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ABSTRACT 

Retirees face a difficult choice between annuitization from insurance firms 

and self-management or so-called self-annuitization. Self-annuitization could 

provide a higher consumption by investing more assets on equity market but with 

a risk that retirees may outlive the income from their self-managed assets. Using 

the Ornstein-Uhlenbeck stochastic model, also called the Vasicek model, for the 

rate of return, we focus our study on the ruin probability in retirement. We show 

how asset mix, initial rate of return, and gender impact the ruin probability in 

retirement. We derive a recursive formula to calculate an approximate distribution 

for the present value of the life annuity function under our stochastic model. 

Finally, we use our model to illustrate how a VaR technique can help determine 

the optimal consumption for a retiree with a certain tolerance to ruin under 

different retirement goals.  

 
Keywords: Ruin, Stochastic Interest Model, Life Annuity, Optimal 
Consumption, Approximate Distribution, VaR, Ornstein-Uhlenbeck (O-U) 
Model, Vasicek Model  
 

 

 iii 



 

DEDICATION 

This project is dedicated to my lovely newborn baby girl Ruby and her 

energetic, three and half years old, “Big” brother Alexander who is so excited with 

his new little sister.   

 iv 



 

ACKNOWLEDGEMENTS 

 

I would like to thank all of those people who have helped me go through 

the chapter of my student life at SFU.  

First, I would like to express my deepest gratitude to my supervisor, 

Professor Gary Parker, who guided me into the actuarial career, spent 

considerate time to mentor me through my graduate studies, and gave me 

valuable advice on this project. I am thankful to him to give me the flexibility to 

complete my graduate program while raising a family. He is a role model of 

dedication to students and academia that will be one of the greatest assets I 

learnt from this program. 

I would like to thank all of the faculty and staffs in this department. I am 

very grateful to my examining committee, Dr. Yi Lu and Dr. Tim Swartz, for their 

very careful reading of the project report and valuable criticisms that helped me 

perfect its final version. Also thanks to Dr. Cary Tsai and Barbara Sanders, for 

their courses which helped me acquire the knowledge and skills necessary for 

my future actuarial career.  

This journey would have been lonely and boring without the input and help 

from my fellow students. Thanks to Suli Ma, Lihui Zhao, Luyao Lin, Donghong 

Wu, YunFeng Dai, Wei Qian, Yinan Jiang, Monica Lu. Special thanks to Feng 

 v 



 

Gao, who was a very patient listener when I wanted someone to confirm the 

ideas in my project and willing to give me serious feedbacks.  Many thanks to 

Huanhuan Wu, who helped me find a place to stay on campus and provided 

dinners with her family during my defence days.   

Last but not least, I owe a great debt of gratitude to my wife for her love, 

support, understanding, patience, and complete dedication; for giving birth to our 

beautiful baby girl during this challenging time; for raising the two children on her 

own most of the time without complaining too much.  

 vi 



 

TABLE OF CONTENTS 

 
Approval .............................................................................................................. ii 
Abstract .............................................................................................................. iii 
Dedication .......................................................................................................... iv 

Acknowledgements............................................................................................ v 

Table of Contents ............................................................................................. vii 
List of Figures.................................................................................................... ix 

List of Tables ...................................................................................................... x 

Chapter 1: Introduction................................................................................... 1 

Chapter 2: Review of Stochastic Interest Models and Ruin Problem 
in Retirement....................................................................................................... 4 

2.1 Stochastic Interest Models in the Actuarial Literature......................... 4 
2.2 Ruin Problem in Retirement ............................................................... 6 

Chapter 3: Functions Related to the O-U Rate of Return Model.................. 9 
3.1 O-U Model for Rate of Return............................................................. 9 

3.1.1 Rate of Return and Moments.......................................................... 9 
3.1.2 Rate of Return Accumulation Function and Moments................... 10 
3.1.3 Present Value Function and Moments .......................................... 11 
3.1.4 Present Value of Whole Life Annuity Function and Moments ....... 11 

3.2 Parameters and Assumptions .......................................................... 14 
3.2.1 Parameter Sets for the O-U Model for the Rate of Return ............ 14 
3.2.2 Parameters for Parametric Mortality Table ................................... 16 
3.2.3 Market Price for Annuitization ....................................................... 17 

Chapter 4: Present Value of a Whole Life Annuity ..................................... 18 
4.1 Approximate Distribution for the Present Value of a Whole Life 

Annuity ............................................................................................. 18 
4.1.1 A Recursive Formula .................................................................... 18 
4.1.2 Proof for the Recursive Formula ................................................... 20 
4.1.3 Numerical Evaluation .................................................................... 21 

4.2 Fitting Known Distributions with Exact Moments .............................. 23 
4.3 Simulation ........................................................................................ 24 
4.4 Validation of the Approximate and Fitted Distributions ..................... 25 

 vii



 

Chapter 5: Ruin Probability .......................................................................... 30 
5.1 Impact of Asset Allocation Strategy and Initial Rate of 

Investment Return ............................................................................ 31 
5.2 Comparison between Males and Females ....................................... 34 

Chapter 6: Applications ................................................................................ 35 
6.1 The Value of Bequest....................................................................... 35 

6.1.1 Present Value of Bequest ............................................................. 36 
6.1.2 Future Value of Bequest ............................................................... 38 

6.2 Consumption under Self-Annuitization Using a VaR Method ........... 41 
6.3 Focus on Ruin in the First 10 Years in Retirement ........................... 48 
6.4 Postponing Annuitization with Minimum Consumption in Later 

Years................................................................................................ 51 
6.5 Partial Annuitization.......................................................................... 54 

Chapter 7: Conclusion .................................................................................. 57 

Reference List................................................................................................... 59 
 

 viii



 

LIST OF FIGURES 

 
Figure 3-1 Rates of Return in Real Term (Adjusted for Inflation) from 

1986/04 to 2006/03.............................................................................. 15 

Figure 4-1 The Recursive Approximate Distribution, Fitted Reciprocal 
Gamma Distribution and Empirical Distribution from Simulations 
for the Present Value of a Whole Life Annuity to a Male Age 65 
with O-U Model with α = 1.1, =.05, 2σ δ = .06, 0δ =.06........................ 28 

Figure 4-2 The Recursive Approximate Distribution, Fitted Reciprocal 
Gamma Distribution and Empirical Distribution from Simulations 
for the Present Value of a Whole Life Annuity to a Male Age 65 
with O-U Model with α = .8, =.001, 2σ δ = .02, 0δ =.02........................ 29 

Figure 5-1 Impact of Asset Allocation and Initial Return Rates on the Ruin 
Probabilities ......................................................................................... 33 

Figure 6-1  The Distribution of C= 14 / Z under Different O-U Parameter 
Sets ..................................................................................................... 46 

Figure 6-2 CDFs of C= mc + (1-mc)*14/Z for mc=0, 0.2, 0.4, 0.6, 0.8, 1.0 
under Asset Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 

0δ =.06) ................................................................................................ 55 

  
 

 ix 



 

LIST OF TABLES 

 
Table 3-1 O-U Parameter Sets under Different Choices on Asset 

Allocation............................................................................................. 16 

Table 4-1   Percentiles and Moments of Approximate Distribution, Fitted 
Distribution and Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = 1.1, 

=.05, 2σ δ = .06, 0δ =.06 ...................................................................... 27 

Table 4-2   Percentiles and Moments of Approximate Distribution, Fitted 
Distribution and Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = .8, 

=.001, 2σ δ = .02, 0δ =.02 .................................................................... 27 

Table 5-1  Ruin Probabilities for a Male under Different Asset Allocation 
Strategies ............................................................................................ 33 

Table 5-2 Ruin Probability Comparison between a Male and a Female ............. 34 

Table 6-1 Present Value of Bequest with Asset Allocation Strategy A (α = 
1.1, =.05, 2σ δ = .06, 0δ =.06) .............................................................. 37 

Table 6-2 Present Value of Bequest with Asset Allocation Strategy B (α = 
1.1, =.03, 2σ δ = .057, 0δ =.06) ............................................................ 37 

Table 6-3 Present Value of Bequest with Asset Allocation Strategy E (α = 
.8, =.001, 2σ δ = .02, 0δ =.02) .............................................................. 37 

Table 6-4 Future Value of Bequest (Real Term) with Asset Allocation 
Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06)..................................... 39 

Table 6-5 Future Value of Bequest (Real Term) with Asset Allocation 
Strategy B (α = 1.1, =.03, 2σ δ = .057, 0δ =.06)................................... 39 

Table 6-6 Future Value of Bequest (Real Term) with Asset Allocation 
Strategy E (α = .8, =.001, 2σ δ = .02, 0δ =.02)..................................... 39 

Table 6-7 Accepted Price for $1 Life Annuity and Maximum Consumption 
per Period under Certain Ruin Probability Tolerance with Asset 
Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06) .................... 45 

 x 



 

 xi 

Table 6-8 Accepted Price for $1 Life Annuity and Maximum Consumption 
per Period under Certain Ruin Probability Tolerance in the First 
10 Year with Asset Allocation Strategy A (α = 1.1, =.05, 2σ δ = 
.06, 0δ =.06) ......................................................................................... 50 

Table 6-9  Present Value of $1.19 Consumption between Age 65 and 75 
and $.50 Annuitization at Age of 75 with Asset Allocation 
Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06)..................................... 53 

Table 6-10  Present Value of $1.40 Consumption between Age 65 and 75 
and $.50 Annuitization at Age 75 with Asset Allocation Strategy 
A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06) ................................................... 53 

Table 6-11 CDF(14) for the Present Value of Different Consumption 
Levels between Age 65 and 75 and $.50 Annuitization at Age 75 
with Asset Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 

0δ =.06) ................................................................................................ 53 

  
 
 



 

CHAPTER 1: INTRODUCTION  

During early retirement, many retirees face a difficult choice between 

annuitization from insurance firms and discretionary management of assets with 

systematic withdrawals for consumption purpose or so-called “self-annuitization”. 

