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Abstract

In this thesis, we study the expected discounted penalty function and the total dividend

payments in a risk model with a multi-threshold dividend strategy, where the claim arrivals

are modeled by a Markovian arrival process (MAP) and the claim amounts are correlated

with the inter-claim times. Systems of integro-differential equations in matrix forms are

derived for the expected discounted penalty function and the moments of the discounted

dividend payments prior to ruin. A recursive approach based on the integro-differential

equations is then provided to obtain the analytical solutions. In addition to the differen-

tial approach, by employing some new obtained results in the actuarial literature, another

recursive approach with respect to the number of layers is also developed for the expected

discounted dividend payments. Examples with exponentially distributed claim amounts are

illustrated numerically.

Keywords: Expected discounted penalty function; Discounted dividend payments; Integro-

differential equation; Markovian arrival process (MAP); Multi-threshold
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Chapter 1

Introduction

A continuous-time risk model in ruin theory is used to model an insurer’s surplus process,

{U(t); t ≥ 0} with an initial surplus U(0) = u ≥ 0. The process can be modeled as a result

of two opposing cash flows, an incoming cash flow of premiums collected continuously at a

constant rate c > 0 per unit time and an outgoing cash flow of claim amounts X1, X2, · · · .
This sequence of non-negative claim amount random variables, {Xn;n ∈ N+}, is assumed

to be independent and identically distributed with mean µ < ∞, cumulative distribution

function F , probability density function f and its Laplace transform f̂(s) =
∫∞

0 e−sxf(x)dx.

Let N(t) be the total number of claims up to time t and S(t) =
∑N(t)

n=1 Xn be the aggregate

claims up to time t. Then the surplus process {U(t); t ≥ 0}, illustrated in Figure 1.1, is

given by

dU(t) = cdt− dS(t), t ≥ 0. (1.1)

The foundation of the risk model in ruin theory is the so-called classical compound

Poisson risk model, in which {N(t); t ≥ 0} is a Poisson process. The compound Poisson

risk model has been studied extensively in actuarial literature. See Gerber (1979), Bower

et al. (1997), Asmussen (2000) and reference therein. In recent years, there have been

considerable interests in extending results from the classical compound Poisson risk model

to other models with more flexible settings. One such extension is called Sparre Andersen

risk model, in which the Poisson claim number process is replaced by a more general renewal

process. Another extension, which was proposed in Asmussen (1989), is that both the

frequency of the claim arrivals and the distribution of the claim amounts are influenced by

an external Markovian environment process. It is known as Markov-modulated risk model

or the Markovian regime-switching risk model in actuarial literature. Further extension

of risk models is to use a Markovian arrival process (MAP; see Neuts (1981)) to govern

the external environment process, which has been briefly surveyed in Asmussen (2000).

The MAP risk model allows for more complicated non-renewal scenarios with extensive

1



CHAPTER 1. INTRODUCTION 2

flexibility and includes the Sparre Andersen risk model and the Markov-modulated risk

model as special cases.

Allowing dividend payments is another extension for insurance risk models to reflect the

surplus cash flows in a more realistic manner. There are three dividend strategies that are

of particular interest. The first one is called a constant barrier strategy under which no

dividend is paid when the surplus is below a constant barrier but the premiums collected

above the barrier are paid out as dividends. The second one is called a threshold dividend

strategy under which no dividend is paid when the surplus is below a constant barrier

and dividends are paid at a constant rate d < c when the surplus is above the barrier.

The third dividend strategy, which is a generalization of the threshold strategy, is called

a multi-threshold dividend strategy, under which dividends are paid in a rate that is a

step function of the insurer’s surplus and most likely an increasing step function. The first

two dividend strategies can be considered as special cases of the multi-threshold dividend

strategy. Figure A.1, A.2 and A.3 illustrate three sample paths of the surplus process under

different dividend strategies. Other dividend strategies include the linear barrier strategy,

nonlinear barrier strategy and continuous barrier strategy, with their application in certain

areas. In some actuarial literature, dividends are no more payments to shareholders but

rather premium discounts that are functions of the surplus level. In this case, dividend

strategy is also called surplus-dependent premium policy.

Figure 1.1: Sample path of the surplus process U(t)

Surplus U(t)

Time t

surplus 
before ruin

deficit at ruin

time of ruin
u

0

Introduced by Gerber and Shiu (1998), the Gerber-Shiu discounted penalty function has
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become an important and standard technical tool in actuarial literature to analyze various

ruin-related quantities. Define

τ = inf{t ≥ 0 : U(t) < 0} (1.2)

to be the first time that the surplus process drops below level 0. It is also called the time

of ruin. Let δ > 0 and w(x, y) be a nonnegative function of x > 0 and y > 0. Here δ can

be interpreted as a force of interest or, in the context of Laplace transforms, as a dummy

variable. See Gerber and Shiu (1998). Define

φ(u) = E[e−δτw(U(τ−), |U(τ)|)I(τ <∞)|U(0) = u], u ≥ 0, (1.3)

to be the expected discounted penalty (Gerber-Shiu) function at ruin, given the initial

surplus u, where U(τ−) is the surplus before ruin, |U(τ)| is the deficit at ruin and I(·)
is the indicator function. There are a great variety of ruin-related quantities that can be

unified to the expected discounted penalty function, such as the probability of ultimate

ruin, the joint distribution of the surplus immediately before ruin and the deficit at ruin,

and trivariate Laplace transform of the time of ruin, the surplus immediately before ruin

and the deficit at ruin.

In this thesis, we consider the expected discounted penalty function and the distribution

of the total dividend payments prior to ruin for a multi-threshold MAP risk model. One

typical approach for exploring the expected discounted penalty function in various risk

models is the so-called differential approach. Integro-differential equations can be derived

and solved analytically for some families of the claim amounts distributions with the help

of Laplace transformation. For example, under the multi-threshold dividend strategy, a

system of integro-differential equations were derived for the classical compound Poisson

risk model in Lin and Sendova (2008) and for the Sparre Andersen risk model in Lu and

Li (2009b). Albrecher and Hartinger (2007) argued that the differential approach is rather

infeasible when there are large number of layers or more quantities are involved under study

from a computational point of view. Alternative recursive approach was proposed for the

classical compound Poisson risk model with respect to the number of layers to increase

computational feasibility.

The distribution of the total dividend payments prior to ruin and its related quantities

are not special cases of the expected discounted penalty function. However, most techniques

applied to the problems of dividend payments are basically parallel to those employed in

the analysis of the expected discounted penalty function. For example, the distribution of

dividend payments prior to ruin for the Sparre Andersen model with generalized Erlang(n)

inter-claim times was discussed in Albrecher et al. (2005) and the moments of the dividend



CHAPTER 1. INTRODUCTION 4

payments prior to ruin for the Markov-modulated risk model was discussed in Li and Lu

(2007).

The main purpose of this thesis is to show that the differential approach is also ap-

plicable for the multi-threshold MAP risk model. By using the matrix-analytic method,

systems of integro-differential equations for the expected discounted penalty function and

discounted dividend payments are derived and solved analytically and recursively. The

layer-based recursive approach, which was introduced in Albrecher and Hartinger (2007)

for the classical compound Poisson risk model, is also discussed for the expected discounted

dividend payments prior to ruin to increase computational feasibility.

The rest of this thesis is organized as follows. We first review the recent research

development of various risk models in Chapter 2 and the main results of the expected

discounted penalty function for the classical MAP risk model in Chapter 3. A System

of integro-differential equations for the expected discounted penalty function under the

multi-threshold dividend strategy is presented in Chapter 4 and a recursive calculation

algorithm is provided. The expected value and the moment generating function of the

discounted dividend payments prior to ruin under a multi-threshold strategy are considered

in Chapter 5. In Chapter 6, an alternative layer-based recursive approach is employed to the

expected discounted dividend payments. Finally, numerical examples for two-state models

are illustrated in Chapter 7 for the ruin probability and the expected discounted dividend

payments prior to ruin when the claim amounts are exponentially distributed.



Chapter 2

Review of Literature

In this chapter, we review some recent research developments on various risk models men-

tioned in Chapter 1.

2.1 Various Risk Models

2.1.1 Classical Compound Poisson Risk Model

The classical compound Poisson risk model is the foundation of risk model in ruin theory.

Recall the surplus process in (1.1) in Chapter 1. The claim counting process {N(t); t ≥ 0}
in the classical compound Poisson risk model is modeled by a time homogeneous Poisson

process with parameter λ. It means that the number of claims up to time t, is Poisson

distributed with mean λt. For n = 1, 2, · · · , let Wn be the time when the nth claim occurs.

Let Z1 = W1 and Zn = Wn −Wn−1 for n ≥ 2 be the inter-claim times. An important

property of the Poisson process implies that {Zn;n ≥ 1} is independent and identically

exponentially distributed with mean 1/λ. Also it can be proved for aggregate claims S(t)

that

E[S(t)] = E[N(t)]E[Xn] = (λt)µ, t ≥ 0.

