of a star St(µ, πt, πr) is not guaranteed for any t and r. For example, there

does not exist a balanced star with 5-dimensional rays and a 2-dimensional nucleus

that covers the effect space P = PG(6, 2).

Next, we propose conditions for the existence of stars. As illustrated in Example

5.3, if there exists a star that covers the entire effect space, one can select an appropri-

ate subset of rays to construct the desired set of RDCSSs. Thus, the result presented

here focus on the existence of stars that cover P .

Theorem 5.1. If there exists a star St(µ1, ..., µk, πt1 , ..., πtk , πr) in P = PG(p− 1, 2),

the positive integers µi, ti, i = 1, ..., k and r satisfy the following relation:

(2p−r − 1) = µ1(2
t1−r − 1) + µ2(2

t2−r − 1) + · · ·+ µk(2
tk−r − 1).

Proof: Suppose there exists a star St(µ1, ..., µk, πt1 , ..., πtk , πr) that is also a cover of

the effect space P . Then,

2p − 1

2− 1
= µ1

2t1 − 2r

2− 1
+ · · ·+ µk

2tk − 2r

2− 1
+

2r − 1

2− 1
, (5.1)

which simplifies to (2p−r − 1) =
∑k

i=1 µi(2
ti−r − 1). 2

The total number of rays in a star St(µ1, ..., µk, πt1 , ..., πtk , πr) is µ = µ1 + · · · + µk.

That is, at most µ distinct RDCSSs can be constructed using the rays of a star

St(µ1, ..., µk, πt1 , ..., πtk , πr). Note that the condition in Theorem 5.1 is a necessary

condition and may not be sufficient. That is, the existence of positive integers µi, ti

for i = 1, ..., k and r which satisfy (2p−r − 1) =
∑k

i=1 µi(2
ti−r − 1) does not guarantee
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the existence of a star St(µ1, ..., µk, πt1 , ..., πtk , πr). The following example illustrates

the underlying reason.

Example 5.4. Consider a 26 full factorial design with 3 stages of randomization. Let

the RDCSSs be such that |S1| = 7 and |S2| = |S3| = 15. From Theorem 4.1,

it is obvious that overlapping among the RDCSSs cannot be avoided. Although

the quantities µ1 = 1, µ2 = 4, t1 = 3, t2 = 4 and r = 1 satisfy the relation:

2p − 1 = µ1(2
t1 − 2r) + µ2(2

t2 − 2r) + 2r − 1, there does not exist a St(1, 4, π3, π4, π1).

This is obvious from Theorem 4.1, which says that the minimum overlap between the

two subspaces S2 and S3 is at least 3. However, as we shall see, all is not lost.

By imposing a stronger condition to the special case (t1 = · · · = tk = t), the result can

be further refined to become both necessary and sufficient. This modified result has

similar spirit as the necessary and sufficient condition (André 1954) for the existence

of a (t− 1)-spread of PG(p− 1, 2).

Theorem 5.2. There exists a star St(µ, πt, πr) in P = PG(p − 1, 2), if and only if

(t− r) divides (p− r), for 0 < r < t ≤ p. Furthermore, if (t− r) divides (p− r), the

number of rays is µ = (2p−r − 1)/(2t−r − 1).

Proof: If there exists a star St(µ, πt, πr) in P , then the maximum number of rays is

µ =
|PG(p− 1, 2)| − |PG(r − 1, 2)|
|PG(t− 1, 2)| − |PG(r − 1, 2)| =

2p − 2r

2t − 2r
=

2p−r − 1

2t−r − 1
.

Note that µ is an integer if and only if (t− r) divides (p− r). Since µ(|PG(t−1, 2)|−
|PG(r−1, 2)|)+ |PG(r−1, 2)| = |PG(p−1, 2)|, the star St(µ, πt, πr) is a (t−1)-cover

of P = PG(p− 1, 2).
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From Theorem 4.3, there exists an (r − 1)-dimensional subspace U1 in P =

PG(p− 1, 2) that is disjoint from an (p− r− 1)-dimensional subspace U2 in P . When

(t− r) divides (p− r), Lemma 4.1 determines the existence of a (t− r − 1)-spread S
of a U2 with |S| = (2p−r − 1)/(2t−r − 1) = µ. Thus, the µ distinct (t− 1)-dimensional

rays of St(µ, πt, πr) can be constructed by combining the individual elements of the

spread S with the nucleus πr = U1. 2

Corollary 5.1. For positive integers t < p and r = t − 1, there always exists a star

St(µ, πt, πr) contained in P, where µ = |PG(p− t, 2)|.

For instance, both sets of parameters in Example 5.2 (t = 3, r = 1, p = 5 and

t = 4, r = 3, p = 5) satisfy the condition (t − r) divides (p − r). Of course, these

new designs called stars are useful to a practitioner only if they can be constructed.

Assuming the existence of a star, we propose an algorithm to construct a star Ω,

where all the µ rays are (t− 1)-dimensional subspaces of PG(p− 1, 2).

Construction 5.1. Let Ω be a star in P = PG(p − 1, 2), which consists of µ rays

denoted by {Si}µ
i=1, and a nucleus πr, where |Si| = 2t − 1, for all i and r < t. The

following is the outline of an algorithm for constructing the star Ω.