For example, in Canada, the government requires retirees to convert their 

RRSPs to one or more retirement income sources1 by December 31st of the year 

they reach age 71. One option for retirees is to use these funds to purchase a life 

annuity from insurance firms. The other is to transfer them to a life income 

fund(LIF) or life retirement income fund(LRIF) for which retirees will self-manage 

their funds while required to make an annual minimum withdrawal based on age. 

Annuitization will assure a lifelong consumption stream that cannot be 

outlived. However, it may be quite expensive and come at the cost of a complete 

loss of liquidity. Self-annuitization, on the other hand, will have the flexibility of 

allowing the accumulation of wealth during retirement through potentially higher 

returns from the market. In addition, it could leave a substantial bequest to 

survivors and estates at the death of retirees. However, this comes with a risk 

that retirees will not be able to maintain their planned standard of living during 

retirement.   

                                            
1 In this project, for simplicity we only focus on registered retirement funds for which annuitization 

and self-annuitization have the same tax treatment. 
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“Ruin probability in retirement” is the probability of running out of self-

managed asset under self-annuitization. Its study could help retirees make an 

informed decision based on their own view of risk, desired standard of living for 

retirement, economic and social environment. The distribution of the present 

value of a whole life annuity under stochastic interest/return rate and mortality is 

the focus in this study, but with different models and approaches. In our project, 

we assume an Ornstein-Uhlenbeck (O-U) model2 for the rate of return3 and study 

the distribution of the present value of a whole life annuity function and the ruin 

probability. Furthermore, we use the results to consider some practical 

applications. 

The remainder of this project is organized as follows. Chapter 2 gives a 

review on the stochastic interest models and the ruin problem in retirement in 

published actuarial literature. In Chapter 3, we define the functions of the rate of 

return, the present value, the life annuity and derive their moments under the    

O-U rate of return model. In order to compute the distribution of the present value 

of the whole life annuity function, three approaches are presented and compared 

in Chapter 4. In Chapter 5, we study the ruin probability under the O-U rate of 

return model and analyze the impact from the asset allocation strategy, initial 

interest rate and gender. Chapter 6 discusses some practical applications in 

retirement with the consideration of ruin probability that could help retirees make 

                                            
2 It is often called the Vasicek model of interest rates in finance. 
3 In the project, the rate of return is defined as the instantaneous rate of return, also known as the 

force of interest in the actuarial literature. 
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their decision about self-annuitization. Finally, Chapter 7 gives a brief conclusion 

and proposes further studies.    
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CHAPTER 2: REVIEW OF STOCHASTIC INTEREST 
MODELS AND RUIN PROBLEM IN RETIREMENT 

This chapter gives a review of stochastic interest models and the ruin 

problem in retirement studied in the actuarial literature. 

2.1 Stochastic Interest Models in the Actuarial Literature  

The topic of random interest rates has been intensively studied in actuarial 

and finance literatures over the last few decades. The following publications are 

some of the papers which study actuarial functions under the context of random 

interest rates.  

Boyle (1976) was one of the first to analyze the statistical properties of an 

annuity and insurance contract under stochastic returns. By assuming that the 

returns of investment per year are independently and identically distributed, he 

derived the first three moments of interest discount functions and further applied 

them to traditional actuarial life contingency functions. 

Panjer and Bellhouse (1980) continued on this theme by generalizing 

Boyle's work. They proposed to use first and second order autoregressive 

models for the force of interest and gave a general method to derive the first two 

moments of life insurance and annuity functions. The stationary process for the 

autoregressive model was used in this paper while conditional models were 
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developed and applied to interest, insurance and annuity functions in Bellhouse 

and Panjer (1981).  

Waters(1978) presented a general method of finding moments of 

insurance and annuity functions under the assumption that force of interest rates 

are independently, identically and normally distributed. He also studied the 

moments of portfolios of policies and fitted the distribution for an infinite size 

portfolio with a Pearson curve to obtain the percentiles.   

Beekman and Fuelling (1990) derived the first two moments of life annuity 

function by modelling the force of interest accumulation function with an O-U 

process. Later Beekman and Fuelling (1991) introduced a Wiener process to 

model the force of interest accumulation function which could generate more 

variations for life annuity functions.  

Parker (1992, 1993a, 1994a, 1994b) used approximation techniques to 

derive a recursive formula for the cumulative distribution function (CDF) of the 

present value of a portfolio of insurances or annuities. Parker (1993b) compared 

the modelling of the force of interest and the force of interest accumulation 

function for three stochastic interest models - White Noise process, Wiener 

process, O-U process. He argued that modelling the force of interest has some 

advantages by looking at a particular conditional expectation of the force of 

interest accumulation function. 
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2.2 Ruin Problem in Retirement  

We now review the ruin problem in retirement. Dufresne (1990) derived 

the probability density function of the present value of a perpetuity subjected to a 

stochastic Wiener rate of interest and proved that it is inverse gamma distributed.  

Milevsky et al. (1997) used simulations to study the ruin probability in a 

model with the stochastic investment return and mortality. They found that 

retirees could reduce the probability of ruin by investing part of their assets in a 

higher return and higher risk asset like the common equity. They also found that 

the probability of ruin is much higher for a female than for a male of the same 

age with the same wealth to consumption ratio. They studied the bequest under 

alternative asset allocation strategies and found that females tend to have lower 

value of bequest than males at lower equity allocation while they tend to have 

higher value of bequest at higher equity allocation.    

Milevsky (1998) developed a stochastic model in which retirees defer 

annuitization until it is no longer possible to beat the mortality-adjusted rate of 

return from a life annuity. Their model incorporated three stochastic processes: 

the return from asset, the internal rate of return for a life annuity, and the 

mortality rate. They concluded that under the current environment, a female 

(male) at age 65 has 90% (85%) chance of beating the rate of return from a life 

annuity until age 80.   

Ruin probability in retirement is equal to the probability that the stochastic 

present value of future consumption is greater than the initial wealth. Milevsky 

and Robinson (2000) studied the approximate distribution of a whole life annuity 
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function. They used Gompertz law to model mortality and a geometric Brownian 

motion to model asset price. They fitted the stochastic present value of 

continuous whole life annuity with the reciprocal gamma and Type II Johnson 

distributions and validated these two approximations with the result from 

simulations. A numerical case was illustrated to show the impact on the ruin 

probability from asset allocation strategy and gender. In their example, a well-

diversified portfolio (80% equity / 20% long-term bond for male and 60% equity / 

40% long-term bond for female) will achieve the lowest ruin probability. Under the 

same asset allocation strategy, females will have a higher ruin probability than 

males due to the longevity.       

Blake et al. (2003) studied the strategy to postpone annuitization. They 

used simulations to compare the purchase of a conventional life annuity at age 

65 with two other distribution programmes: equity-linked annuity (ELA) with a 

level life annuity purchased at age 75 and equity-linked income-drawdown (ELID) 

with a level life annuity purchased at age 75. ELA and ELID are very similar 

except for the fact that the plan member in ELID will receive a survival credit at 

the start of each year if he survives before age 75 but has to surrender his 

bequest to the life office if he dies before age 75. They found that the most 

important decision, in terms of the cost to the plan member, is the level of equity 

investment. They also found that the optimal age to annuitize depends on the 

bequest utility and the investment performance of the fund during retirement.   

Huang et al. (2004) implemented numerical PDE (partial differential 

equation) solution techniques to compute the ruin probability in retirement. They 

 7



 

compared their PDE-based values with those quick-and-dirty heuristic 

approximation methods widely used for ruin problem, such as the reciprocal 

gamma approximation (RG), the lognormal approximation (LN), and the 

comonotonic-based lower bound approximation (CLB). One of their conclusions 

is that the RG approximation proposed by Milevksy and Robinson (2000) will 

break down at a high level of volatility. The CLB proposed by Dhaene et al. 