Further in the classical compound Poisson risk model, we assume that the premiums received

up to time t have a positive loading, that is, ct > E[S(t)], which implies that c > λµ.

In Lin et al. (2003), the classical compound Poisson risk model under the constant

barrier strategy was studied thoroughly. Results regarding the time of ruin and related

quantities were derived. Lin and Pavlova (2006) provided a generalization to the classical

compound Poisson risk model with a threshold dividend strategy. Two integro-differential

equations for the Gerber-Shiu discounted penalty function were derived and solved. Lin

and Sendova (2008) further considered a multi-threshold compound Poisson risk model. A

piecewise integro-differential equation was derived and a recursive approach for obtaining

5
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its solutions was provided. Albrecher and Hartinger (2007) also considered the classical

compound Poisson risk model with multi-threshold dividend strategy. A recursive algorithm

through the integro-differential equation for the Gerber-Shiu discounted penalty function

and the expected discounted dividend payments were derived. An alternative recursive

approach with respect to the number of layers was developed to improve the computational

feasibility when the number of layers is large.

2.1.2 Sparre Andersen Risk Model

Instead of assuming exponentially distributed independent inter-claim times in the classical

compound Poisson risk model, the Sparre Andersen risk model introduced a general distri-

bution function, G, to model the inter-claim times, {Zn;n ≥ 1}, but retain the assumption

of independence.

The Sparre Andersen risk model with Erlang(n) inter-claim times has been studied by

Gerber and Shiu (2005). In Albrecher et al. (2005), some results on the distribution of

dividend payments for the Sparre Andersen risk model with Erlang(n) inter-claim times

under a constant barrier strategy were presented. An integro-differential equation for the

moment generating function of the discounted dividend payments was derived. Yang and

Zhang (2008) studied the expected discounted penalty function in multi-threshold Sparre

Andersen risk model with Erlang(n) inter-claim times.

As discussed in Li (2008), it is common in actuarial literature that the phase-type

distribution is considered as a distribution for the inter-claims. The phase-type distribution

is dense in the field of all positive-valued distributions, so that it can be used to approximate

any positive valued distribution. It includes combinations and mixtures of exponential and

Erlang distributions as special cases. Consider a terminating Markov process {J(t); t ≥ 0}
with m + 1 states such that states 1, · · · ,m are transient states and state m + 1 is an

absorbing state. The phase-type distribution PH(~a,S) is the distribution of time of the

process starting to the absorbing state, in which ~a = (a1, · · · , am)> is the initial entrance

probability vector with
∑m

i=1 ai = 1 and S = (si,j)mi,j=1 is the restriction to a state space

E = {1, 2, · · · ,m} of the transition rate matrix(
S ~s

0 0

)

on E∪{0} with 0 as the absorbing state and ~s = −S~1 as a vector of exit rates, where ~1 is the

column vector of ones. More precisely, we have si,i < 0, si,j ≥ 0 for i 6= j, and
∑m

j=1 si,j ≤ 0

for any i ∈ E. Indeed the distribution function of inter-claim times, {Zn;n ≥ 1}, is given

by,

F (t) = 1− ~a>etS~1, t ≥ 0.
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The density function is

f(t) = ~a>etS~s, t ≥ 0,

and the Laplace transform with parameter r is

f̂(r) = ~a>(rI − S)−1~s,

where I is the identity matrix. A detailed introduction to phase-type distribution, asso-

ciated properties and applications in ruin theory can be found in Neuts (1981), Latouche

and Ramaswami (1999), Asmussen (2000) and references therein. Similar to the positive

safety loading condition in the classical compound Poisson risk model, we assume that

cE[Z] > E[X].

By using both renewal theory and Markovian techniques, results in the classical com-

pound Poisson risk model can be extended to the Sparre Andersen risk model with phase-

type inter-claim times in compact matrix forms. For example, Li (2008b) considered the

problem that the surplus hits a certain level and the time of ruin in a Sparre Andersen

risk model with phase-type inter-claim times. The same problem was studied by Gerber

(1990) for the classical compound Poisson risk model. A matrix expression for the expected

discounted dividend payments was given in the presence of a constant dividend strategy. Lu

and Li (2009b) used the matrix-analytic method to extend the results in Lin and Sendova

(2008) to a multi-threshold Sparre Andersen risk model with phase-type inter-claim times.

The matrix-form piecewise integro-differential equation was derived and the analytical so-

lution to this equation was obtained.

2.1.3 Markov-modulated Risk Model

Asmussen (1989) introduced a risk model that both the frequency of the claim arrivals and

the distribution of the claim amounts are not homogeneous in time but determined by an

external Markov process {J(t); t ≥ 0}. As pointed out in Li and Lu (2008), the motivation

for this generalization is to enhance the flexibility in modeling the claim arrivals and the

distribution of the claim amounts in the classical risk model. Examples of how such a

mechanism could be relevant in ruin theory are usually given as weather conditions (e.g.,

normal and icy road conditions) in automobile insurance portfolios and epidemic outbreaks

in health insurance portfolios. Zhu and Yang (2008) referred to states of the external process

as economic circumstances or political regime switchings.

In Asmussen (1989), it was supposed that {J(t); t ≥ 0} is a homogeneous, irreducible and

recurrent Markov process with a finite state space E = {1, · · · ,m}. The intensity matrix

governing {J(t); t ≥ 0} is denoted by Λ = (αi,j)mi,j=1, where αi,i =
∑m

i 6=j αi,j for i ∈ E. Its

stationary limiting distribution, denoted by ~π = (π1, · · · , πm)>, can be computed as the
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positive solution of ~π>Λ = ~0> and ~π>~1 = 1. When J(t) = i, the number of claims occurring

in an infinitesimal time interval (t, t + h], N(t + h) − N(t) is assumed to follow a Poisson

distribution with parameter λih and the corresponding claim amounts are distributed with

mean µi, cumulative distribution function Fi and probability density function fi for i ∈ E.

We also assume that the positive loading condition holds,
∑m

i=1 πi(c− λiµi) > 0.

In the Markov-modulated risk model, a system of integro-differential equations satisfied

by the nth moment of the discounted dividend payments was derived and solved under a

constant dividend strategy in Li and Lu (2007). The expected discounted penalty functions

and their decompositions in the same risk model were investigated in Li and Lu (2008). Lu

and Li (2009a) presented the matrix form of systems of integro-differential equations for

the expected discounted penalty function and the moments of the total dividend payments

in a Markov-modulated risk model with a threshold dividend strategy.

2.2 MAP Risk Model

The so-called MAP risk model is the one where the environment (external) process {J(t); t ≥
0} is assumed to be a MAP with representation (~α,D0,D1), which has recently been

investigated by some researchers. See, for example, Badescu (2008), Ren (2009), and Cheung

and Landriault (2009). The initial distribution is ~α = (α1, · · · , αm)>, and the intensity

matrix is D0 + D1. The intensity of a state changing from state i to state j 6= i in

E = {1, · · · ,m} without an accompanying claim is given by the (i, j)th element of D0,

namely, D0(i, j) ≥ 0. The intensity of a state changing from i to state j (possibly j = i)

in E with an accompanying claim is given by D1(i, j) ≥ 0. The diagonal elements of D0

are negative values such that the sum of the elements on each row of the matrix D0 +D1

are all zeros. The sequence of claim amounts {Xn;n ∈ N+} is assumed to be distributed

with cumulative distribution function Fi,j , probability density function fi,j and its Laplace

transform f̂i,j(s), where i is the state when a claim occurs and j is the state immediately

after a claim occurs.

The MAP risk model contains the classical compound Poisson risk model, Markov-

modulated risk model and Sparre Andersen risk model with phase-type inter-claim times

above as special cases. When m = 1, D0 = −λ and D1 = λ, the MAP risk model reduces

to the classical compound Poisson risk model. When D0 = S and D1 = −S~1~a>, the MAP

risk model simplifies to the Sparre Andersen risk model with PH(~a,S) as the distribution

for inter-claim times. When D1 = diag[λ1, · · · , λm] and D0 = Λ−D1, the MAP risk model

becomes to the Markov-modulated risk model.

Examples of the MAP risk model related to practical issues were discussed in Badescu et

al. (2005). For instance, the “contagion” example assumes that claim behavior is influenced
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by two environmental states. Environment A corresponds to a “normal”situation with

standard claim rates and claim sizes, while environment B reflects periods of contagion,

when a highly infectious disease is causing a supplemental stream of claims. Also the non-

renewal generalization of the Sparre Andersen risk model is an example of the MAP risk

model. Instead of assuming that the state is sampled anew at the end of each payment, we

now need to keep tack of the MAP state during each payment interval.