1. Choose r independent factorial effects from the effect space P to construct the

nucleus πr of size 2r − 1.

2. Construct a star Ω0 = St(µ0, πr+1, πr) by defining a nucleus R0 = πr and

µ0 = 2p−r − 1 distinct rays Rj = 〈δj, πr〉, where δj ∈ P\
(∪j−1

l=0 Rl

)
, j = 1, ..., µ0.

There exists a set of δi’s such that U2 = {δ1, ..., δµ0} is a (p− r− 1)-dimensional

subspace of P that is disjoint from πr. This can instead be obtained by arbi-

trarily constructing a (p− r − 1)-dimensional subspace U2 that is disjoint from

U1 = πr, and then by relabelling the points of P to get the desired rays.
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3. Since (t − r) divides (p − r), there exists a (t − r − 1)-spread S of U2 with

|S| = (2p−r− 1)/(2t−r− 1) = µ. Let J1, ..., Jµ be the elements of S. This spread

S can be constructed using the technique shown in Section 4.2.1.

4. The required set of µ rays are Si = 〈Ji, πr〉, i = 1, ..., µ.

The resulting structure is the desired star Ω = St(µ, πt, πr). One might be tempted

to take a similar approach for constructing an unbalanced star. Instead of using a

spread of U2, if a sequential approach is taken for constructing a set of disjoint Ji’s

from the elements of U2, it may lead to overlap among the Ji’s. The following example

illustrates the construction of a balanced star St(µ, πt, πr).

Example 5.5. Consider the setup in Example 5.3. Here, the existence of a star

St(3, π4, π3) in P = PG(4, 2) is guaranteed since it satisfies the sufficiency condi-

tion (t − r) divides (p − r) of Theorem 5.2. The experimenter’s requirement for

the three RDCSSs were S1 ⊃ {A,B}, S2 ⊃ {C} and S3 ⊃ {D, E}. Thus, hav-

ing the freedom to construct the nucleus first, one can choose r independent higher

order effects to construct a (r − 1)-dimensional subspace. For example, consider

R0 = πr = 〈AB, DE,ACD〉. The effects δ1, ..., δ3 can be chosen sequentially as de-

scribed in Step 2. Considering the experimenter’s requirement the obvious choice for

δ1 ∈ P\R0 would be δ1 = A. Then, δ2 ∈ P\(R0 ∪ R1) can be chosen to be δ2 = C,

which matches the requirement imposed on the RDCSS defined by S2. Lastly, the

effects in P\(R0∪R1∪R2) forms a subspaces that satisfies the desired criterion on the

third RDCSS. As a result, the subspaces S1 = 〈δ1, πr〉, S1 = 〈δ2, πr〉 and S1 = 〈δ3, πr〉
constitute a star St(3, π4, π3).

This star can also be constructed by selecting the two disjoint subspaces U1 =

〈AB, DE, ACD〉 and U2 = 〈A, C〉 as mentioned in the proof of Theorem 5.2. Since

p − r = 2 and t − r = 1, the only 0-spread of U2 is the trivial spread, the set of all

points of U2. Hence, the rays of the star would be S1 = 〈A,U1〉, S1 = 〈C,U1〉 and
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S1 = 〈AC,U1〉, which is the same as above.

In Example 5.5, the choice of U1 and U2 do not have to be so specific. One can start

with an obvious choice and then use an appropriate relabelling to get the desired

design. For the rays constructed here, all of the factorial effects (δi’s) were chosen to be

main effects. However, based on the imposed restrictions one can choose main effects

or interactions. Different choices of factorial effects in the construction of RDCSSs

lead to different randomization restrictions. For example, in block designs RDCSSs

do not contain main effects, whereas for a split-lot designs, one or more factors are

assigned to the subspaces representing RDCSSs. The construction provided above is

very useful, because one can use the restrictions imposed on the RDCSSs to choose

the factorial effects for constructing rays of a star.

Although the experimenter has some control over the choice of effects in construct-

ing a nucleus πr and the star Ω0 = St(µ0, πr+1, πr), the construction of spread required

in Step 3 limits the choices to some extent. Thus, if necessary, one can find an ap-

propriate relabelling in a similar manner as described in Section 4.2.1 to transform

the star (Ω) such that the resulting star (Ω′) satisfies the desired features. The next

example demonstrates the usefulness of stars in a real application.

Example 5.6. In the chemical experiment presented in Example 4.6, the original exper-

imental setting required |S ′i| ≥ 23−1 for i = 1, 3, 4, 5 and |S ′2| ≥ 24−1. Assuming that

the allowed run-size is 64, Theorem 5.2 guarantees the existence of a star St(5, π4, π2).

The rays of this star can be used to construct Si’s for the base factorial design. Any

two distinct Si overlaps on the 1-dimensional nucleus of the star. One can use the

fractionation technique described in Section 4.3 to choose a good set of fractional gen-

erators. The ANOVA table is shown in Table 5.5. This design is specifically better if

suppose more additional factors are introduced in other stages of the process. In the
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design proposed in Example 4.6, only S2 contains enough interactions to choose frac-

tional generators from. While, in the design proposed here, one can choose fractional

generators from any of the five RDCSSs.