(2002a, 2002b) is better than the other two approximations when the time 

horizon is fixed. However, the CLB approximation needs to fix the time horizon 

which makes it non-applicable in the study of the ruin problem under a stochastic 

mortality rate.    
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CHAPTER 3: FUNCTIONS RELATED TO THE O-U RATE 
OF RETURN MODEL 

In this chapter, we define the functions related to the rate of investment 

return in the context of life contingency and derive their moments under the O-U 

model for the rate of return. The later chapters will use this model to study the 

ruin problem in retirement.  

3.1 O-U Model for Rate of Return 

3.1.1 Rate of Return and Moments 

Under the O-U model, the (instantaneous) rate of (investment) return (also 

known as the force of interest) tδ  can be defined as (see Parker (1992)) 

ttt dWdtd σδδαδ +−−= )(  ,   (2.1)  

where δ  is the long term mean of the rate of return, α  is the friction force 

bringing the process tδ  back towards its long-term mean, σ  is the so-called 

diffusion coefficient, and  is a standard Brownian Motion. We can solve the 

differential equation (2.1) as 

tW

∫ −−− +−+=
t

s
stt

t dWee
0

)(
0 )( σδδδδ αα  ,       (2.2) 

with initial value 0δ  which is the rate of return at time 0.  

Then tδ  is a Gaussian process with mean  

 9



 

δδδδ α +−= − )()( 0
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3.1.2 Rate of Return Accumulation Function and Moments 

 Define the rate of return accumulation function as  
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r drtY
0

)( δ

)(tY  is a Gaussian process with mean 

 tetYE
t

δ
α

δδ
α

+
−

−=
−1)())(( 0       (2.7) 

and variance   

 )43(
2

))(( 2
3

2

2

2
tt eettYVar αα

α
σ

α
σ −− −+−+=  .  (2.8) 

For s≤ t, the autocovariance function is 
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3.1.3 Present Value Function and Moments 

Since Y(t) is normally distributed, the present value function, ,  is 

lognormally distributed. We can derive the moments of the present value 

function, , by using the moment generating function of a normal distribution. 

We then have    

)(tYe−

)(tYe−

)))((*5.))((exp()( )( tYVartYEeE tY +−=− ,     (2.10)  

, ))))(),((*2     
))(())(((*5.)))(())(((exp()( ))()((

tYsYCOV
sYVartYVarsYEtYEeE sYtY

+
+++−=+−

     (2.11) 

. )1)))(()))(exp((())((2exp(
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)()()( )(2)(2)(

−+−=
+−−+−=

−= −−−

tYVartYVartYE
tYVartYEtYVartYE

eEeEeVar tYtYtY

            (2.12)  

3.1.4 Present Value of Whole Life Annuity Function and Moments  

First, we define the present value of the continuous whole life annuity 

function as  

∫ −=
T

tY
T

dtea
0

)(
|

~  ,         (2.13) 

where T is the future lifetime of a person age x. The moments of the present 

value of a continuous whole life annuity are: 
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In our project, we study the present value of a discrete whole life annuity 

defined as   

)(

0
|1

tY
K

t
K

ea −

=
+ ∑=&&  ,             (2.16) 

where K is the curtate future lifetime for a retiree at age x and we assume the 

limiting age is ω . The first moment for the present value of a discrete whole life 

annuity function is derived as: 
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Similarly, we can derive the third moment. From 
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The fourth moment is derived as: 
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 Later, we will use the first four moments of the present value of the whole 

life annuity function given by (2.17), (2.18), (2.19) and (2.20) to validate the 

distributions obtained from an approximate method and simulations. 
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3.2 Parameters and Assumptions 

3.2.1 Parameter Sets for the O-U Model for the Rate of Return 

In order to study the ruin probability using the O-U model for the rate of 

return, we need to choose some parameter sets for the model that include as 

many real-economic scenarios as possible. Furthermore, although the 

parameters are used for illustration purposes, we hope that the conclusions 

drawn from these parameter sets will provide practical answers to the 

applications presented in later chapters.  

We estimate the parameter sets from the actual financial market data of 

the past 20 years. The rates of return on S&P 500, 10-year Constant Maturity 

Treasure rates and 1-year Constant Maturity Treasure rates are the proxies for 

rates of return on equity, long-term bond and short-term T-bill respectively.  

Figure 3-1 shows the rates of return from April of 1986 to March of 2006 in 

real term. Note that the rate of return in real term, which is adjusted for inflation, 

will be used throughout the whole project since we model the retirees’ 

consumption based on real term.    

 



 

Rates of Return in Real Term
from 1986/04 to 2006/03
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 Figure 3-1 Rates of Return in Real Term (Adjusted for Inflation) from 1986/04 to 2006/03
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Table 3-1 gives us the parameter sets for the O-U model for the rate of 

investment return used in our study. The time unit of these parameter sets is per 

annum.   

Table 3-1 O-U Parameter Sets under Different Choices on Asset Allocation 

 
Asset allocation 
strategy α  2σ  δ  0δ  

0.12
0.06

0
A:  
100% equity 1.1 0.05 0.06

-0.06
0.12
0.06

B:  
80% equity  
20% long term bond 

1.1 0.03 0.057
0

0.06
0.04
0.02

C:  
40% equity 40% long 
term bond  
20% short term t-bill 

1.07 0.01 0.04

0
0.05
0.03

D:  
20% equity 
40% long term bond 
40% short term t-bill 

1 0.003 0.03

0
0.04
0.02E:  

100% short term t-bill 0.8 0.001 0.02
0

  

3.2.2 Parameters for Parametric Mortality Table 

Milevsky and Robinson (2000) assumed a Gompertz law for mortality  

which defines the survival function for a person age x as  

)))exp(1)(exp(exp(),,|(
l
t

l
mxxlmtTPpxt −

−
=>=  ,   (3.1) 
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where m is the mode, l  is the scale parameter and T denotes the random 

variable for future lifetime of a person age x. They fitted the survival function with 

the Life Tables, Canada and Provinces 1990-92 (Statistics Canada) and 

estimated the parameters as 

   for males,  6.10,95.81 == lm

  for females. 5.9,8.87 == lm

In our study, we use their estimated mortality tables for comparison purposes 

and simplicity.  

3.2.3 Market Price for Annuitization 

According to Milevsky and Robinson (2000), the market price of 

annuitization for a retiree at age 65 is $14, which could also be considered as a 

benchmark of wealth to consumption ratio. Insurance firms generally price a life 

annuity based on the gender4 and the current interest rate (or some rates related 

to long-term bond). For females, the price should be higher due to their longevity. 

If the expected rate of return on long term is higher, the price should be lower 

due to the higher discount rate from the faster growing asset. For simplicity and 

comparison, we use the same price of annuitization of $14. We believe it is quite 

reasonable and will not compromise our goal to address the problems and 

applications presented in this project. 

 
                                            
4 Some countries prohibited insurance firms from pricing life annuity products based on gender 

due to non-discrimination issues. In Canada, the regulator has not come to do so. However, 
many Canadian insurance firms consciously use a blended mortality table to price the life 
annuity product in order to avoid gender discrimination.  
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CHAPTER 4: PRESENT VALUE OF A WHOLE LIFE 
ANNUITY 

In this chapter, we will present three approaches to obtain the distribution 

of the present value of a whole life annuity: the recursive approximate method, 

the fitted reciprocal gamma method, and simulations. We will use the result from 

simulations to validate the first two methods. 

4.1 Approximate Distribution for the Present Value of a Whole 
Life Annuity 

Parker (1993a) gave a general approach to find an approximate 

distribution of the present value of future cash flows under stochastic interest 

rate. In this section, we will use the same approach to find the approximate 

distribution for the whole life annuity and give the proof in details.  