As mentioned in Asmussen (2000), the MAP has received much attention in the queuing

literature, though this still remains to be implemented in ruin theory. Ahn and Badescu

(2007) analyzed the expected discounted penalty function in the MAP risk model and

derived a defective renewal equation in a matrix form. The use of the busy period dis-

tribution for the canonical fluid flow model is a key factor in their paper. Badescu et al.

(2005) analyzed a multi-threshold MAP risk model, linking an insurer’s surplus process to

an embedded fluid flow process. In general, the fluid flow type analysis of the MAP risk

models relies heavily on the knowledge of the Laplace transform of first passage times and

the infinitesimal generator. The role played by the roots of Lundberg’s generalized equation

in the differential approach is replaced by the determination of the Laplace transform of a

particular busy period arising in an unbounded fluid queue. A drawback of this fluid flow

analyses in the ruin theory application is its limitation to the claim amount distributions

that are phase-type distributions, resulting in poor performance of fitting for heavy-tailed

distributions in general.

Compared to those results, Cheung and Landriault (2009) proposed to rely on a purely

analytic approach to analyze MAP risk model. Moments of the discounted dividend pay-

ments for a MAP risk model under a constant barrier strategy were studied. Also, the

MAP risk model with a dynamic barrier level that depends on the state of the underlying

environment was considered. Badescu (2008) derived the integro-differential equation and

solved the initial value at u = 0 for the MAP risk model with no dividend strategy involved.

Ren (2009) further derived a matrix expression for the Laplace transform of the first time

that the surplus process reaches a given target from the initial surplus.



Chapter 3

Preliminary

In this chapter, we first introduce the notation used in the thesis for the multi-threshold

MAP risk model. Then the main results related to the MAP risk model with no dividend

strategy involved are presented. As we will see in the next chapter, the expected discounted

penalty function for the multi-threshold MAP risk model is associated with the expected

discounted penalty function for a MAP risk model with no dividend strategy involved.

In the MAP risk model discussed in this thesis, it is assumed that there are n thresholds

0 < b1 < · · · < bn < ∞ with b0 = 0 and bn+1 = ∞, such that when the surplus is between

the thresholds bk−1 and bk, the dividend rate is dk and the corresponding premium rate

is ck = c − dk, for k = 1, · · · , n + 1, where c = c1 > c2 > · · · > cn > cn+1 ≥ 0 is

assumed. To separate this special case from the general case without dividend strategy, we

let B = {b1, · · · , bn} be the multi-threshold setting, τB be the time of ruin and {UB(t); t ≥ 0}
be the surplus process under the multi-threshold model with initial surplus UB(0) = u. Then

similar to (1.1), {UB(t); t ≥ 0} satisfies the following stochastic differential equation, for

k = 1, · · · , n+ 1,

dUB(t) = ckdt− dS(t), bk−1 ≤ UB(t) < bk. (3.1)

For notation convenience, let Ei[·] = E[·|J(0) = i]. Then define

φi(u;B) = Ei[e−δτBw(UB(τB−), |UB(τB)|)I(τB <∞)|UB(0) = u], u ≥ 0, i ∈ E, (3.2)

to be the expected discounted penalty function in the multi-threshold MAP risk model,

given the initial surplus u and the initial MAP state i ∈ E. Then

φ(u;B) = ~α>~φ(u;B), u ≥ 0,

where ~φ(u;B) = (φ1(u;B), · · · , φm(u;B))>. When δ = 0 and w(x, y) = 1, φ(u;B) and

φi(u;B) are simplified to the ruin probabilities in the MAP risk model, given the initial

surplus u and the initial MAP phase i, which are denoted as ϕ(u;B) and ϕi(u;B), respec-

tively.

10
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When b1 =∞, the risk model given by (3.1) reduces to the one in (1.1) with no dividend

strategy involved. The expected discounted penalty function in the MAP risk model with

no dividend strategy involved is defined as

φi(u) = Ei[e−δτw(U(τ−), |U(τ)|)I(τ <∞)|U(0) = u], u ≥ 0, i ∈ E, (3.3)

given the initial surplus u and the initial MAP state i ∈ E. Similarly, we have ~φ(u) =

(φ1(u), · · · , φm(u))>.

3.1 Integro-differential Equation for u ≥ 0

In the section, we first review the results in Badescu (2008) that the expected discounted

penalty function given in (3.3) satisfies a system of integro-differential equations. Then we

present a lemma which can be applied to find a general solution to this system of integro-

differential equations for the case of u ≥ 0.

By conditioning on the events occurring in an infinitesimal time interval, it was derived

in Badescu (2008) that the expected discounted penalty function (3.3) satisfies

cφ′i(u) = δφi(u)−
m∑
j=1

D0(i, j)φj(u)−
m∑
j=1

D1(i, j)
(∫ u

0
φj(u− x)dFi,j(x)− ωi,j(u)

)
, u ≥ 0,

(3.4)

where

ωi,j(u) =
∫ ∞
u

w(u, x− u)dFi,j(x). (3.5)

In the matrix notation, equation (3.4) can be rewritten as

c~φ′(u) = δ~φ(u)−D0
~φ(u)−

∫ u

0
Λf (x)~φ(u− x)dx− ~ζ(u), u ≥ 0, (3.6)

where Λf (x) is a matrix with the (i, j)th element given by D1(i, j)fi,j(x) and ~ζ(u) is a col-

umn vector with the ith element given by ζi(u) =
∑m

j=1D1(i, j)ωi,j(u). Note that equation

(3.6) is a non-homogeneous integro-differential equation in matrix form and its correspond-

ing homogeneous integro-differential equation in matrix form is

c~φ′(u) = δ~φ(u)−D0
~φ(u)−

∫ u

0
Λf (x)~φ(u− x)dx, u ≥ 0. (3.7)

Taking the Laplace transform of both sides of (3.7), we have, on the left hand side,∫ ∞
0

e−suc~φ′(u)du = c

∫ ∞
0

e−sud~φ(u)

= ce−su~φ(u)
∣∣∣∞
0

+ s

∫ ∞
0

e−su~φ(u)du

= −c~φ(0) + sLs[~φ(u)],
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and, on the right hand side,∫ ∞
0

e−su
[
δ~φ(u)−D0

~φ(u)−
∫ u

0
Λf (x)~φ(u− x)dx

]
du

= (δI −D0)Ls
[
~φ(u)

]
−
∫ ∞

0

∫ ∞
x

e−suΛf (x)~φ(u− x)dudx

= (δI −D0)Ls
[
~φ(u)

]
−
∫ ∞

0
Λf (x)

∫ ∞
0

e−s(y+x)~φ(y)dydx

= (δI −D0)Ls[~φ(u)]−Λf̂ (s)Ls[~φ(u)].

Finally, we obtain, [(
s− δ

c

)
I +

1
c

(D0 + Λf̂ (s))
]
Ls
[
~φ(u)

]
= ~φ(0), (3.8)

where Λf̂ (s) is a matrix with the (i, j)th element given by D1(i, j)f̂i,j(s) and Ls is the

Laplace transform operator for a column vector of functions with a complex argument s.

That is, Ls[~φ(u)] =
(
φ̂1(s), · · · , φ̂m(s)

)>
.

Let

Lc(s) =
(
s− δ

c

)
I +

1
c

(D0 + Λf̂ (s)). (3.9)

Assuming that its inverse exists, then equation (3.8) can be rewritten as

Ls[~φ(u)] =
[(
s− δ

c

)
I +

1
c

(D0 + Λf̂ (s))
]−1

~φ(0). (3.10)

Further let

v(u) = L−1
s

{[(
s− δ

c

)
I +

1
c

(D0 + Λf̂ (s))
]−1
}

(3.11)

be the Laplace inversion of the inverse of matrix Lc(s). Then Ls[v(u)] is the Laplace

transform of v(u). By (3.10) and (3.11), we get a general solution for the homogeneous

integro-differential equation (3.7) as,

~φ(u) = v(u)~φ(0), u ≥ 0.

Setting u = 0 in (3.10) and substituting with (3.11), we have

Ls[~φ(0)] = Ls[v(0)]~φ(0).

Thus v(0) = I.

Now we present the analytical expression for ~φ(u) satisfying the non-homogeneous

integro-differential equation (3.6) in the following lemma.

Lemma 1 The solution to (3.6) is

~φ(u) = v(u)~φ(0)− 1
c

∫ u

0
v(u− t)~ζ(t)dt, u ≥ 0 (3.12)

where v(u) is given by (3.11) and the expression for ~φ(0) is to be discussed in Section 3.4.
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Proof. Similar to deriving equation (3.8), taking the Laplace transform of both sides of

(3.6) yields [(
s− δ

c

)
I +

1
c

(D0 + Λf̂ (s))
]
Ls[~φ(u)] = ~φ(0)− 1

c
Ls[~ζ(u)]. (3.13)

By (3.11), we get

Ls[~φ(u)] = Ls [v(u)]
[
~φ(0)− 1

c
Ls[~ζ(u)]

]
= Ls

[
v(u)~φ(0)

]
− 1
c
Ls
[∫ u

0
v(u− t)~ζ(t)dt

]
.