Table 5.5: The ANOVA table for the battery cell experiment.

Effects Variance Degrees of Freedom

∩5
i=1S

′
i

22

26 (σ
2
1 + · · ·σ2

5) + 1
26 σ

2 3

S ′1\(∩5
i=1S

′
i)

22

26 σ
2
1 + 1

26 σ
2 12

S ′2\(∩5
i=1S

′
i)

22

26 σ
2
2 + 1

26 σ
2 12

S ′3\(∩5
i=1S

′
i)

22

26 σ
2
3 + 1

26 σ
2 12

S ′4\(∩5
i=1S

′
i)

22

26 σ
2
4 + 1

26 σ
2 12

S ′5\(∩5
i=1S

′
i)

22

26 σ
2
5 + 1

26 σ
2 12

Since the common overlap is not large enough to construct useful half-normal plots,

one has to sacrifice the assessment of the three effects contained in ∩5
i=1S

′
i. The

significance for the rest of the effects can easily be assessed using half-normal plots.

The construction of Si’s for the five stages of randomization follows from Construction

5.1. The algorithm starts by first choosing a 1-dimensional nucleus π2. Without loss

of generality, let π2 = 〈e, f〉. Then, S ′0 = 〈a, b, c, d〉 is disjoint from π2. Lemma 4.1

implies that there exists a 1-spread S of S ′0. The elements of the 1-spread S are shown

in Table 5.6.

Table 5.6: The elements of S using cyclic construction.

S ′′1 S ′′2 S ′′3 S ′′4 S ′′5
d c b a cd
bc ab acd bd ac
bcd abc abcd abd ad

The subspaces Si = 〈S ′′i , π2〉 for i = 1, ..., 5, are 3-dimensional subspaces of P , and

the pairwise overlap among Si’s is π2. To bring this construction into our setting, we
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relabel the factors as: a → C, b → A, c → D, d → H, e → HDO and f → ACDE.

This relabelling results in π∗2 = 〈HDO, ACDE〉. Note that the relabelling is not

arbitrary, and it depends on the requirement on the restrictions on different stages of

randomization in the experiment. The relabelled spread S∗ is presented in Table 5.7.

Table 5.7: The elements of the relabelled spread.

S∗1 S∗2 S∗3 S∗4 S∗5
H D A C HD

AD AC CDH AH CD
ADH ACD ACDH ACH CH

The required RDCSSs S ′i, i = 1, ..., 5 are now given by S ′i = 〈S∗i , π∗2〉, for all i. Lastly,

these S ′is have to be fractionated by choosing 1 generator from S ′1, 7 from S ′2, 1 from

S ′3 and 1 from S ′4. The resulting structure is the required design. Of course, one has

to be careful in selecting these fractional generators, because they will impact the

word-length pattern and hence the optimality criteria. As mentioned earlier, assess-

ment on only three effects (HDO, ACDE,ACEHO) have to be sacrificed, and the

rest of the factorial effects in P can be assessed using 5 half-normal plots.

So far in this section, we assumed that there does not exist even two disjoint RDCSSs

in the effect space. For equal sized RDCSSs, this is equivalent to the assumption

k = 1, where the effect space is the set of all factorial effects in a 2p full factorial

layout for p = kt + s and 0 < s < t. As a result, all the (t− 1)-dimensional subspaces

in any (t − 1)-cover are also non-disjoint. Under these circumstances, the geometric

structure of a minimal (t − 1)-cover is similar to that of a balanced star that covers

the effect space P . Next, we establish the relationship between minimal (t−1)-covers

and balanced stars.
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5.2.2 Balanced stars and minimal (t− 1)-covers

This section focuses on the relationship between balanced stars and minimal (t− 1)-

covers of PG(p − 1, 2). In a 2p factorial layout with p = kt + s, if k = 1 then we

show that a minimal (t − 1)-cover C of PG(p − 1, 2) is a special case of a balanced

star St(µ, πt, πr). That is, there exists a positive integer r such that (t − r) divides

(p − r), and any two elements of C intersect on a common subspace of size 2r − 1.

First, we establish the relationship between the two geometric structures. Then, for

the k > 1 case, we propose the use of balanced stars to modify a minimal (t−1)-cover

to construct designs that are more efficient than a standard minimal (t− 1)-cover for

assessing the significance of the factorial effects.

Theorem 5.3. For a projective space P = PG(p − 1, 2), if p = kt + s and t > p/2

then a minimal (t− 1)-cover of P is equivalent to a star St(2s + 1, πt, πt−s) in P.