4.1.1 A Recursive Formula 

    Define the random variable nΞ  as the (n+1)-year annuity-due certain 

under the stochastic rate of return, then we have   

 )(
1

0

)(
|1

  nY
n

n

i

iY
nn eea −

−
=

−
+

+Ξ===Ξ ∑&&      n=1, …, ω -x-1 .     (4.1) 

The recursive formula is starting from 1|10 ==Ξ a&& . Using Parker’s method, we 

define a function 
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The CDF of  can be obtained by nΞ

 .       (4.3) ∫
∞

∞−
Ξ = nnnnn dyygF

n
),()( ξξ

Let Z denote the random variable of whole life annuity, the CDF of Z can be 

obtained by 

  .   (4.4) 1             )()( |

1

1
≥+= ∑

−−

=
Ξ zqzFqzF xk

xw

k
xZ k

We have an approximate recursive formula for function ),( nnn yg ξ  as   

1111)( ),())1(|(),( −−
−

−

∞

∞−
− −=−≅ ∫ nn

y
nnnnnYnnn dyyegynYyfyg nξξ  .     (4.5) 

The recursive formula is starting from  

⎪⎩

⎪
⎨
⎧ +≥

−
Φ=

−

otherwise0

1if)
))1((

))1((
(

))1((
1
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111
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Ysd

YEy
Ysdyg ξξ  ,    (4.6) 

where (x) is the PDF of the standard normal distribution.  Φ

The  is normally distributed with mean 1)1(|)( −=− nynYnY

)))1(((
))1((

))1(),(())(())1(|)(( 11 −−
−

−
+==− −− nYEy

nYVar
nYnYCOVnYEynYnYE nn  (4.7) 

and variance 
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4.1.2 Proof for the Recursive Formula 

Again, the recursive formula of ),( nnn yg ξ  can be derived with Parker 

(1993a)’s approach. Starting from 

))exp(())(|( 1 nnnnnn ynPynYP (|))( Yny =−−≤Ξ==≤Ξ − ξξ  , we have  

)|())(exp((),( 1)(1
ny
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The key point for the approximation is   
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y

nnnnnY ynYyfeynYyf nξ .  (4.11) 

Because of the high correlation between Y(n) and Y(n-1) which is studied in 

details in Parker (1993a), the approximation is very good. By definition, we have 
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Substituting (4.11) and (4.12) into (4.10), we obtain  
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Substituting (4.13) into (4.9), we obtain the final approximate formula (4.5). For 

the proof of the starting value, we have  

)1(
1 1 Ye −+=Ξ  .       (4.14) 

Substituting (4.14) into the expression for , we obtain 1g
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Equation (4.15) can be easily transformed to the expression of (4.6). This 

completes the proof for the approximate formula for the function of . ng

4.1.3 Numerical Evaluation 

 Even if we have the recursive formulas above, it is still hard to evaluate 

the approximate distribution because of the integration terms in the formulas. 

Parker (1993a) recommended evaluating those functions numerically with either 

numerical integration or discretization.  

In our study, we use the trapezoidal numerical integration. The function 

 is approximately given by: ng
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where nby is the number of equally spaced points between  and . 

The  and are chosen to be:  

)1(ny )(nbyyn

)1(ny )(nbyyn
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n

n

⋅+=
⋅−=

In our computations, we use nby=100. 

  Due to the high skewness of the distribution of nξ , we have to arbitrarily 

choose the points of nξ . In our program, nξ  are chosen as 50 equally spaced 

points between 1 and )(2)( nn sdE Ξ+Ξ

)(7) nn sd

 and 50 equally spaced points between 

 and )(2)( nn sdE Ξ+Ξ (E Ξ+Ξ . By doing so, we will have a shorter space 

between points on the left than that on the right for most parameter sets. The 

reasons for choosing more points on the left are: 

(1) We want more dense points on the left so that we can get a more precise 

PDF, especially on the left tail. 

(2) We want to include points as far as possible on the right tail so that we can 

have more accurate higher moments later to validate the approximate 

distribution with those calculated from the exact formula.    

The particular values of the function  needed in the above formulas are 

obtained by linear interpolation:  
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 with  being the smallest chosen value for  that is larger or equal to 

 for which  is known, and  being the largest chosen value for 

 that is smaller or equal to  for which  is known.  

2
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F ξΞ , we have  

.  )))(,(2

))(,())1(,((
)1(2

)1()(
)(

1

2
∑

−

=

Ξ

⋅+

+
−
−

≅

nby

i
nnn

nnnnnn
nn

n

iyg

nbyygyg
nby

ynbyy
F

n

ξ

ξξξ
  (4.18) 

To calculate the function , we again need particular values of the function )( zF Z

)( nn
F ξΞ  which can be obtained by linear interpolation. 

4.2 Fitting Known Distributions with Exact Moments 

 Milevsky and Robinson(2000) fitted the distribution of the whole life 

annuity function under their GBM asset pricing model with some known 

distributions by using the exact moments. They fitted a reciprocal gamma 

distribution5 with the first two moments and Type II Johnson distribution with the 

first four moments. In our study, we use the first two moments computed under 

the O-U rate of return model to fit the reciprocal gamma distribution. The 

parameters for the fitted reciprocal gamma distribution can be calculated as 

12

2
12

2
12

2
12 ˆ2ˆ

MM
MM

MM
MM −

=
−
−

= βα    (4.19) 

                                            
5 Also called inverse gamma distribution. 
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where  are the computed moments from the exact formulas (2.17) and 

(2.18). Here we need to mention that the reciprocal gamma could not accurately 

describe the real distribution of Z analytically since the real PDF of Z has multiple 

modes on the left tail with a starting mass probability at 1 while the reciprocal 

gamma is a smooth single-mode distribution starting at zero. However, it may be 

still reasonable in the right tail after some moderate values, such as from 10 and 

up, to study the ruin probability in retirement which may only need to investigate 

values around 14 – the benchmark value we assumed as the market price of 

annuitization.    

21 , MM

4.3 Simulation  

Another method to obtain the distribution of the present value of a whole 

life annuity is simulation. If the number of simulations is large enough, the 

empirical distribution from the simulated values should have more credibility than 

other approximate or fitted distributions. In our study, we will use the percentiles 

of the distribution from simulations to validate the approximate distribution and 

the fitted reciprocal gamma distribution. 

 In our study, we simulate 400,000 lives under different parameter sets of 

O-U model of the rate of return. For every life, we first generate a realized value 

for K, the curtate future lifetime, according to the assumed mortality table. Next, 

we need to generate a path of the rate of return during the retiree’s future 

lifetime. Since the O-U model is a continuous process, we discretize time to small 

periods to get an accurate approximation of  by ∫
t

rdr
0

δ ∑
−

=

1

0
/

1nt

i
nin

δ  where n=15 is the 
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number of points per year. Then we will get a simulated value z for the present 

value of a whole life annuity by: 

   ,   ∑
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0
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 with a starting value of 1)0( =pv .  

Using the 400,000 simulated values for Z, the whole life annuity, we can estimate 

an empirical CDF of Z and its moments. We compute the moments with the exact 

formulas (2.17), (2.18), (2.19) and (2.20) and validate the results from 

simulations by moments checking. From our results, the first four moments from 

simulation are very close to the exact values. In most cases, the first four digits of 

the first two moments are exactly matched and the error of the third and fourth 

moments are limited to 1% of their exact values. Therefore, we believe that the 

results from our simulations are accurate enough to describe the real distribution 

and could be used to validate other methods. 

4.4 Validation of the Approximate and Fitted Distributions 

Tables 4-1 and 4-2 and Figures 4-1 and 4-2 compare percentiles and 

moments of the whole life annuity under different parameter sets of the O-U rate 

of return model for the methods we discussed in previous sections. In the tables, 

the M1, M2, M3 and M4 mean the first, second, third, and fourth moments.  

From these tables and figures, we can see that our recursive approximate 

method is a very good approximation of the true distribution under the presented 
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parameter sets. In fact, it is true for all parameter sets in Table 3-1 from our 

program. In Figures 4-1 and 4-2, the approximate distribution is so close to the 

empirical distribution from simulations that it is hard to tell one from the other. 

The percentiles are very close even for very high percentiles (99.5% or 99.9%).  

The first two moments are almost the same as the true values and the third and 

fourth moments are not too far from the true values. Considering that the 

moments for the recursive approximate method are calculated numerically, it is 

hard to eliminate errors from the right tail for higher moments so that we cannot 

conclude whether the errors on the third and fourth moments are from our 

approximate method or from the numerical moment calculation algorithm. 

Interestingly enough, the recursive approximate method for a lower equity 

allocation strategy is better than a higher equity allocation strategy in terms of 

higher moments and higher percentiles match. It could be explained from the 

approximate equation (4.11) which is more accurate for lower equity allocation 

strategy since Y(n) and Y(n-1) are more highly correlated.  

The reciprocal gamma is fitted with the first two moments so that the first 

two moments will match exactly. However, as we discussed in Section 4.2, the 

reciprocal gamma cannot provide an accurate fit of the real distribution of a 

whole life annuity, especially in the tails. The above percentile tables support 

such claim. There are large errors in the low percentiles and high percentiles of 

the reciprocal gamma distribution. Interestingly, when we put more assets in 

equity (see Figure 4-1), the reciprocal gamma becomes better, but is still worse 

than our recursive approximate method. 