So ~φ(u) can be evaluated as (3.12). �

Note that this lemma is parallel to Lemma 1 in Lu and Li (2009a) for the Sparre

Andersen risk model.

3.2 Integro-differential Equation for u ≥ bk−1

In this section, we extend the result in Lemma 1 to the case that u ≥ bk−1, for k =

1, 2, · · · , n + 1, where bk−1 is the threshold point of the kth layer in the multi-threshold

MAP risk model. That is, we consider the integro-differential equation in the following

form:

ck~φ
′
k(u) = δ~φk(u)−D0

~φk(u)−
∫ u−bk−1

0
Λf (t)~φk(u− t)dt− ~ζk(u), u ≥ bk−1. (3.14)

Later in Chapter 4, we will see that ~φk(u) in (3.14), with a special setting of ~ζk(u), is

associated with the expected discounted penalty function for the multi-threshold MAP risk

model ~φk(u;B) when bk−1 ≤ u ≤ bk.
Using the same techniques in the proof of Lemma 1, we present an analytical expression

for ~φk(u) in the following lemma.

Lemma 2 The solution to (3.14) is

~φk(u) = vk(u− bk−1)~φk(bk−1)− 1
ck

∫ u−bk−1

0
vk(t)~ζk(u− t)dt, u ≥ bk−1, (3.15)

where

vk(u− bk−1) = L−1
s

{[(
s− δ

ck

)
I +

1
ck

(D0 + Λf̂ (s))
]−1
}
, u ≥ bk−1, (3.16)

with vk(0) = I and ~φk(bk−1) is to be discussed in Section 3.4.
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Proof. When u ≥ bk−1, letting x = u− bk−1, we can rewrite ~φk(u) in (3.14) as

ck~φ
′
k(x+ bk−1) = δ~φk(x+ bk−1)−D0

~φk(x+ bk−1) (3.17)

−
∫ x

0 Λf (t)~φk(x+ bk−1 − t)dt− ~ζk(x+ bk−1), x ≥ 0. (3.18)

Further letting ~φ∗k(x) = ~φk(x+ bk−1) and ~ζ∗k(x) = ~ζk(x+ bk−1), (3.17) can be rewritten as

ck~φ
∗′
k (x) = δ~φ∗k(x)−D0

~φ∗k(x)−
∫ x

0
Λf (t)~φ∗k(x− t)dt− ~ζ∗k(x), x ≥ 0. (3.19)

Applying Lemma 1 to the equation above, we obtain that the solution to (3.19) is

~φ∗k(x) = vk(x)~φ∗k(0)− 1
ck

∫ x

0
vk(x− t)~ζ∗k(t)dt

= vk(x)~φ∗k(0)− 1
ck

∫ x

0
vk(t)~ζ∗k(x− t)dt, x ≥ 0,

(3.20)

where

vk(x) = L−1
s

{[(
s− δ

ck

)
I +

1
ck

(D0 + Λf̂ (s))
]−1
}
, x ≥ 0

with vk(0) = I. Then with x = u− bk−1, equation (3.20) is

~φk(u) = vk(u− bk−1)~φk(bk−1)− 1
ck

∫ u−bk−1

0
vk(t)~ζk(u− t)dt, u ≥ bk−1,

which is the expression of (3.15). �

3.3 Evaluation of vk(u)

As we can see from the results above, the evaluation of v(u) and vk(u) is crucial in obtaining

the explicit results for ~φ(u) and ~φk(u), respectively. In this section, we begin with the

evaluation of v(u). Then vk(u) can be obtained by the same argument with c being replaced

by ck.

One approach of evaluating v(u) is to find the Laplace inversion directly from (3.11).

Usually it is difficult to get the explicit expression for the Laplace inversion of a matrix

inversion. In Li and Lu (2007), it was shown that in a two-state example it is possible to

obtain the explicit expression of the Laplace inversion of the inverse of a matrix for the

Markov-modulated model with the rational family of claim amount distributions.

The other approach is to involve the evaluation of the special expected discounted

penalty function. This approach was first discussed in Gerber and Shiu (1998) for the

classical compound Poisson risk model, and was developed in Li (2008b) for the Sparre-

Andersen risk model with phase-type inter-claim times. Now we show in the following that
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this approach can also be adopted for the MAP risk model. We first introduce the concept

of stopping time τ∗(u, a, b), for a ≤ b, which is defined as

τ∗(u, a, b) = inf{t ≥ 0 : U(t) /∈ [a, b]|U(0) = u}.

Define

τ+(u, a, b) =

τ∗(u, a, b) if U(τ∗(u, a, b)) = b,

∞ if U(τ∗(u, a, b)) < a,
(3.21)

and

τ−(u, a, b) =

∞ if U(τ∗(u, a, b)) = b,

τ∗(u, a, b) if U(τ∗(u, a, b)) < a.
(3.22)

The stopping time τ+(u, a, b) can be interpreted as the first time of exiting through upper

level b and τ−(u, a, b) as the first time of dropping below lower level a.

Let

Bi,j(u, b) = E[e−δτ
+(u,0,b)I(J(τ+(u, 0, b)) = j)|J(0) = i], u ≥ 0, (3.23)

be the Laplace transform of τ+(u, 0, b), given that the surplus reaches the level b in MAP

phase j, the initial surplus is u and the initial state is i. When b = 0, the surplus process

drops below level 0 before upcrossing it again. Denoted by τ0 = τ+(u, 0, 0), the time of the

first upcrossing of the surplus process through level 0 after the time of ruin, is also called

the time of recovery. For δ > 0, define

ψi,j(u) = Ei[e−δτ0I(τ <∞, J(τ0) = j)|U(0) = u], u ≥ 0,

to be the Laplace transform of the time of recovery if the process upcrosses level 0 at state

j after ruin given the initial surplus u and the initial state i.

Let B(u; b) be a matrix with the (i, j)th element being Bi,j(u; b). It was shown in Ren

(2009) that B(u; b) has the form

B(u; b) = e−K(b−u), u ≤ b,

where matrix K satisfies the following matrix equation:

cK + (−δI +D0) +
∫ ∞

0
Λf̂ (x)e−Kxdx = 0. (3.24)

The solution to (3.24) was further shown in Ren (2009) as

K = H∆ρH
−1, (3.25)

where ∆ρ = diag[ρ1, · · · , ρm], with ρ1, · · · , ρm being the solutions to the equation det[Lc(s)] =

0 in the right half complex plain and H = (~h1,~h2, · · · ,~hm) with column vector ~hi being an
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eigenvector of Lc(ρi) corresponding to eigenvalue 0, that is Lc(ρi)~hi = ~0, for i ∈ E. For the

proof of the existence of those roots, see Gerber and Shiu (1998) for the classical compound

Poisson risk model, Li and Garrido (2005) for the Sparre Andersen risk model with Er-

lang (n) inter-claim times, Li (2008a) for the Sparre Andersen risk model with phase-type

inter-claim times, and Lu and Tsai (2007) for the Markov-modulated risk model.

Let ψ(u) be a matrix with the (i, j)th element being ψi,j(u). It was shown in Theorem

1 in Li (2008b) that

ψ(u) = E
[
e−δτ+KU(τ)I(τ <∞)|U(0) = u

]
, u ≥ 0.

Substituting matrix K in (3.25) into the equation above, we can rewrite ψ(u) as

ψ(u) = H diag[θ1(u), · · · , θm(u)]H−1, (3.26)

where

θi(u) = E
[
e−δτ−ρi|U(τ)|I(τ <∞)|U(0) = u

]
, i ∈ E. (3.27)

As pointed out in Lu and Li (2009b), θi(u) is the bivariate Laplace transformation with

respect to the time of ruin and the deficit at ruin with parameters δ and ρi. It is also a

special case of the expected discounted penalty function with w(x, y) = e−ρiy.

Using the same methodology in Section 6 of Gerber and Shiu (1998) and Section 4 of

Li (2008b), B(u; b) has the following expression

B(u; b) = [eKu −ψ(u)][eKb −ψ(b)]−1, u ≥ 0,

and it also satisfies a homogeneous integro-differential equation in matrix form as

cB′(u; b) = δB(u; b)−D0B(u; b)−
∫ u

0
Λf (x)B(u− x; b)dx, u ≥ 0, (3.28)

with B(b; b) = I.