The proof is shown in a more general setup (Theorem 5.4). According to this the-

orem, a minimal (t − 1)-cover of P , for t > p/2, is geometrically equivalent to a

star. Subsequently, the requirement for the geometric structure we call a star may

seem questionable. Recall that a minimal (t − 1)-cover assumes that the smaller

the size of the overlap is, the smaller the requirement is for the number of distinct

(t − 1)-dimensional subspaces to cover the entire effect space. Therefore, a minimal

(t− 1)-cover consists of minimum size overlap (|πt−s|). This overlap may not be large

enough to obtain a useful half-normal plot for the assessment of factorial effects if the

experiment is unreplicated. In contrast, the stars with different sized nuclei provide a

variety of good designs. The following example illustrates the benefits of a star over

a minimal (t− 1)-cover of P .
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Example 5.7. Consider a 27 full factorial experiment where the desired RDCSSs are

characterized by S1, ..., Sm, where |Si| = 24 − 1 for all i. From Theorem 4.1(b),

|Si ∩ Sj| ≥ 28−7 − 1, for all i 6= j. According to Lemma 5.1, the number of distinct

3-dimensional subspaces in a minimal 3-cover of P is 23 +1, and Theorem 5.3 implies

that the common overlap (say S0) among all these distinct subspaces is of size 1. To

assess the impact of factorial effects on the process, one has to plot m half-normal

plots of size 14 each for the effects in Si\S0, i = 1, ..., m, and one half-normal plot of

size (14(9 −m)) for the effects not contained in any of the RDCSSs. On the down-

side, the assessment for the effect in the common overlap has to be sacrificed, and the

maximum number of levels of randomization is bounded above by 9. This can be im-

portant for constructing fractional factorial designs with 7 basic factors and Si’s with

|Si| = 24−1, i = 1, ..., m. Instead of using a minimal (t−1)-cover, a star St(µ, π4, π3)

can be used to construct up to 15 RDCSSs in a fractional factorial setup. In addition,

the size of the common overlap (S0) is 7, which allows assessment of all the factorial

effects in P . The assessment of factorial effects is done by using m half-normal plots

of size 8 each for the effects in (Si\S0)’s, one plot of size 7 for the effects in the overlap,

and one half-normal plot of size (8(15−m)) for rest of the effects in P .

In summary, the RDCSSs constructed using minimal (t − 1)-covers of P are forced

to have a fixed sized overlap (πt−s), whereas stars provide different sized overlaps for

RDCSSs. Furthermore, the number of (t− 1)-dimensional rays in a star with nucleus

larger than |πt−s|, is greater than the number of (t − 1)-dimensional subspaces in a

(t − 1)-cover of PG(t + s − 1, 2). More importantly, different size RDCSSs can be

constructed using stars, whereas the minimal cover approach focuses on equal size

subspaces. Thus, stars support a bigger class of factorial and fractional factorial

designs with randomization restrictions.

It turns out that the geometric structure of a minimal (t − 1)-cover of PG(kt +
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s− 1, 2), for k > 1, is also related to a balanced star in a particular way. Before going

in to the details of the role of a balanced star in a minimal (t − 1)-cover of P with

k > 1, it should be noted that we are interested in RDCSSs of size greater than or

equal to 23−1, i.e., t ≥ 3. This is required for constructing useful half-normal plots to

assess the significance of factorial effects. Under the assumption that there does not

exist a (t− 1)-spread of P , p must be at least 7 (i.e., k = 2, s = 1). This implies that

factorial experiments of at least 128 runs are of interest. So far in this chapter, most

of the results focused on designs with small run-sizes. Here onwards, the results and

discussion are targeted to designs that allow at least 27 experimental trials. These

designs can be useful for applications where the number of units can be quite large

(e.g., microchip industries and microarray experiments).

The next result establishes the relationship between a balanced star St(µ, πt, πr)

and a minimal (t − 1)-cover of the effect space P = PG(kt + s − 1, 2). Although

the result holds for any set of positive integers k, t and s, the theorem has useful

applications for large factorial designs.

Theorem 5.4. A minimal (t − 1)-cover C of P = PG(kt + s − 1, 2), for k > 1 and

0 < s < t, is a union of 2s
(

2kt−1
2t−1

− 1
)

disjoint (t − 1)-dimensional subspaces of P
and a star St(2s + 1, πt, πt−s) contained in P.

Proof: From the construction shown in Section 4.2.2, the effect space PG(p−1, 2), for

p = kt+s, can be written as a disjoint union of 2s 2kt−1
2t−1

−2s disjoint (t−1)-dimensional

subspaces and a (t + s − 1)-dimensional subspace U contained in P . From Theorem

5.2, there exists a star St(µ, πt, πt−s) contained in U , that is also a cover of U . Since

the maximum number of rays in this star is µ = (2t+s− 2t−s)/(2t− 2t−s) = 2s + 1, all

the disjoint (t− 1)-dimensional subspaces and the star St(2s + 1, πt, πt−s) constitutes

a minimal (t− 1)-cover of P (Lemma 5.1). 2
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Theorem 5.3 is a special case of this theorem. Since the common overlap among the

non-disjoint elements of C is a (t − s − 1)-dimensional subspace, if t − s = 1 for a

full factorial design, one can assign a higher order interaction to the effects in the

overlap and assume it to be negligible. In a regular fractional factorial design, or a

full factorial design with t − s = 2, one would not want to sacrifice the assessment

of all the factorial effects in the overlaps. In fact, the assessment of other factorial

effects can also be affected (see Example 5.1). To avoid this problem, we propose a

similar structure to a (t− 1)-cover but not minimal.