 

Table 4-1   Percentiles and Moments of Approximate Distribution, Fitted Distribution and Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = 1.1, 2σ =.05, δ = .06, 0δ =.06 

Method 10% 20% 30% 40% 50% 60% 80% 90% 95% 70% 99% 99.5% 99.9% M1 M2 M3 M4 
Approximate 
Distribution  4.18 5.94 7.21 8.40 9.64 11.05 12.82 15.30 19.77 24.72 38.85 46.33 68.54 11.24 182 4,512 147,438
Reciprocal 
Gamma 5.31 6.38 7.34 8.32 9.40 10.67 12.30 14.65 18.97 23.85 38.24 46.16 69.98     
Simulations 4.23 6.12 7.42 8.61 9.82 11.19 12.89 15.26 19.46 24.10 37.03 43.53 63.48 11.24 179 4,206 166,487
Exact              11.25 179 4,217 170,574
 

 

Table 4-2   Percentiles and Moments of Approximate Distribution, Fitted Distribution and Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = .8, 2σ =.001, δ = .02, 0δ =.02 

Method 10% 20% 30% 40% 50% 60% 80% 90% 95% 99% 70% 99.5% 99.9% M1 M2 M3 M4 
Approximate 
Distribution  4.75 7.76 10.13 12.14 13.92 15.60 17.29 19.16 21.63 23.62 27.39 28.77 31.83 13.61 225 4,382 82,231
Reciprocal 
Gamma 7.65 8.90 9.98 11.04 12.18 13.48 15.08 17.28 21.09 25.10 35.68 40.95 55.31     
Simulations 4.79 7.77 10.16 12.16 13.95 15.62 17.28 19.12 21.50 23.40 26.96 28.34 31.16 13.60 224 4,091 80,366
Exact              13.60 224 4,090 80,378
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Figure 4-1 The Recursive Approximate Distribution, Fitted Reciprocal Gamma Distribution 
and Empirical Distribution from Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = 1.1, =.05, 2σ δ = .06, 0δ =.06  
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Figure 4-2 The Recursive Approximate Distribution, Fitted Reciprocal Gamma Distribution 
and Empirical Distribution from Simulations for the Present Value of a Whole 
Life Annuity to a Male Age 65 with O-U Model with α = .8, =.001, 2σ δ = .02, 

0δ =.02 
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CHAPTER 5: RUIN PROBABILITY   

In this chapter, we use our approximate distribution of a whole life annuity 

function to study the ruin probability in retirement under the stochastic rate of 

investment return and mortality rate.   

Here, ruin probability is the probability of running out of money during 

retirement. Assume a retiree starts with  dollars of wealth and consumes  

dollars per period continuously

w k

6. The net wealth at time t, if the retiree is still 

alive, under a stochastic return rate, will be 
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      (5.1) 

We define the ruin probability as  )|0  Pr(inf 0Tt0 wWWt =≤≤≤ . The probability can 

be expressed in term of the present value of a whole life annuity as follows:  

                                            
6 For the derivation, we assume continuous consumption and use continuous whole life annuity 

function. In our project, we assume consumption or withdrawal at the beginning of each period 
and use a discrete whole life annuity due. Milevsky and Robinson( 2000) gave a similar 
derivation.     
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which is the probability that the present value of a whole life annuity exceeds 

. kw /

  From Equation 5.2, assume a male retiree starting with $14 (the market 

price for a $1 whole life annuity from an insurance firm), self-annuitizes the $14 

with $1 consumption per period. Ruin will occur for this retiree if the present 

value of $1 consumption per period until death is greater than $14. Thus, the ruin 

probability is equal to the probability that the present value of a $1 whole life 

annuity, under the asset allocation strategy, will be greater than $14.   

 

5.1 Impact of Asset Allocation Strategy and Initial Rate of 
Investment Return 

Similar to Milevsky and Robinson (2000), we study the impact on the ruin 

probability of the asset allocation strategy. We also study the impact of initial rate 

of investment return which is not included in Milevsky and Robinson model. 

Table 5-1 gives the ruin probability, i.e., Pr (Z>14) where Z is the present value of 

a $1 whole life annuity under a stochastic rate of return and mortality rate with 

different parameter sets of O-U rate of investment return model for a male at age 

65.  
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We have the following conclusions from Table 5-1 and Figure 5-1: 

Firstly, the asset allocation strategy is the most important factor for ruin 

probability. Investing more assets in equity could reduce the ruin probability, but 

not 100% equity leads to the lowest ruin probability. In our parameter sets, for a 

male, the asset allocation B (80% equity and 20% long-term bond) has the 

lowest ruin probability for certain initial rates of return.  

 Secondly, the initial rate of return has some impacts on the ruin 

probability, but it is less important than the choice of the asset allocation strategy. 

If the rate of return at the beginning of retirement is higher, the ruin probability will 

be lower.  It is consistent with a widely accepted wisdom that the first few years’ 

return on investment is crucial to a retirement plan.   
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Table 5-1  Ruin Probabilities for a Male under Different Asset Allocation Strategies  

Asset allocation 
Strategy α  2σ  δ  0δ  

Ruin 
Probability 

0.12       0.220  
0.06       0.247  

0       0.275  

A: 
All equity 

1.100 0.050 0.060

-0.06       0.305  
0.12       0.203  
0.06       0.234  

B: 
80% equity 
20% long term bond 

1.100 0.030 0.057
0       0.267  

0.06       0.309  
0.04       0.325  
0.02       0.341  

C: 
40% equity 
40% long term bond 
20% short term bill 

1.070 0.010 0.040

0       0.357  
0.05       0.401  
0.03       0.418  

D: 
20% equity 
40% long term bond 
40% short term bill 

1.000 0.003 0.030

0       0.444  
0.04       0.477  
0.02       0.495  

E: 
100% short term bill 0.800 0.001 0.020

0       0.513  

 Figure 5-1 Impact of Asset Allocation and Initial Return Rates on the Ruin Probabilities 
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5.2 Comparison between Males and Females 

Assume a male and a female are both starting with $14 for their retirement 

life and consuming $1 per period, Table 5-2 compares the ruin probabilities 

between them under different O-U parameter sets. 

Table 5-2 Ruin Probability Comparison between a Male and a Female 

Asset 
Allocation α  2σ  δ  0δ  Gender

Ruin 
Probability 

Male 
        
0.247  A 1.100 0.050 0.060 0.060

Female
        
0.338  

Male 0.234 
B 1.100 .030 .057 .060 

Female 0.334 

Male 
        
0.325  C 1.070 0.010 0.040 0.04 

Female
        
0.478  

Male 
        
0.418  D 1.000 0.003 0.030 0.030

Female
        
0.600  

Male 
        
0.495  E 0.800 0.001 0.020 0.020

Female
        
0.673  

 

It is obvious that a female will have a higher ruin probability than a male 

under the same asset allocation option and initial rate of return due to the 

longevity of females on average.  
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CHAPTER 6: APPLICATIONS   

In this chapter, we use the distribution of the present value of a whole life 

annuity to study some practical objectives that retirees might have in addition to 

the consideration of ruin. In Section 6.1, we study the value of bequest in the 

context of present value and future value. In later sections, we will focus on how 

much consumption a retiree could have per period (in maximum) according to his 

own view of risk, the social environment, and his desired standard of living during 

retirement by using the VaR approach.  

6.1 The Value of Bequest 

Let Z denote the random variable for the present value of a whole life 

annuity under our stochastic rate of return model and mortality model, that is, 

|1+= KaZ &&  ,   where K is the curtate future lifetime for a retiree at age 65.  Assume 

a whole life annuity of $1 per year in real term sold by an insurance firm is $14. 

Further, assume the retiree starts with $14 at age 65. We want to know what the 

value of the bequest is at the death of the retiree. Clearly, it will be zero if the 

retiree buys a whole life annuity from the insurance firms with the $14 since the 

insurance will pay nothing to the retiree’s survivors or estate at his or her death. If 

the retiree self-manages his wealth, he may leave some bequest or nothing in 

the case when he is ruined before his death. In this section, we will study the 

present value and future value of his bequest.  
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6.1.1 Present Value of Bequest 

Let W denote the random variable of the present value of the bequest 

under self-annuitization, then we have  

)0,14max()14( ZZW −=−= + .      (6.1) 

Here we assume that if the retiree is ruined in retirement, he will get social 

assistance or other ways to fully support himself, but will not leave a bequest at 

death. The expected value of W is  

∫∫
∞

⋅+−+==
14

14

1

0)()14)((13*)1Pr()( dzzfdzzzfZWE .    (6.2) 

The first term is from the probability mass of Z at 1 for those people who die in 

the first year only receiving (and consuming) the first $1 at the beginning. The 

second term is the integration on the density function of Z for those people who 

survive the first year and are not ruined during retirement. The following Tables 

6-1, 6-2 and 6-3 illustrate the percentiles of Z from simulations and its mean 

under different parameters for O-U rate of return model for a male and a female, 

respectively.



 

 Table 6-1 Present Value of Bequest with Asset Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean 
Percentage of 
starting wealth 

W for 
male 0 0 1.11 2.8 4.18 5.4 6.57 7.88 9.75 13 13 4.39 31%
W for 
female 0 0 0 1.05 2.58 3.91 5.18 6.49 8.26 12.2 13 3.33 24%

 

 Table 6-2 Present Value of Bequest with Asset Allocation Strategy B (α = 1.1, =.03, 2σ δ = .057, 0δ =.06) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean 
Percentage of 
starting wealth 

W for 
male 0 0 1.20 2.63 3.86 5.00 6.17 7.56 9.67 13 13 4.23 30%
W for 
female 0 0 0 .96 2.27 3.46 4.64 5.96 7.92 13 13 3.11 22%

 

 Table 6-3 Present Value of Bequest with Asset Allocation Strategy E (α = .8, =.001, 2σ δ = .02, 0δ =.02) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean 
Percentage of 
starting wealth 

W for 
male 0 0 0 0 0.06 1.84 3.86 6.25 9.21 13 13 2.76 20%
W for 
female 0 0 0 0 0 0 0.51 3.06 6.68 12 13 1.62 12%
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From the tables above, we have the following conclusions about the bequest 

in the context of present value: 

(1) The present value of bequest has a probability mass at 0 and 13 and 

continuous density between 0 and 13. The probability mass at 0 is 

because of the ruin probability and the probability mass at 13 is because 

of the probability mass of Z at 1 in case of death in the first year. 