Now let

v(u) = [eKu −ψ(u)][I −ψ(0)]−1, u ≥ 0. (3.29)

Substituting B(u; b) with v(u) in (3.28), we then have

cv′(u) = δv(u)−D0v(u)−
∫ u

0
Λf (x)v(u− x)dx, u ≥ 0, (3.30)

with v(0) = I. Taking the Laplace transform of both sides of (3.30) and after some

manipulations, we arrive that v(u) has the same form as (3.11). So v(u) can be evaluated

with the help of ψ(u) in (3.29). By the expression of K and ψ(u) given in (3.25) and (3.26),

respectively, we can further write v(u) as

v(u) = H
[
e∆ρ − diag[θ1(u), · · · , θm(u)]

]
H−1H [I − diag[θ1(0), · · · , θm(0)]]−1H−1

= H diag
[
eρ1u − θ1(u)

1− θ1(0)
, · · · , e

ρmu − θm(u)
1− θm(0)

]
H−1, u ≥ 0. (3.31)
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Now we can obtain vk(u), for k = 1, · · · , n + 1, by using the same argument in the

evaluation of v(u). Let

Lck(s) =
(
s− δ

ck

)
I +

1
ck

(D0 + Λf̂ (s)), (3.32)

where ck is the premium rate for the kth layer. Similar to the case of det[Lc(s)] = 0

discussed in this section before, equation det[Lck(s)] = 0 has exactly m roots with positive

real parts, say, ρ1,k, ρ2,k, · · · , ρm,k. Then parallel to (3.29), for k = 1, 2, · · · , n+ 1, we have

vk(u) = [eKku −ψk(u)][I −ψk(0)]−1,

where Kk = Hk∆ρ,kH
−1
k , ∆ρ,k = diag[ρ1,k, · · · , ρm,k] and Hk = (~h1,k,~h2,k, · · · ,~hm,k)

with column vector ~hi,k being an eigenvector of Lc,k(ρi,k) corresponding to eigenvalue 0.

Furthermore similar to (3.31), we can write vk(u) as

vk(u) = Hk diag
[
eρ1,ku − θ1,k(u)

1− θ1,k(0)
, · · · ,

eρm,ku − θm,k(u)
1− θm,k(0)

]
H−1

k , u ≥ 0, (3.33)

where θi,k(u) is defined as

θi,k(u) = E[e−δτ−ρi,k|U(τ)|I(τ <∞)|U(0) = u], u ≥ 0, i ∈ E. (3.34)

3.4 Initial Value ~φk(bk−1)

It was shown in Badescu (2008) that the initial value ~φ(0) in (3.12) can be obtained by

finding the left linearly independent row vectors, ~q>i , for each root ρi in det[Lc(s)] = 0 such

that

Q

[
(s− δ

c
)I +

1
c

(D0 + Λf̂ (s))
]

= 0, (3.35)

where Q = (~q1, · · · , ~qm)> is invertible. Using (3.13) and (3.35), ~φ(0) can be further written

as
~φ(0) =

1
c

m∑
i=1

Q−1 diag[ζ̂i(ρ1), · · · , ζ̂i(ρm)]Q~ei, (3.36)

where ζ̂i(s) is the ith element of column vector Ls[~ζ(u)] and ~ei corresponds to the ith column

vector of the identity matrix. Hence, equations (3.11), (3.12) and (3.36) complete the result

of Lemma 1.

To find the expression for ~φk(bk−1) in (3.15), we need to apply the Dickson-Hipp operator

Tr instead of the ordinary Laplace transform operator for the case that u ≥ bk−1. The

Dickson-Hipp transformation with the operator Tr for an integrable function f with respect

to a real number r was defined in Dickson and Hipp (2001) as

Trf(x) =
∫ ∞
x

e−r(u−x)f(u)du, x ≥ 0.
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For vector function ~W (y) with each element being integrable function of y, define

Tr ~W (y) =
∫ ∞
y

e−r(u−y) ~W (u)du, y ≥ 0.

Then

Tr1Tr2
~W (y) = Tr2Tr1

~W (y) =
Tr1

~W (y)− Tr2 ~W (y)
r2 − r1

, r1 6= r2, y ≥ 0.

Using an approach which is similar to the one used in Lu and Li (2009a) for deriving
~φ2(b) in Markov-modulated risk model and in Lu and Li (2009b) for deriving ~g(bk−1) in the

Sparre Andersen risk model, for u ≥ bk−1, we take Dickson-Hipp transform of both sides

of (3.14). That is to multiply both sides of equation by e−s(u−bk−1) and to integrate with

respect to u from bk−1 to ∞, then we can obtain

Lck(s)Ts~φ(bk−1) = ~φ(bk−1)− 1
ck
Ts~ζk(bk−1), u ≥ bk−1. (3.37)

For each root in det[Lck(s)] = 0 in the kth threshold ρi,k, i = 1, 2, · · · ,m, letting s = ρi,k,

we can find the linearly independent vector ~qi,k to eigenvalue 0 such that ~q>i,kLck(ρi,k) = 0.

Left-multiplying both sides of (3.37) yields m equations

0 = ~q>i,kLck(ρi,k)Tρi,k ~φk(bk−1) = ~q>i,k

(
~φk(bk−1)− 1

ck
Tρi,k

~ζk(bk−1)
)
.

In matrix form,

Qk
~φk(bk−1;B) =

1
ck

m∑
i=1

diag
[
Tρ1,k

~ζk(bk−1), · · · , Tρm,k~ζk(bk−1)
]
Qk~ei,

whereQk = [~q1,k, · · · , ~qm,k]> denotes the matrix with ~q>i,k in its ith row. ThenQ is invertible

and
~φk(bk−1) =

1
ck

m∑
i=1

Q−1
k diag

[
Tρ1,k

~ζk(bk−1), · · · , Tρm,k~ζk(bk−1)
]
Qk~ei, (3.38)

which completes the result presented in Lemma 2.



Chapter 4

Expected Discounted Penalty

Function

In this chapter, we study the expected discounted penalty function in the multi-threshold

MAP risk model by using the results obtained in the previous chapter. Recall the expected

discounted penalty function in the multi-threshold MAP risk model defined in (3.2) in

Chapter 3. It is a piecewise-defined vector of functions in the form of

φi(u;B) =


φi,1(u;B) 0 ≤ u < b1,

φi,k(u;B) bk−1 ≤ u < bk, k = 2, · · · , n,

φi,n+1(u;B) bn ≤ u <∞.

(4.1)

For k = 1, · · · , n+ 1, define a new vector of functions

~φk(u;B) = (φ1,k(u;B), · · · , φm,k(u;B))>, bk−1 ≤ u < bk.

Then the expected discounted penalty function in the multi-threshold MAP model, ~φ(u;B),

is a piecewise-defined vector of functions in the form of

~φ(u;B) =


~φ1(u;B) 0 ≤ u < b1,

~φk(u;B) bk−1 ≤ u < bk, k = 2, · · · , n,
~φn+1(u;B) bn ≤ u <∞.

(4.2)

4.1 Piecewise Integro-differential Equation for ~φk(u;B)

Badescu (2008) presented a method of deriving a system of integro-differential equations for

the MAP risk model with no dividend strategy involved. By similar arguments used there,

for bk−1 ≤ u < bk, i ∈ E and δ > 0, in an infinitesimal time interval [0, h], we consider four

scenarios as follows:

19
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• no change in the MAP phase;

• a change in the MAP phase accompanied by no claim arrival;

• a change in the MAP phase accompanied by a claim arrival;

• two or more events occur.

When there is a claim arrival, the claim amount may vary, leading to the surplus process

dropping below level 0 (ruin occurs) or starting again from the lth threshold interval, l =

1, · · · , k. Mathematically, this can be written as

φi,k(u;B) = (1 +D0(i, i)h)e−δhφi,k(u+ ch;B) +
m∑

j=1,j 6=i
D0(i, j)he−δhφj,k(u+ ch;B)

+
m∑
j=1

D1(i, j)he−δh
∫ u−bk−1+ckh

0
φj,k(u+ ckh− x;B)dFi,j(x)

+
m∑
j=1

D1(i, j)he−δh
[
k−1∑
l=1

∫ u−bl−1+ckh

u−bl+ckh
φj,l(u+ ckh− x;B)dFi,j(x) + ωi,j(u)

]
+o(h), bk−1 ≤ u < bk, i ∈ E, (4.3)

where ωi,j(u) is given by (3.5). The first term on the right side of (4.3) corresponds to

the case where no claim and no change of the state occur between time t and t + h. The

second term corresponds to the case where the state changes but no claim. The third term

corresponds to the case where the state changes with a claim, in which the claim amount

is small enough such that the surplus process restarts from a new initial surplus without

dropping below bk−1. The forth term corresponds to the case that is similar to the third

term but with different claim amounts. In this case, the surplus process restarts from the

lower layers. The fifth term corresponds the case where ruin occurs and the penalty function

is applied. The last term corresponds to the case where two or more events occur. All of

the cases above are discounted by the valuation discount factor δ.