If the star St(2s + 1, πt, πt−s) in a minimal (t − 1)-cover C is replaced by a star

with larger nucleus, the number of disjoint subspaces may decrease. However, the

size of the overlap among the non-disjoint subspaces will become large enough for the

assessment of all the factorial effects in P . We call this a modified minimal (t − 1)-

cover of the effect space P . In addition to the ability of assessing the significance of

more factorial effects, replacement of the star in a minimal (t−1)-cover by a star with

bigger nucleus increases the total number of (t− 1)-dimensional subspaces. This can

be used to construct more RDCSSs if required.

Consider a 27 factorial setup with minimal 2-cover. For instance, in Example

5.1, U is a 3-dimensional subspace of P , and thus the overlap between any pair of

2-dimensional subspaces contained in U is at least 23+3−4−1 (Theorem 4.1). The size

of the overlap for this minimal 2-cover cannot be increased, because the dimension of

any ray is one more than the dimension of the nucleus. Thus, we have to consider

t = 4 instead of t = 3 to gain the advantage of a modified minimal (t − 1)-cover.

Lemma 4.1 guarantees the existence of a 3-spread of PG(7, 2). Since this chapter

focuses only on the case when (t − 1) does not divide (p − 1), we are not discussing

the t = 4 case. Moving up the ladder, if we consider a factorial setup with p = 9

and t = 4, a minimal 3-cover consists of 33 disjoint 3-dimensional subspaces and a

star St(3, π4, π3). The effects in the common overlap (or nucleus) for this case can
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easily be assessed using one half-normal plot because the overlap contains 7 factorial

effects. Thus, there is no need for improvement. The importance of the modified

minimal (t − 1)-cover over a minimal (t − 1)-cover becomes apparent for the first

time in a 210 factorial setup. A minimal 3-cover of the corresponding effect space P
consists of 65 disjoint 3-dimensional subspaces and a star St(5, π4, π2). If we use a

star St(7, π4, π3) instead of a star St(5, π4, π2), the resulting geometric structure is

not a minimal 3-cover but allows the assessment of all the factorial effects in P .

Note that the new proposed design may not be very useful for experiments in say

the auto industry or chemical industries. These designs have potential applications

in microchip industries or perhaps microarray experiments where the number of units

can be quite large. The availability of large numbers of trials (or points in P) allows

construction of different designs. In the next section, we propose one such structure

called a finite galaxy. A finite galaxy is a collection of disjoint stars with some useful

statistical properties. As an alternative to a modified minimal (t − 1)-cover, we

propose finite galaxies for constructing full factorial and regular fractional factorial

designs where |S| is large. Although the results proposed in the next section focus on

balanced stars, they are easily extended to unbalanced stars.

5.2.3 Finite galaxies

In this section, we first establish the necessary and sufficient conditions for the exis-

tence of a maximal set of disjoint stars. This provides a set of (t − 1)-dimensional

subspaces that can be relatively larger than the one obtained from a modified minimal

(t− 1)-cover of P . Then, an algorithm is developed for constructing these sets of dis-

joint stars. We define a finite galaxy to be a collection of stars with specific properties.

Definition 5.5. A finite galaxy G is a set of disjoint stars contained in the effect

space P = PG(p− 1, 2) that covers P.



CHAPTER 5. FACTORIAL DESIGNS AND STARS 95

A finite galaxy G is said to be homogeneous if all the stars in G are geometrically equiv-

alent (Definition 5.4). All the stars in a finite galaxy are assumed to be balanced.

Denote a homogeneous finite galaxy G by G(ν, t∗−1, t−1), where ν = (2p−1)/(2t∗−1)

is the number of disjoint stars with (t− 1)-dimensional rays and (r − 1)-dimensional

nuclei for suitable positive integers r < t and t∗ ≤ p. Each star St(µ, πt, πr) in

G(ν, t∗− 1, t− 1) is assumed to be a (t− 1)-cover of PG(t∗− 1, 2) ⊂ P . As expected,

the existence of such a geometry is not so trivial, and requires verification of a nec-

essary and sufficient condition. The following result establishes the existence of a

homogeneous finite galaxy that is also a (t− 1)-cover of the effect space P .

Theorem 5.5. There exists a homogeneous finite galaxy G(ν, t∗ − 1, t − 1) in P =

PG(p−1, 2) with ν = (2p−1)/(2t∗−1) disjoint stars if and only if there exists positive

integers t and t∗ such that t < t∗ ≤ p
2

and t∗ divides p.

Proof: Suppose there exists a homogeneous finite galaxy G that spans the effect

space P , then the number of disjoint stars in G,

ν =
|PG(p− 1, 2)|
|St(µ, πt, πr)|

is an integer. Since every star St(µ, πt, πr) is a (t− 1)-cover of PG(t∗ − 1, 2) ⊂ P for

some t < t∗ ≤ p, |St(µ, πt, πr)| = |PG(t∗−1, 2)|, and thus ν is equal to (2p−1)/(2t∗−1).

Furthermore, (2p− 1)/(2t∗ − 1) is an integer if and only if t∗ divides p. Consequently,

t∗ ≤ p/2 and hence the existence of desired positive integers t and t∗.