(2) Comparing results in Tables 6-1, 6-2 and 6-3, by choosing an aggressive 

allocation strategy (i.e. investing more assets in equity), retirees tend to 

have a higher present value of bequest left for both males and females. 

For example, a male retiree will leave 31% of his starting wealth, on 

average, if all assets are invested in equity market (Table 6-1) while he will 

leave 20% of his starting wealth, on average, if all assets are invested in 

short term T-bill ( Table 6-3). For a female retiree, choosing all equity 

could double her wealth on average compared to choosing all short term 

T-bill. 

(3) Males tend to leave more wealth than females. The explanation is that, on 

average, male retirees die earlier than females which makes males 

consume less and leave more bequest.     

6.1.2 Future Value of Bequest 

 In practice, it is more natural to think about the value of bequest at the 

time of death or what we call the future value of the bequest. Let B denote the 

future value of the bequest in real term at the end of year of death which can be  
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Table 6-4 Future Value of Bequest (Real Term) with Asset Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean

Perc. Of 
original starting 
wealth 

B for male 0 0 2.37 6.34 9.94 13.2 16.8 24.2 43.6 197 601 20.1 143%
B for female 0 0 0 2.77 7.49 12.1 17.2 27.7 56.3 296 968 25.1 179%

 
 

Table 6-5 Future Value of Bequest (Real Term) with Asset Allocation Strategy B (α = 1.1, =.03, 2σ δ = .057, 0δ =.06) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean
Perc. of original 
starting wealth 

B for male 0 0 2.81 6.29 9.36 12.2 14.6 18.8 29.6 103 265 13.75 98%
B for female 0 0 0 2.75 6.77 10.6 14.2 20.0 35.2 142 388 15.00 107%

  
 

Table 6-6 Future Value of Bequest (Real Term) with Asset Allocation Strategy E (α = .8, =.001, 2σ δ = .02, 0δ =.02) 

CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 Mean 
Perc. of original 
starting wealth 

B for male 0 0 0 0 0.1 2.49 4.92 7.5 10.4 13.3 13.6 3.19 23%
B for female 0 0 0 0 0 0 0.73 4 7.99 13.1 13.5 1.88 13%
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expressed as  

 )1(/)0,14max()1(/)14( +−=+−= + kpvZkpvZB , (6.3) 

where pv(k+1) is the present value of $1 at the end of death year. 

Similarly, using simulations, we generate Tables 6-4, 6-5 and 6-6 showing the 

percentiles of B and its mean under different parameters for the O-U rate of 

return model for a male and a female, respectively. 

From these tables, we have the following conclusions about the bequest in 

the context of future value: 

(1) The future value of bequest will have a probability mass at 0 and 

continuous density above 0. The probability mass at 0 is because of the 

ruin probability. 

(2) Comparing Tables 6-4, 6-5 and 6-6, we observe that the choice of 

different asset allocation strategies can have a significant impact on the 

bequest. For example, an all equity asset allocation strategy (in Table 6-4)  

for a male retiree gives an average bequest of 143% of his starting wealth 

while an all short-term T-bill asset allocation strategy (in Table 6-6) only 

leaves approximately  23% of his starting wealth. 

(3) Males may leave more or less wealth than females depending on the 

chosen asset allocation strategy. On the one hand, males live shorter than 

females which means that males have less time to accumulate the 

bequest. On the other hand, males have a lower ruin probability than 

females which increase the chance of leaving a bequest. The former will 
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dominate the latter under an asset allocation strategy weighted towards 

equity while the latter will dominate under an asset allocation strategy 

more heavily weighted towards short term T-bill. Under our all equity asset 

allocation strategy, females tend to leave a larger bequest than males 

(Table 6-4) because of their longer lifespan which gives them more time to 

accumulate more wealth under the higher average return rate on assets. 

Under our all short-term T-bill asset allocation strategy, females will tend 

to leave a smaller bequest (Table 6-6) because females will have a 

greater ruin probability under a lower average return rate on assets and 

will likely leave no bequest.  

6.2 Consumption under Self-Annuitization Using a VaR Method 

Suppose a male retiree is risk averse to the possible ruin in the future, but 

still has some tolerance toward the risk. For example, he could tolerate 5% ruin 

probability or 50% ruin probability which may depend on some other factors in 

addition to his own attitude to risk such as: 

(1) Social security availability 

In most developed countries, there is a social security or benefit 

system available to give elderly individuals financial assistance if they do 

not have any income during retirement. For example, Canadian residents 

are entitled to receive OAS and GIS from the government if they run out of 

their own money at age 65 or older. 
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If this kind of social security system is available, many individuals, 

especially those with a low income may not worry so much about ruin in 

retirement since the government will have full financial responsibility if they 

are ruined in retirement. Therefore, people in these countries may have 

very high tolerance toward ruin, say 50% probability. However, in those 

countries where the social security or benefit system is not well 

established, people do not generally expect financial assistance from 

governments if they run out of money in retirement. Individuals who reside 

in these countries do worry about ruin in retirement and therefore have a 

much lower tolerance level, say 5%. 

(2) Firm-sponsored or government-sponsored defined benefit pension 

plan 

If there is either a firm-sponsored or a government sponsored defined 

benefit (DB) plan for a retiree, the wealth under the retiree self-

management will generate extra incomes for him in addition to the income 

from his DB pension plans. The retiree may have a higher tolerance 

toward ruin than those who do not have, or have a lower pension benefit 

because he could still enjoy a good retirement life with the income from his 

DB plans in case of the self-management assets ruin. In Canada, the 

government sponsored pension plan, CPP, gives retirees about 25% of 

their final salary at retirement as the retirement benefit. Many firms, 

particularly government jobs, provide very generous DB plans which give 

retirees another 35%-45% of their final salary at retirement as the 
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retirement benefit. For individuals with such DB plans, the tolerance 

toward ruin of other incomes could be very high, say 50% or higher. Note 

that for retirees with defined contribution (DC) plans, we should regard the 

wealth in DC plans as the part of assets under our study. The retirees with 

DC plans have complete responsibility to manage this part of wealth so 

that they must consider the possibility of ruin on the wealth from DC plans 

very seriously. 

(3) Incentive to leave a bequest to survivors or estate 

Some people have a very strong desire to leave wealth to their 

survivors after death so that they would do their best to avoid ruin in their 

retirement life. For these people, their tolerance for ruin is very low, say 

5% probability or less.  

We use the Value-at-risk (VaR) approach to obtain the appropriate price 

for $1 life annuity that a retiree would like to accept and the maximum 

consumption per period for a retiree with a certain ruin tolerance. Table 6-7 

shows the percentiles of Z, the accepted price and the maximum consumption for 

a male with different ruin tolerance under an all-equity asset allocation strategy. 

From the percentile table of a whole life annuity under all-equity asset 

allocation strategy, a male with a good DB pension plan who can tolerate 50% 

probability ruin on his self-managed wealth would accept $9.82 or less for a $1 

life annuity while a male without a DB pension plan nor a social security who can 

only tolerate 5% ruin probability would accept $24.10 or less for a $1 life annuity. 

If we ignore the expenses and assume that the insurance firms earn returns no 
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higher than individuals, we may say the insurance firms could sell the life annuity 

as low as $11.24 which is the expected value of $1 life annuity. In our study, we 

assume insurance firms sell the $1 life annuity at $14 that corresponds to a 

24.7% ruin probability. It means that only those retirees with ruin tolerance equal 

or lower than 24.7% ruin probability will buy the annuity at the price of $14 from 

insurance firms. In Canada, since most people are covered by social security or 

firm/government-sponsored DB plans, they may have a much higher ruin 

tolerance than 24.7% ruin probability which explains why only very few people 

will annuitize their wealth at retirement. 

If a male retiree has higher tolerance than 24.7% ruin probability, he 

should self-annuitize his wealth instead of buying a life annuity from insurance 

firms priced at $14, so that he will consume more than $1 per period – the 

amount the insurance firm will provide. For example, if you have a 50% ruin 

probability tolerance and assume you have X initial wealth, you can consume as 

much as X/9.82 instead of X/14 per period which is 43% higher. 