Note that for i ∈ E and k = 1, · · · , n+ 1, Taylor expansions give

φi,k(u+ ch;B) = φi,k(u;B) + φ′i,k(u;B)ch+ o(h),

and

e−δh = 1− δh+ o(h).
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Then we have

φi,k(u;B) = φi,k(u;B) + φ′i,k(u;B)ch− δhφi,k(u+ ch;B)

+
m∑
j=1

D0(i, j)h(1− δh+ o(h))φj,k(u+ ch;B)

+
m∑
j=1

D1(i, j)h(1− δh+ o(h))
∫ u−bk−1+ckh

0
φj,k(u+ ckh− x;B)dFi,j(x)

+
m∑
j=1

D1(i, j)h(1− δh+ o(h))

[
k−1∑
l=1

∫ u−bl−1+ckh

u−bl+ckh
φj,l(u+ ckh− x;B)dFi,j(x) + ωi,j,k(u)

]
+o(h), bk−1 ≤ u < bk, i ∈ E. (4.4)

By dividing by h on both sides of (4.4) and letting h→ 0, it follows that

ckφ
′
i,k(u;B) = δφi,k(u;B)−

m∑
j=1

D0(i, j)φj,k(u;B)

−
m∑
j=1

D1(i, j)
∫ u−bk−1

0
φj,k(u− x;B)dFi,j(x)

−ξi,k(u), bk−1 < u < bk, i ∈ E, (4.5)

where

ξi,k(u) =
m∑
j=1

D1(i, j)

[
k−1∑
l=1

∫ u−bl−1

u−bl
φj,l(u− x;B)dFi,j(x) + ωi,j,k(u)

]
. (4.6)

Note that ξi,k(u) involves the evaluation of the expected discounted penalty functions from

all of the lower layers. We do not include the case that u = bk−1 in equation (4.5). As we

will see later in this section, the derivative at each threshold does not exist. In the sequel,

the same argument is applied to all the cases involving derivatives at thresholds. In matrix

form, we have the following expression for ~φk(u;B) when bk−1 < u < bk:

ck~φ
′
k(u;B) = δ~φk(u;B)−D0

~φk(u;B)−
∫ u−bk−1

0
Λf (x)~φk(u− x;B)dx− ~ξk(u), (4.7)

where ~ξk(u) = (ξ1,k(u), · · · , ξm,k(u))> with the ith element given by (4.14). In the case

that ck = c, k = 1, · · · , n+ 1, the model reduces to the MAP risk model with no dividend

strategy involved. Then equation (4.5) reduces to the equation presented in Badescu (2008).

The continuity conditions for the set of vectors ~φ1(u;B), · · · , ~φn+1(u;B) are

~φk(bk−;B) = ~φk+1(bk+;B), k = 1, · · · , n. (4.8)
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It is also interesting to see that the derivatives of these vectors are not continuous at

thresholds. From (4.7), we have

ck~φ
′
k(bk−;B) = δ~φk(bk−;B)−D0

~φk(bk−;B)

−
∫ (bk−)−bk−1

0
Λf (x)~φk(u− x;B)dx− ~ξk(bk−)

= δ~φk+1(bk+;B)−D0
~φk+1(bk+;B)− ~ξk+1(bk+)

= ck+1
~φ′k+1(bk+;B).

4.2 Analytical Expression for ~φk(u;B)

In this section, we derive an analytical expression for ~φk(u;B) by using the result in Lemma

2.

First letting ~ζk(u) = ~ξk(u) in Lemma 2 and relaxing the restriction bk−1 < u < bk

to u ≥ bk−1, ~φk(u;B) in (4.7) satisfies the non-homogeneous integro-differential equation

(3.14). Then its solution is given by Lemma 2, with restriction bk−1 ≤ u < bk, as follows,

~φk(u;B) = vk(u− bk−1)~φk(bk−1;B) +
1
ck

∫ u−bk−1

0
vk(t)~ξk(u− t)dt, bk−1 ≤ u < bk, (4.9)

where vk(u − bk−1) is given by (3.16). Equation (4.9) holds for the case that u = bk−1

because of the continuity condition in (4.8).

Note that in (4.9), ~φk(bk−1;B) is unknown. In order to get an analytical expression

for the piecewise vector function ~φ(u;B) in (4.2), we need to determine ~φk(bk−1;B) for

k = 1, · · · , n + 1. The method presented in Section 3.4 is not applicable here because of

the domain restriction. We consider another vector function ~φk(u) defined on [bk−1,∞)

which also satisfies the non-homogeneous integro-differential equation (3.14) with the same

non-homogeneous term setting ~ζk(u) = ~ξk(u) in (4.14). Its solution is given by Lemma 2 as

follows,

~φk(u) = vk(u− bk−1)~φk(bk−1)− 1
ck

∫ u−bk−1

0
vk(t)~ξk(u− t)dt, u ≥ bk−1, (4.10)

where vk(u − bk−1) is given by (3.16) and ~φk(bk−1) is given by (3.38) with ~ζk(u) = ~ξk(u),

or precisely,

~φk(bk−1) =
1
ck

m∑
i=1

Q−1
k diag[Tρ1,k~ξk(bk−1), · · · , Tρm,k~ξk(bk−1)]Qk~ei, (4.11)

where Qk = (~q1,k, · · · , ~qm,k)> and ~q>i,k is the left eigenvector to eigenvalue 0 of matrix

Lck(ρi,k).



CHAPTER 4. EXPECTED DISCOUNTED PENALTY FUNCTION 23

4.3 Recursive Expression for ~φk(u;B)

Restricting equation (4.10) to bk−1 ≤ u ≤ bk, it is observed that the second term on the

right hand sides of equation (4.9) and (4.10) are exactly the same. In this section, we rely

on the relationship between (4.9) and (4.10) to develop a recursive algorithm to determine
~φk(bk−1;B) and then to complete an analytical expression for ~φk(u;B), for k = 1, · · · , n+1.

Subtracting (4.10) from (4.9), we can rewrite (4.9) as

~φk(u;B) = ~φk(u) + vk(u− bk−1)[~φk(bk−1;B)− ~φk(bk−1)]

= ~φk(u) + vk(u− bk−1)~κk(B), bk−1 ≤ u < bk, (4.12)

where the constant vector ~κk(B) is to be determined.

It follows from the continuity condition (4.8) at threshold bk−1 that

~φk(bk) + vk(bk − bk−1)~κk(B) = ~φk+1(bk) + vk+1(0)~κk+1(B), k = 1, · · · , n.

Since vk+1(0) = I, we obtain

~κk+1(B) = ~φk(bk)− ~φk+1(bk) + vk(bk − bk−1)~κk(B), k = 1, · · · , n. (4.13)

When k = n+1, ~φn+1(u;B) satisfies an integro-differential equation for u ≥ bn. Equation

(4.9) turns out to be exactly the same as equation (4.10). Thus we have ~φn+1(u;B) =
~φn+1(u) and the boundary condition ~κn+1(B) = ~0 obtained from (4.13).

We now conclude our derived results for ~φk(u;B) in the theorem below.

Theorem 1 The analytical expression for the vector of expected discounted penalty func-

tions ~φ(u;B) can be obtained piecewisely as

~φ(u;B) = ~φk(u;B), bk−1 ≤ u < bk, k = 1, · · · , n+ 1,

where ~φk(u;B) is given by

~φk(u;B) = ~φk(u) + vk(u− bk−1)~κk(B), bk−1 ≤ u < bk,

in which ~φk(u) and ~κk(B) for k = 1, · · · , n+ 1 is obtained recursively by

~φk(u) = vk(u− bk−1)~φk(bk−1)− 1
ck

∫ u−bk−1

0
vk(t)~ξk(u− t)dt, bk−1 ≤ u < bk,

and ~κk+1(B) = ~φk(bk)− ~φk+1(bk) + vk(bk − bk−1)~κk(B), k = 1, · · · , n,

~κn+1(B) = ~0,
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with the ith element of ~ξk(u) being

ξi,k(u) =
m∑
j=1

D1(i, j)

[
k−1∑
l=1

∫ u−bl−1

u−bl
φj,l(u− x;B)dFi,j(x) + ωi,j(u)

]
, bk−1 ≤ u < bk,

(4.14)

and

ωi,j(u) =
∫ ∞
u

w(u, x− u)dFi,j(x), bk−1 ≤ u < bk.

The analytical expressions of matrix function vk(u) and constant vector ~φk(bk−1) are given

by (3.16) and (4.11), respectively.

As remarked by Lin and Sendova (2008) for the classical compound Poisson risk model

and Lu and Li (2009b) for the Sparre Andersen risk model, the recursive scheme provided

by Theorem 1 is not quite obvious to be implemented. Here we provide an algorithm based

on Theorem 1 for obtaining the analytical expression ~φ(u;B) in (4.2).