On the other hand, if there exists positive integers t and t∗ such that t < t∗ ≤ p/2

and t∗ divides p, then there exists a (t∗ − 1)-spread of P (Lemma 4.1). From Theo-

rem 5.2 and Corollary 5.1, there exists a star St(µ, πt, πr) in PG(t∗− 1, 2) for at least

one choice of r. Hence, the existence of a finite galaxy G(ν, t∗−1, t−1) is established. 2
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For constructing large factorial and fractional factorial designs, use of a homogeneous

finite galaxy instead of a modified minimal (t− 1)-cover can sometimes be more ad-

vantageous. Recall that for constructing a minimal (t − 1)-cover, one has to search

for collineation matrices in a recursive manner. Instead, the construction of stars

is relatively straightforward and does not require any search for finding collineation

matrices. For constructing RDCSSs, the number of subspaces obtained from a homo-

geneous finite galaxy can be much larger than from a minimal (t−1)-cover of P . The

following example illustrates the difference between the two geometries.

Example 5.8. Consider a 215−5 regular fractional factorial design with blocked split-lot

structure. Let the RDCSSs be defined by Si, i = 1, ..., m, where |Si| = 24− 1 for all i.

Here, the number of base factors p is 10, and the size of each RDCSS is 24− 1. Since

t = 4 and t∗ = 5 satisfy the conditions in Theorem 5.5, there exists a homogeneous

finite galaxy G(ν, 4, 3). There exists ν = 210−1
25−1

= 33 disjoint stars, where every star

St(µ, π4, πr) is contained in a PG(4, 2) of P . These stars constitute a (t∗ − 1)-spread

of P . From Theorem 5.2, there exists a star St(µ, π4, πr) in PG(4, 2) if and only if

(4− r) divides (5− r). That is, there exists only one geometrically distinct balanced

star, given by r = 3. The number of rays in each star is µ = (25−3 − 1)/(2− 1) = 3.

As a result, up to µ ·ν = 99 distinct RDCSSs of size 15 each can be constructed using

this galaxy. The size of overlap for any pair of intersecting RDCSSs is 7, which is the

same as the size of the nucleus of a star St(3, π4, π3).

The size of a minimal 4-cover in a 210 factorial layout is 69, and if modified by a star

St(7, π4, π3) instead of a star St(5, π4, π2), the size of the modified minimal 4-cover

obtained would be 71. A total of 99 subspaces are obtained using a homogeneous

finite galaxy in Example 5.8. Therefore, if the number of RDCSSs required by the

experimenter is large, a finite galaxy can be more useful.
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Even though the construction of stars is straightforward and does not require

searching for collineation matrices, the construction of a finite galaxy satisfying the

experimenter’s requirement involves constructing a (t∗ − 1)-spread of P . Since the

spread construction technique shown in Section 4.2.1 often requires transformation of

P to get the desired design, the construction of a finite galaxy may involve relabelling

of columns of the model matrix (or equivalently, the points of P).

Construction 5.2. Recall that the existence of a finite homogeneous galaxy G(ν, t∗−
1, t − 1) assume that t and t∗ satisfy (a) t < t∗ ≤ p/2, and (b) t∗ divides p. The

following steps can be used to construct a G(ν, t∗ − 1, t− 1).

1. Construct a (t∗ − 1)-spread S of P using the methodology shown in Section

4.2.1. Define S = {S1, ..., Sν}.

2. Set i = 1.

3. Construct a star Ωi = St(µ, πt, πr) such that Ωi ⊂ Si, and Ωi is a cover of Si.

4. Stop if i = ν, otherwise assign i = i + 1 and go to Step 3.

Certainly, the experimenter has some control over the assignment of factorial effects

in the RDCSSs that come from the construction of ν disjoint stars. However, the

construction technique shown in Section 4.2.1 for a (t∗ − 1)-spread distributes all the

main effects evenly among the elements of the spread. This feature is not desirable

in many cases. As a result, one may need to use a collineation matrix to relabel the

columns of the model matrix, or equivalently the points of PG(p − 1, q), to get the

desired design. The following example illustrates the algorithm for constructing a

homogeneous finite galaxy.

Example 5.9. Consider a 210−4 fractional factorial design with m stages of random-

ization. The corresponding base factorial design has 6 basic factors. Since t∗ = 3 and
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t = 2 satisfies the necessary conditions in Theorem 5.5, the existence of a homogeneous

finite galaxy G(9, 2, 1) is guaranteed. The 2-spread obtained from the construction

method described in Section 4.2.1 provides S1, ..., S9 (shown in Table 4.2). A star

St(3, π2, π1) is then constructed in each Si. Although the 2-spread is pre-specified,

when constructing these stars, one can select the effects that are common in multiple

RDCSSs. A realization of the homogeneous finite galaxy obtained from this is shown

in Figure 5.1.

Figure 5.1: A homogeneous finite galaxy G(9, 2, 1) in PG(5, 2).

The algorithm proposed in Section 4.2.1 can be used for finding an appropriate
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collineation matrix for transforming the 2-spread S = {S1, ..., S9}, or equivalently,

the finite galaxy constructed using S. Nonetheless, one must remember that at most

p independent relabellings can be done for the transformation of the projective space

PG(p − 1, 2). Thus, one should use the flexibility in the construction of stars to get

a good design. For instance, in Example 5.9 the nuclei of all the stars is the largest

possible interaction in each star.