It could be more straightforward to get the above conclusion by studying 

the distribution of another random variable defined as C=14/Z. This variable 

represents the constant consumption per period for which a retiree starting with 

$14 will just use up all of his wealth upon the time of death. The consumption 

values are shown in Table 6-7 in the row labelled “Optimal Consumption per 

Period”. Figure 6-1 shows the cumulative distribution function (CDF) of C under 

different O-U parameter sets and reveal more interesting points about the optimal 

consumption.



 

Table 6-7 Accepted Price for $1 Life Annuity and Maximum Consumption per Period under Certain Ruin Probability Tolerance with Asset 
Allocation Strategy A (α = 1.1, 2σ =.05, δ = .06, 0δ =.06) 

F(z) 
   
0.100  

   
0.200  

   
0.300 

   
0.400 

   
0.500 

   
0.600 

   
0.700 .753 

   
0.800 

   
0.900 

   
0.950 

   
0.990 

Z 
     
4.23  

     
6.12  

     
7.42  

     
8.61  

     
9.82  

   
11.19 

   
12.89   14 

   
15.26 

   
19.46 

   
24.10 

   
37.03 

Ruin Prob. 
Tolerance 90% 80% 70% 60% 50% 40% 30% 24.7% 20% 10% 5% 1%
Highest price 
of life annuity 
accepted by 
retiree 

   
4.23  

   
6.12  

   
7.42  

   
8.61  

   
9.82  

 
11.19 

 
12.89   14 

 
15.26 

 
19.46 

 
24.10 

 
37.03 

Optimal 
Consumption 
per period 

   
3.31  

   
2.29  

   
1.89  

   
1.63  

   
1.43  

   
1.25  

   
1.09  1.00 

   
1.00  

   
1.00  

   
1.00  

   
1.00  

More 
consumption 
than 
annuitization 231% 129% 89% 63% 43% 25% 9%      
 Self-annuitization Annuitization 
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 Figure 6-1  The Distribution of C= 14 / Z under Different O-U Parameter Sets 
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First, to obtain the optimal consumption as discussed earlier, we use the 

VaR approach again, but we study the left tail of C instead of the right tail for Z. 

This can be understood from the fact that Pr(C<c) = Pr(14/Z<c) = Pr( Z> 14/c) = 

Ruin Probability. 

Secondly, C ranges from 0 to 14. C cannot be greater than 14 otherwise 

the retiree would be ruined at the beginning.   
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Thirdly, we notice that the lower percentiles of C at the bottom-left corner 

could be smaller under all-equity asset allocation strategy (black solid line) than 

the other two asset allocation strategies. It just reflects a widely accepted advice 

about retirement investment for those with the least risk tolerance that they 

should reduce or avoid exposure to equity. However, since we assume a retiree 

could buy a $1 whole life annuity from insurance firms with $14, he will be better 

off to purchase the whole life annuity instead of considering any asset allocation 

strategy if his tolerance on ruin probability is below a certain value. From Figure 

6-1, it is very clear that the crossover of the CDFs under different O-U parameter 

sets occurs before $1, which just validates the all-equity asset allocation strategy 

as the optimal one among the three presented in Figure 6-1 when the tolerance 

on ruin probability is greater than a certain value for which the corresponding 

percentile of Z is $1.     

Lastly, we notice that the higher percentiles of C at the top-right are very 

close under different asset allocation strategies. There is a very intuitive 

explanation that a retiree with much higher tolerance toward ruin in retirement, 

say over 90% ruin probability, may choose to consume too fast to accumulate 

wealth in the future. The only no-ruin probability for this situation occurs when the 

retiree dies too early. Therefore, for retirees with a very high ruin tolerance, the 

asset allocation strategy may not matter too much.     
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6.3 Focus on Ruin in the First 10 Years in Retirement 

This is a more aggressive consideration for some people, especially lower 

income people, who may have the desire to consume more only in their first few 

years after retirement. In Canada, since most people have government social 

security or firm/government-sponsored DB pension plan, they may have a higher 

tolerance toward ruin in their later retirement life. Some reasons support this 

claim: 

(1) When retirees are at the beginning of their retirement life, they are still 

active and very likely to keep their usual living standard but with more 

free time. They need more money to travel and participate in social 

events. Therefore, they may have little tolerance toward ruin in their 

early retirement life. 

(2) When retirees become older, they become inactive physically so that 

they need less money to consume7. The income from social security 

or DB plans may be enough for them to live on. Therefore, they may 

have very high tolerance toward ruin in their later retirement life. 

It may be more appropriate to only focus on ruin in the first few years, say 

the first 10 years after retirement. Again, we convert this earlier ruin problem to 

study the distribution of 10-year term life annuity under stochastic interest rate 

and mortality.  

                                            
7 This is especially true for people living in a country like Canada where the government provides 

a comprehensive health and medical plan to elderly people so that retirees will not be 
concerned with the rising medical expenses during retirement.  
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Table 6-8 gives us the percentiles of the random variable                       
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From Table 6-8, the 95 percentile of Z gives us the highest accepted price 

of such 10-year life annuity for a male retiree with 5% probability ruin tolerance in 

the first 10 year after retirement. If the retiree survives 10 years without ruin, he 

may choose to annuitize or keep self-annuitize the remaining wealth which may 

not be a very important issue given that we assume the retiree has decided to 

rely on the social security or DB plan for the remaining life. 

 By choosing to focus on ruin in the first 10 years, even a very risk averse 

retiree, who is starting with $14, with 5% ruin tolerance, can consume $1.16 per 

period which is 16% higher than the amount provided by a whole life annuity from 

insurance firms. Only those people who have a ruin probability tolerance in the 

first 10 years lower than 2% would accept the price of $14 for a whole life 

annuity. Table 6-8 gives us another strong explanation why Canadians, 

particularly those with a low income, rarely annuitize their wealth at age of 65. 

Note that we discuss two “unfair” values: one is a 10-year term life annuity 

while the other is a whole life annuity. Nevertheless, if a retiree only focuses on 

the first 10-year ruin problem, he may not care too much about the difference 

between a 10-year term life annuity and a whole life annuity. This gives us a 

strategy to consume more in early retirement and postpone the annuitization 

decision to a later date. 



 

Table 6-8 Accepted Price for $1 Life Annuity and Maximum Consumption per Period under Certain Ruin Probability Tolerance in the 
First 10 Year with Asset Allocation Strategy A (α = 1.1, 2σ =.05, δ = .06, 0δ =.06) 

F(z) 
  
0.100  

  
0.200  

  
0.300 

  
0.400 

  
0.500 

  
0.600 

  
0.700 

  
0.800  

  
0.900 

  
0.950 

 
.981

  
0.990  

Z: 10 year 
term life 
annuity 

    
4.18  

    
5.44  

    
6.14  

    
6.70  

    
7.25  

    
7.83  

    
8.51  

    
9.38  

  
10.79 

  
12.11 

 
 
14.0

  
15.20  

ruin 
probability 
tolerance 90% 80% 70% 60% 50% 40% 30% 20% 10% 5% 2% 1%
highest price 
accepted by 
retiree 

    
4.18  

    
5.44  

    
6.14  

    
6.70  

    
7.25  

    
7.83  

    
8.51  

    
9.38  

  
10.79 

  
12.11 

 
 
14.0

  
15.20  

Optimal 
consumption 
per period 

    
3.35  

    
2.57  

    
2.28  

    
2.09  

    
1.93  

    
1.79  

    
1.64  

    
1.49  

    
1.30  

    
1.16  

 
 
1  1 

more 
consumption 
than whole 
life 
annuitization 235% 157% 128% 109% 93% 79% 64% 49% 30% 16%

 

 
 -------------------------------------------------Self-annuitization---------------------------- annuitization 
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6.4 Postponing Annuitization with Minimum Consumption in 
Later Years   

This is an extension of our previous applications. People may argue that 

retirees may want to consume more in their earlier retirement life, but still need a 

certain minimum income from their wealth later because the income from social 

security and government/firm sponsored DB plan may not cover their minimum 

needs for later retirement. In this application, we design an approach for retirees 

with such desire. Retirees could postpone annuitization, say 10 year later at age 

75, with the remaining wealth in their self-management account while they may 

consume more in the first 10 years than the amount provided by a whole life 

annuity from insurance firms at age 65. We require that retirees have enough 

assets left at age 75 in order to buy a minimum amount of a whole life annuity 

needed for their remaining retirement life.  