Algorithm:

1. For each ck, k = 1, · · · , n + 1, find corresponding m solutions ρi,k, i = 1, · · · ,m
to equation det[Lck(s)] = 0, where Lck(s) is given by (3.32). Then obtain Qk =

(~q1,k, · · · , ~qm,k)> with ~q>i,k being the left eigenvector to the eigenvalue 0 of matrix

Lck(ρi,k), and Hk = (~h1,k, · · · ,~hm,k) with ~hi,k being the right eigenvector to the

eigenvalue 0 of matrix Lck(ρi,k).

2. For each root ρi,k, i = 1, · · · ,m and k = 1, · · · , n + 1, obtain the expression of

θi,k(u) given by (3.34), which is a special case of the expected discounted penalty

function with w(x, y) = e−ρi,ky in the MAP risk model without dividend strategy. The

expression of matrix function vk(u), k = 1, · · · , n + 1, can be obtained by equation

(3.33).

3. For k = 1, we have ~ξ1(u) = (ξ1,1(u), · · · , ξm,1(u))> with

ξi,1(u) =
m∑
j=1

D1(i, j)ωi,j(u),

by equation (4.14),where ωi,j(u) =
∫∞
u w(u, x−u)dFi,j(x). Using Dickson-Hipp oper-

ator and matrix Q1 obtained in step 1, we can get

~φ1(0) =
1
c1

m∑
i=1

Q−1
1 diag[Tρ1,1~ξ1(0), · · · , Tρm,1~ξ1(0)]Q1~ei,

by equation (4.11) and

~φ1(u) = v1(u)~φ1(0)− 1
c1

∫ u

0
v1(t)~ξ1(u− t)dt, u ≥ 0,

by equation (4.10).
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4. Restricting ~φ1(u) to 0 ≤ u < b1, then ~φ1(u;B) can be obtained by (4.12) as

~φ1(u;B) = ~φ1(u) + v1(u)~κ1(B), 0 ≤ u < b1,

where v1(u) is obtained in step 2 and ~κ1(B) is an unknown constant vector that will

be determined in the last step of this algorithm. Note that the expression of ~φ1(u;B)

for 0 ≤ u < b1 by now is a function of the unknown vector ~κ1(B).

5. For k = 2, we have ~ξ2(u) = (ξ1,2(u), · · · , ξm,2(u))> with

ξi,2(u) =
m∑
j=1

D1(i, j)
∫ u

u−b1
φj,1(u− x;B)dFi,j(x) + ξi,1(u),

where φj,1(u;B) is the jth element of ~φ1(u;B). By equation (4.11), (4.10) and Q2

obtained in step 1, we can get

~φ2(b1) =
1
c2

m∑
i=1

Q−1
2 diag[Tρ1,2~ξ2(b1), · · · , Tρm,2~ξ2(b1)]Q2~ei,

and
~φ2(u) = v2(u− b1)~φ2(b1)− 1

c2

∫ u−b1

0
v2(t)~ξ2(u− t)dt, u ≥ b1.

Note that ~ξ2(u) is a function of ~κ1(B). As a consequence, both ~φ2(b1) and ~φ2(u) are

functions of ~κ1(B).

6. Restricting ~φ2(u) to b1 ≤ u < b2, we have

~φ2(u;B) = ~φ2(u) + v2(u− b1)~κ2(B), b1 ≤ u < b2,

where v2(u− b1) is obtained in step 2 and

~κ2(B) = ~φ1(b1)− ~φ2(b1) + v1(b1)~κ1(B).

The relationship between ~κ1(B) and ~κ2(B) implies that ~κ2(B) and ~φ2(u;B) for b1 ≤
u < b2 are also functions of ~κ1(B).

7. Similarly, for k = 3, · · · , n, we have

ξi,k(u) =
m∑
j=1

D1(i, j)
∫ u−bk−2

u−bk−1

φj,k−1(u− x;B)dFi,j(x) + ξi,k−1(u).

Again usingQk obtained in step 1, we can get ~φk(bk−1) by equation (4.11) and ~φk(u;B)

by (4.10) for u ≥ bk−1, and then

~φk(u;B) = ~φk(u) + vk(u− bk−1)~κk(B),
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where vk(u− bk−1) is obtained in step 2 and

~κk(B) = ~φk−1(bk−1)− ~φk(bk−1) + vk−1(bk−1 − bk−2)~κk−1(B).

By the same argument in step 6, we conclude here that the expression of ~κk−1(B) and
~φk(u;B) for bk−1 ≤ u < bk are functions of ~κ1(B), where k = 3, · · · , n.

8. For k = n + 1, the expression of ~ξn+1(u) involves all the previous vector function
~φk(u;B), k = 1, · · · , n. In the last layer, we have ~φn+1(u;B) = ~φn+1(u) for u ≥ bn,

and then ~κn+1(B) = ~0. Note that ~φn+1(bn), ~φn+1(u), ~φn+1(u;B) and ~κn(B) are all

the functions of ~κ1(B). Finally the unknown vector ~κ1(B) can be obtained by solving

~0 = ~κn+1(B) = ~φn(bn)− ~φn+1(bn) + vn(bn − bn−1)~κn(B)

which completes all the calculations. We have all the vector functions needed to obtain

an analytical expression of the piecewise-defined vector of functions ~φ(u;B) in (4.2).



Chapter 5

Expected Discounted Dividend

Payments

As remarked in Chapter 1, though the expression of the expected discounted dividend

payments is not a special case of the expected discounted penalty function, most techniques

used in Chapter 4 can be adopted to obtaining the expected discounted dividend payments,

involving a system of integro-differential equations and constant vectors. The purpose of

this chapter is to study the expected discounted dividend payments in the multi-threshold

MAP risk model. Define

Du,B =
∫ τB

0
eδtdD(t), u ≥ 0, (5.1)

to be the present value of all dividends until the time of ruin τB given the initial surplus

u in the multi-threshold MAP risk model, where D(t) is the aggregate dividends paid by

time t. Let

Vi(u;B) = Ei[Du,B|UB(0) = u], u ≥ 0, i ∈ E, (5.2)

be the expected present value of the dividend payments before the time of ruin under a

multi-threshold dividend strategy, given the initial surplus u and the initial phase i ∈ E.

In terms of vector, the expected present value of the dividend payments prior to ruin is
~V (u;B) = (V1(u;B), · · · , Vm(u;B))>. Similar to the piecewise function φi(u;B) defined

in Chapter 4, the piecewise function of the expected present value of the total dividend

payments prior to ruin given the initial phase i is defined for u ≥ 0 as,

Vi(u;B) =


Vi,1(u;B) 0 ≤ u < b1,

Vi,k(u;B) bk−1 ≤ u < bk, k = 2, · · · , n,

Vi,n+1(u;B) bn ≤ u <∞,

(5.3)

27
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and the piecewise vector function of the expected present value of the total dividend pay-

ments prior to ruin is defined for u ≥ 0 by,

~V (u;B) =


~V1(u;B) 0 ≤ u < b1,

~Vk(u;B) bk−1 ≤ u < bk, k = 2, · · · , n,
~Vn+1(u;B) bn ≤ u <∞,

(5.4)

where ~Vk(u;B) = (V1,k(u;B), · · · , Vm,k(u;B))> for bk−1 ≤ u < bk and k = 1, · · · , n+ 1.

In the case of the MAP risk model with a constant barrier b, the surplus process (3.1) is

modified to Ub(t), where the initial surplus Ub(0) = u. Similar to the multi-threshold MAP

risk model, we define τb = inf{t ≥ 0 : Ub(t) < 0} to be the time of ruin and

Du,b =
∫ τb

0
e−δtdD(t), 0 ≤ u ≤ b, (5.5)

to be the present value of the dividend payments prior to ruin given that the initial surplus

u in the MAP risk model with a constant barrier strategy. Then define

Vi(u; b) = Ei[Du,b|Ub(0) = u], 0 ≤ u ≤ b, i ∈ E, (5.6)

to be the expected present value of the dividend payments prior to ruin given the initial

phase i the the initial surplus u. Later in this chapter, we will see that the expression of the

expected present values of the dividend payments in the multi-threshold MAP risk model

is related to the one in the MAP risk model with a constant barrier strategy.