5.3 Discussion

Though the existence results discussed in this chapter focus on two-level factorial

designs, all the results and their proofs can be generalized to q levels simply by

replacing PG(p−1, 2) with PG(p−1, q). For example, in Theorem 5.2, there exists a

star St(µ, πt, πr) with µ = (qp−r−1)/(qt−r−1) rays in PG(p−1, q) if and only if (t−r)

divides (p− r). In addition, the construction of a star St(µ, πt, πr) in PG(p− 1, q) is

also similar to the one shown for the q = 2 case in Construction 5.1.

In short, for assessing the significance of effects in factorial designs with small

run-size or fewer RDCSSs, stars are more efficient than minimal (t − 1)-covers. In

experiments with large two-level full factorial or regular fractional factorial designs,

one should either use a modified minimal cover, or a finite galaxy depending on the

requirements of the experiment. The results proposed for the existence and construc-

tion of finite galaxies focus on the homogenous balanced stars. However, the existence

results can easily be extended to the heterogeneous case where stars are not neces-

sarily geometrically equivalent. These results are also adaptable to the homogeneous

case with unbalanced stars. The algorithms described in Constructions 5.1 and 5.2

can also be extended for both of these cases.

For example, consider a 215−5 fractional factorial experiment with m stages of

randomization S1, ..., Sm, where |Si| ≥ 7. Let P be the effect space for the corre-

sponding base factorial design. For t∗ = 5, there exists a (t∗ − 1)-spread S of P with
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|S| = 33. Distinct stars can be used to cover each element of S. Since the desired

RDCSSs must contain at least 7 factorial effects, we will focus on stars with at least

2-dimensional rays. Following the notation in Theorem 5.2, the options for balanced

stars are St(3, π4, π3), St(5, π3, π1) and St(7, π3, π2). The geometric structure of these

stars is shown Figure 5.2.

Figure 5.2: Balanced stars; The numbers {1, 3, 4, 6, 7, 8} represent the number of
effects in the rays and the common overlap.

Due to limitation of the space, the factorial effects are not explicitly written in the

figures displayed here, and therefore have different representations than the one used

for Figure 5.1. The star on the left is a St(3, π4, π3) with a common overlap of size 7,

the one in the middle is a St(5, π3, π1) with the overlap of size 1, and the star on the

right represents a St(7, π3, π2). Recall that a useful half-normal plot requires more

than six or seven factorial effects. If a star in the finite galaxy is a balanced star

St(5, π3, π1), one would have to sacrifice the assessment of only one factorial effect per

such star. If the star St(7, π3, π2) is used for constructing a finite galaxy, none of the

effects can be assessed. This turns out to be the worst case among all three options.

In conclusion, for this particular example, the two stars St(3, π4, π3) and St(5, π3, π1)

seem to be the better choices for constructing a finite galaxy.



Chapter 6

Summary and Future Work

Two-level full factorial and regular fractional factorial designs have played a promi-

nent role in the theory and practice of experimental design. In the initial stages of

experimentation, these designs are commonly used to help assess the impact of several

factors on a process. Ideally one would prefer to perform the experimental trials in

a completely random order. In many applications, restrictions are imposed on the

randomization of experimental runs. This thesis has developed general results for

the existence and construction of designs with randomization restrictions under the

unified framework first introduced by Bingham et al. (2006).

Results for the linear regression model are developed in Chapter 3 that express the

response model for factorial designs with different randomization restrictions under

the unified framework. Under the assumptions of model (3.1), the main result of

this chapter (Theorem 3.3) demonstrates how the distribution of an effect estimate

depends upon its presence in different RDCSSs. This in turn motivates one to find

disjoint subspaces of the effect space P that can be used to construct RDCSSs.

Though preferred, the existence of a set of m disjoint subspaces of the effect

space P may not be possible. In Chapter 4, conditions for the existence of a set

of disjoint subspaces of P are derived. In the general case, Theorem 4.4 presents a

101
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sufficient condition for the existence of a set of disjoint subspace of different sizes.

These subspaces are then used to construct RDCSSs of both equal and unequal sizes

that are often needed by the experimenter. The designs obtained here are specifically

useful to practitioners as the construction algorithms are also developed.

When the existence conditions for a set of disjoint subspaces are violated, overlap

among the RDCSSs cannot be avoided. Since the assessment of factorial effects on

a process is the objective of the experimentation, in Chapter 5, we propose designs

that allow for the assessment of significance of as many effects as possible. The design

strategies (stars and galaxies) proposed in this chapter use the overlap among different

RDCSSs as an advantage, which seemed like a problem using the minimal (t − 1)-

cover approach. The existence conditions are proposed for balanced stars, unbalanced

stars and finite galaxies. Significantly, construction algorithms are developed for the

designs obtained from stars and galaxies. The experimenter has more control on

the construction of these designs compared to the construction developed in Section

4.2. Since the designs obtained using finite galaxies are typically big, one might

question the usefulness of such designs in practice. Note that the large designs may

be uncommon in full factorial and fractional factorial designs if the trials are performed

in a completely random order. If randomization restrictions are imposed on the trials,

large designs are useful in many applications (e.g., Vivacqua and Bisgaard, 2004; Jones

and Goos, 2006; Jones and Goos, 2007).