First, we have to determine a market price for a $1 whole life annuity at 

age 75. Reasonably, the whole life annuity at age 75 is less than the whole life 

annuity at age 65 since one at age 75 will be more likely to receive fewer 

payments. In our assumption, we only have a market price of $14 for age 65 

which is the 75.3 percentile of whole life annuity for age 65 under all equity asset 

allocation. To make it consistent, we assume insurance firms price the life 

annuity at the same percentile for age 75. For the all-equity asset allocation, the 

75.3 percentile of whole life annuity for age 75 is 10.10, thus we assume it is the 

market price for a whole life annuity at age 75.    
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In this application, we redefine ruin in retirement as the situation that either 

a retiree cannot meet his financial goal to have enough money at age 75 to buy 

the minimum whole life annuity if he survives over 75, or run out of money if he 

dies before 75. Define a new random variable as   

⎪⎩

⎪
⎨
⎧

>++
≤+

= +

, 101)10(*10.10*
101

2|101

|11

KPVcac
Kac

Z K

&&

&&
       (6.5) 

where  is the consumption per period in the first 10 years and is the 

minimum consumption needed per period which is purchased from insurance 

firms at the price of $10.10 at age 75. Assume a retiree starts with $14 at 65 and 

desires a minimum $.50 per period after 75 if he is still alive, we want to know the 

maximum consumption per period in the first 10 years based on his ruin 

tolerance (the new definition in this section).  We give the percentiles of Z in 

Tables 6-9 and 6-10 for a male retiree choosing to have =1.19 and  = 1.40 

respectively. 

1c 2c

1c 1c

 Again, using the VaR approach, we can answer the question, “what is the 

maximum consumption in the first 10 years for a male starting with $14 under 

such goal?” If his ruin tolerance is 24.7%, the maximum consumption per period 

for the first 10 years will be $1.19 which can be found in Table 6.9. Similarly, if he 

can tolerate 36% ruin probability, he can consume as much as $1.40 (obtained 

from Table 6.10).  Notice that we use our new definition of ruin in this section. 

Table 6-11 shows the value of CDF(14), and the ruin probability= 1- CDF(14) for  

different consumption levels in the first 10 years by self-annuitization and $.50 

later by annuitization at age of 75.  



 

Table 6-9  Present Value of $1.19 Consumption between Age 65 and 75 and $.50 Annuitization at Age of 75 with Asset Allocation 
Strategy A (α = 1.1, 2σ =.05, δ = .06, 0δ =.06)  

F(z) 
  
0.10  

  
0.20  

   
0.30 

   
0.40  

   
0.50 

   
0.60  

   
0.70  0.753   0.80 

   
0.90 

   
0.95  

   
0.99  

Z 
    
5.00  

    
7.15  

     
8.49  

     
9.59  

   
10.67 

   
11.81 

   
13.15 14

  
14.92 

   
17.85  

   
20.68 

   
27.54 

 

Table 6-10  Present Value of $1.40 Consumption between Age 65 and 75 and $.50 Annuitization at Age 75 with Asset Allocation Strategy 
A (α = 1.1, 2σ =.05, δ = .06, 0δ =.06)  

F(z) 
  
0.10  

  
0.20  

   
0.30 

   
0.40  

   
0.50 

   
0.60  

   
0.64  0.70   0.80 

   
0.90 

   
0.95  

   
0.99  

Z 
    
5.86  

    
8.31  

    
9.77  

  
10.98  

  
12.16 

  
13.44 

  
14.00 

  
14.94 

  
20.08 

  
23.22  

  
30.84 

  
33.87 

 

Table 6-11 CDF(14) for the Present Value of Different Consumption Levels between Age 65 and 75 and $.50 Annuitization at Age 75 with 
Asset Allocation Strategy A (α = 1.1, 2σ =.05, δ = .06, 0δ =.06)  

1C  1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.8 1.9 2.0 

CDF(14) .79 .75 .69 .64 .58 .53 .47 .42 .37 .33 
Ruin 
Prob .21 .25 .31 .36 .42 .47 .53 .58 .63 .67 
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6.5 Partial Annuitization 

Partial annuitization is a more practical retirement plan chosen by some 

Canadians. For those people who are very conservative and do not think social 

security and government/firm-sponsored DB plans will fully meet their financial 

needs in the future, they may tend to annuitize part of their wealth at the 

beginning of retirement to guarantee a financially secure retirement. The 

remaining wealth after annuitization will give them supplemented income if they 

manage it well. Here, we redefine ruin in retirement as the situation that retirees 

run out of their own self-management wealth after partial annuitization. Assume a 

male retiree starting with $14 at 65 wants to have a guaranteed minimum income 

of $.50 to supplement his social security and DB pension plan. At the beginning, 

the retiree has to take out $7 to purchase a $.50 life annuity from insurance firms 

and the remaining $7 will provide the additional income to his minimum 

consumption – social security + DB plan + $.50.  Using the same approach 

presented in Section 6.2, we can calculate the maximum consumption per period 

provided by the remaining $7. For example, from Table  6-1, a male retiree with 

50% ruin probability tolerance who invests all self-managed asset in equity would 

like to consume  as much as $1.43*(7/14)=$.715 per period from the remaining 

$7. In other words, the retiree starting with $14 at 65 could have a guaranteed 

consumption per period – social security + DB plan + $.50 plus a non-guaranteed 

$.715 per period which will have a probability of 50% not lasting during his entire 

retirement life.   
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Similarly, we can reach the above conclusion by looking at the distribution 

of another random variable defined as C= mc + (1- mc) * 14 / Z where mc is a 

constant between 0 and 1. This random variable represents the constant 

consumption per period under a retirement plan consisting of annuitizing  

mc*100% of the wealth at the beginning of retirement and self-managing the 

remaining which will be just used up at the time of death. We draw the CDFs of C 

for mc=0, .2, .4, .6, .8, 1 under the all-equity parameter set for O-U model in one 

graph which will reveal some interesting points.  

Figure 6-2 CDFs of C= mc + (1-mc)*14/Z for mc=0, 0.2, 0.4, 0.6, 0.8, 1.0 under Asset 
Allocation Strategy A (α = 1.1, =.05, 2σ δ = .06, 0δ =.06) 
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First, C ranges from mc to mc+ (1-mc)*14. The lower range of C will be 

equal to mc, the guaranteed part provided by partial annuitization. From Figure 

6.2, we can see that the left tails of the CDFs of C start at mc instead of 0. C 

cannot be greater than mc + (1-mc) * 14 because the retiree will be borrowing at 

the beginning or be ruined under the new definition of ruin in this section. 

Secondly, mc=0 corresponds to the100% self-annuitization case while 

mc=1 is the 100% annuitization case; the others are between these two extreme 

cases. There is only one crossover point among these CDFs which occurs at 

C=1. From Figure 6.2,  at the bottom left corner, the case mc=1(i.e., 100% 

annuitization), will have the highest value for the same percentile which is always 

equal to $1 while at the top right corner, the case mc=0 (i.e., 100% self-

annuitization), will have the highest value for the same percentile. If we only use 

the VaR approach to make a choice, we could have the decision of either 100% 

self-annuitization or 100% annuitization and any partial annuitization will be 

suboptimal. It is obvious that the VaR approach could not correctly reflect the 

process of decision-making for retirees who choose partial annuitization. Perhaps 

utility functions may be more appropriate to explain the decision to partially 

annuitize. 
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CHAPTER 7: CONCLUSION 

Milevsky and Robinson(2000) studied the ruin problem in retirement under 

a standard Geometric Brownian Motion asset pricing model,  or equivalently a 

stochastic model on force of interest accumulation function as tBttY ⋅+⋅= σδ)(   

where is a geometric Brownian motion process. Compared to their interest 

model, we model the rate of return as an O-U process which will give a more 

detailed description of the interest process.  

tB

We obtained an approximate distribution for a whole life annuity by a 

recursive approach introduced in Parker(1993a) which is better than  the 

reciprocal gamma distribution estimated by the moment matching method in 

terms of percentile matching, particularly for low percentiles and high percentiles, 

under various asset allocation strategies.  

For the ruin probability, we get very similar results to those found in 

previous works. First, investing in more equity will reduce the ruin probability, but 

the optimal asset allocation strategy is not 100% equity. Secondly, females tend 

to have a higher ruin probability under the same situation. In addition, because 

our O-U model includes the initial return rate, we can study its impact on the ruin 

problem in retirement and we conclude that the return in the first few years is 

crucial.   
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Under our O-U rate of return model, we study the value of the bequest. 

We get similar results to Milevsky et al. (1997). More equity exposure will help a 

retiree leave a higher value of bequest both in the context of the present value 

and the future value. In the context of future value, females will leave higher 

value of bequest than males with more assets in equity while lower value with 

less assets in equity. Then we obtained the optimal/maximum consumption per 

period for retirees with different tolerance to ruin probability, social environment, 

and standard of living in retirement by the VaR approach. The general idea is to 

help retirees achieve a maximal, but sustainable, consumption if they can match 

their objectives and tolerance levels with one of our cases. 

Under our O-U rate of return model, we will be able to explore more things 

in the future. First, it is very important to find a general and simple approach to 

estimate the O-U model, not only based on the past market data but also 

incorporating the economic forecast. Secondly, for the market price of 

annuitization, a single fixed rate is obviously not practical. We could add another 

stochastic process to model the interest rate at which insurance firms price the 

life annuity so that we can determine a more appropriate market price according 

to the current rate or the forecast on the long-term bond rate. Lastly, in order to 

give more practical and realistic advice on retirement problems, we should add 

taxation into the model.      
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