There are a few additional issues that require further mention. Firstly, the designs

used in this dissertation for illustrating both the existence results and construction

algorithms are all two-level full factorial and regular fractional factorial designs. The

existence results and their proofs in Chapters 4 and 5 can be easily generalized to q

levels by replacing PG(p− 1, 2) with PG(p− 1, q) and some minor modifications. In

addition, the construction of a (t−1)-spread of PG(p−1, q) is similar to the q = 2 case

shown in Section 4.2.1. The construction of stars and galaxies are also generalizable

to q-level factorial designs, where q > 2. However, there are some results that may
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be non-trivial to establish. For example, the results developed in Chapter 3 use the

properties of Hadamard matrix representation of the model matrix X. To establish

similar results for the distribution of the effect estimates in q-level full factorial and

regular fractional factorial designs, one may have to use some of the results on more

general orthogonal arrays.

Secondly, the results developed for the distribution of effect estimates assume that

the underlying designs are full factorial and regular fractional factorial designs. If

one considers some non-regular designs, we cannot use the geometric structure of

a full factorial design to categorize the factorial effects into sets of effects having

equal variance for performing half-normal plots. To understand the complexity of

the problem it is worth noting that there does not even exist a corresponding base

factorial design. Moreover, the results on the distribution of effect estimates developed

in Chapter 3 may not hold either. For instance, it is unlikely that the two estimators

OLS and GLS of regression coefficients β are equal. Under these circumstances, one

has to work with the GLS estimator which requires the inversion of the covariance

matrix Σy. It turns out that the inverse of Σy can be written in a closed form,

conditional on some assumptions on the overlapping pattern among RDCSSs.

The result developed in Theorem 5.1 only provides a necessary condition for the

existence of an unbalanced star. The sufficiency condition for the existence needs

further exploration. However, considering the nature of the necessary and sufficient

condition for a balanced star (Theorem 5.2), one suspects that the sufficiency of an

unbalanced star St(µ1, ..., µk, t1, ..., tk, πr) should depend on “g(t1−r, ..., tk−r) divides

(p− r)”, for some function g. It is expected that once the existence of an unbalanced

star is established its construction should be fairly straightforward.

Furthermore, the results developed for finite galaxies (Section 5.2.3) focus on ho-

mogeneous stars. The necessary and sufficient conditions for the existence of a het-

erogeneous galaxy requires further investigation. Stars are specifically useful to the

practitioner because of their easier construction.
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Finally, construction algorithms for both overlapping and disjoint subspaces of

equal and different sizes are proposed. One of the important steps of these algorithms

is to transform a set of disjoint subspaces (often a (t − 1)-spread of the effect space

P = PG(p − 1, q)) to another set of disjoint subspaces such that the transformed

set has the features of the desired design. Starting with the (t − 1)-spread obtained

from the cyclic construction method (Section 4.2.1), it is possible that none of the

collineation matrices lead to the desired set of subspaces. This does not imply that the

experimenter’s requirement is impossible to meet. This occurs when the two spreads

(the one we started with and the one we are searching for) are non-isomorphic, and

thus the desired spread cannot be obtained by a linear transformation. Consequently,

a lurking mathematical problem is to find all non-isomorphic spreads, or if easier,

one can first find all possible spreads and then use collineation matrices to filter out

the isomorphic ones. In the special case of t = p/2, some results are known for the

complete classification of spreads (e.g., Dempwolff 1994).

The set of all non-isomorphic (t − 1)-spreads of PG(p − 1, q) is also required for

finding regular fractional factorial designs that are optimal under different criteria,

such as minimum aberration (Fries and Hunter, 1980), maximum number of clear

effects (Chen, Sun and Wu, 1993; Wu and Chen, 1992) and the V -criterion (Bing-

ham et al., 2006). Traditionally, some of the commonly used good designs have been

catalogued for the convenience of practitioners. To provide such a catalogue for frac-

tional factorial designs with different randomization restrictions, one needs to find all

possible designs and then rank them using the desired criterion.

As an alternative, one might consider the search table approach developed in

Franklin and Bailey (1977) which can be generalized to generate candidate designs

in our setting. The sequential updating approach developed in Chen, Sun and Wu

(1993) can be used to avoid an exhaustive search. The use of these two approaches

to more efficiently construct a catalogue of fractional factorial split-plot designs is

shown in Bingham and Sitter (1999). These algorithms require isomorphism checks
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for a candidate design. It turns out that the isomorphism check is computationally

expensive, and efficient algorithms have been developed to improve the efficiency of

the isomorphism check algorithm (e.g., Clark and Dean, 2001; Lin and Sitter, 2006).

Furthermore, the RDCSS structure can be used to shorten the candidate designs

and generalize the isomorphism check algorithm for fractional factorial designs with

different randomization restrictions. Future work will focus on developing an efficient

isomorphism check algorithm for generating the set of all non-isomorphic fractional

factorial designs for specific randomization structures.
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