5.1 Piecewise Integro-differential Equation for ~Vk(u;B)

By similar arguments used in deriving the integro-differential equations for V (u; b) in Chap-

ter 4, we derive an integro-differential equation for ~Vk(u;B). For bk−1 ≤ u < bk, i ∈ E and

δ > 0, conditioning on the events occurring in an infinitesimal time interval [0, h], we have

Vi,k(u;B) = (c− ck)h+ (1 +D0(i, i)h)e−δhVi,k(u+ ch;B)

+
m∑

j=1,j 6=i
D0(i, j)he−δhVj,k(u+ ch;B)

+
m∑
j=1

D1(i, j)he−δh
∫ u−bk−1+ckh

0
Vj,k(u+ ckh− x;B)dFi,j(x)

+
m∑
j=1

D1(i, j)he−δh
[
k−1∑
l=1

∫ u−bl−1+ckh

u−bl+ckh
Vj,l(u+ ckh− x;B)dFi,j(x)

]
+o(h), bk−1 ≤ u < bk, i ∈ E. (5.7)
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Applying Taylor expansion, dividing by h on both sides of (5.7) and letting h→ 0, we get

ckV
′
i,k(u;B) = δVi,k(u;B)−

m∑
j=1

D0(i, j)Vj,k(u;B)

−
m∑
j=1

D1(i, j)
∫ u−bk−1

0
Vj,k(u− x;B)dFi,j(x)

−γi,k(u), bk−1 ≤ u < bk, i ∈ E, (5.8)

where

γi,k(u) = (c− ck) +
m∑
j=1

D1(i, j)
k−1∑
l=1

∫ u−bl−1

u−bl
Vj,l(u− x;B)dFi,j(x). (5.9)

Note that the expression of γi,k(u), which is the non-homogeneous term in equation (5.8),

involves the expected discounted dividend payments in the lower layers and a constant

difference between premium rates in the kth layer and in the first layer. Then we obtain

the following expression in matrix form for ~Vk(u;B) as

ck~V
′
k(u;B) = δ~Vk(u;B)−D0

~Vk(u;B)

−
∫ u−bk−1

0
Λf (x)~Vk(u− x;B)dx− ~γk(u), bk−1 ≤ u < bk, (5.10)

where ~γk(u) = (γ1,k(u), · · · , γm,k(u))>. The continuity conditions for the set of vectors
~V1(u;B), · · · , ~Vn+1(u;B) are

~Vk(bk−;B) = ~Vk+1(bk+;B), k = 1, · · · , n. (5.11)

It is interesting to note that the derivative of ~Vk(u;B) is not continuous at each threshold

level. It has the following relationship:

ck
d~Vk(u;B)

du

∣∣∣
u=bk−

= ck+1
d~Vk+1(u;B)

du

∣∣∣
u=bk+

+ (c− ck+1)~Vk+1(bk+;B).

5.2 Analytical Expression for ~Vk(u;B)

Relaxing the integro-differential equation (5.10) to u ≥ bk−1 and comparing it with (3.14),

we observe that the only difference is the non-homogeneous term; instead of ~ζk(u) in (3.14),

we have ~γk(u) in (5.10). By applying Lemma 2 and then restricting to bk−1 ≤ u < bk, its

solution can be expressed as

~Vk(u;B) = vk(u−bk−1)~Vk(bk−1;B)− 1
ck

∫ u−bk−1

0
vk(t)~γk(u− t)dt, bk−1 ≤ u < bk, (5.12)

where vk(u) is given by (3.16).



CHAPTER 5. EXPECTED DISCOUNTED DIVIDEND PAYMENTS 30

In the case of the MAP risk model with a constant barrier b = b1, when the surplus

exceeds b1, premiums collected thereafter are paid as dividends continuously. The surplus

will stay at the level b1 until a new claim occurs. For the case that 0 ≤ u < b1, the

second term in (5.9) disappears as no previous layer is involved and c = c1. Then we have

~γ1(u) = 0. So that

c~V ′(u; b) = δ~V (u; b)−D0
~V (u; b)−

∫ u

0
Λf (x)~V (u− x; b)dx. (5.13)

For the case that u = b1, similarly conditioning on the event occurring in an infinitesimal

time interval [0, h], we have

c = δ~V (b1; b)−D0
~V (b1; b)−

∫ u

0
Λf (x)~V (b1 − x; b)dx. (5.14)

Setting u = b1− in (5.13), subtracting (5.14) from (5.13) and noting that ~V (u; b) is continu-

ous at b gives immediately that ~V (u; b) satisfies condition ~V ′(b1−; b) = ~1. For the case that

u > b, dividend u− b is paid immediately, so ~V (u; b) = ~V (b1; b) +u− b1 and ~V ′(b1+; b) = ~1.

Thus we have the following continuity condition for ~V ′(u; b) at u = b1:

~V ′(b1; b) = ~1. (5.15)

By using the same arguments in deriving ~φ(u) in Section 3.1, we take Laplace transform

of both sides of (5.13) and obtain

~V (u; b) = v(u)~V (0; b), 0 ≤ u ≤ b. (5.16)

Further using the condition in (5.15), we have

~V ′(u; b)
∣∣∣
u=b1

= v′(u)
∣∣∣
u=b1

~V (0; b) = ~1. (5.17)

Then the initial value of the expected discounted dividend payments under a constant

barrier strategy is given by
~V (0; b) =

[
v′(b1)

]−1~1. (5.18)

When k = 1, we can obtain v1(u) = v(u) and ~V1(u;B) from (5.12) as

~V1(u;B) = v(u)~V1(0;B), 0 ≤ u < b. (5.19)

By (5.16), (5.18) and (5.19), it is observed that ~V1(u;B) can be rewritten as

~V1(u;B) = ~V (u; b) + v(u)~π1(B), 0 ≤ u < b, (5.20)

where ~π1(B) = ~V1(0;B) − ~V (0; b) = ~V1(0;B) − [v′(b)]−1~1. With this relationship between
~V1(u;B) and ~V (u; b), the expression of the expected discounted dividend payments for the

first layer involving a constant vector ~π1(B) can be obtained analytically as a starting point.

In the next section, we will determine the expected discounted dividend payments for the

upper layers recursively.
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5.3 Recursive Expression for ~Vk(u;B)

Recalling the idea in Section 4.2, to find an analytical expression for ~Vk(u;B), k = 2, · · · , n+

1, we define vector function ~Vk(u; b) to be the solution to (3.14) with ~γk(u) as the non-

homogeneous term. By Lemma 2, the solution is obtained as

~Vk(u; b) = vk(u− bk−1)~Vk(bk−1; b)− 1
ck

∫ u−bk−1

0
vk(t)~γk(u− t)dt, u ≥ bk−1, (5.21)

where ~Vk(bk−1; b) can be obtained by the same arguments in Section 3.4 with the help of

matrix Qk and the Dickson-Hipp operators as

~Vk(bk−1; b) =
1
ck

m∑
i=1

Q−1
k diag[Tρ1,k~γk(bk−1), · · · , Tρm,k~γk(bk−1)]Qk~ei. (5.22)

Now restricting ~Vk(u; b) in (5.21) to bk−1 ≤ u < bk and comparing (5.21) and (5.12), we can

rewrite (5.12) as

~Vk(u;B) = ~Vk(u; b) + vk(u− bk−1)~πk(B), bk−1 ≤ u < bk, (5.23)

where ~πk(B) = ~Vk(bk−1;B)− ~Vk(bk−1; b).

It follows the continuity condition (5.11) at threshold bk−1 and vk+1(0) = I that

~πk+1(B) = ~Vk(bk; b)− ~Vk+1(bk; b) + vk(bk − bk−1)~πk(B), k = 1, · · · , n (5.24)

When k = n+ 1, the expressions in (5.12) and (5.21) are exactly the same for u ≥ bn. Thus

the series of constant vectors ~πk(B), k = 1, · · · , n, can be solved by the final boundary

condition ~πn+1(B) = ~0.

Now we write an algorithm for calculating all the vector functions ~Vk(u;B), k =

1, · · · , n + 1, which are used to obtain an analytical expression of the piecewise-defined

vector function ~V (u;B) in (5.4).

Algorithm:

1. Similar to Step 1 in Section 4.3, for each ck, k = 1, · · · , n+ 1, we can get m solutions

ρi,k, i = 1, · · · ,m to equation det[Lck(s)] = 0 and matricesQk andHk, k = 1, · · · , n+

1.

2. Similar to Step 2 in Section 4.3, obtain the expression of matrix function vk(u),

k = 1, · · · , n+ 1.

3. For k = 1, we have ~γ1(u) = ~0 and

~V (u; b) = v1(u)~V (0; b) = v1(u)
[
v′1(b1)

]>~1, 0 ≤ u ≤ b1, (5.25)
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where v1(u) is obtained in Step 2. Remark that the expression of ~V (u; b) only relies

on the matrix function v1(u), while the expression of ~φ1 in Chapter 4 relies on the

non-homogeneous term ~ξ1(u) and the initial value ~φ1(0).

4. Similar to Step 4 in Section 4.3, we have

~V1(u;B) = ~V (u; b) + v1(u)~π1(B), 0 ≤ u < b1, (5.26)

where ~π1(B) = ~V1(0;B) − [v′1(b1)]>~1 is an unknown constant vector by now and it

will be determined in the last step of this algorithm.

5. For k = 2, · · · , n, we have ~γk(u) = (γ1,k(u), · · · , γm,k(u))> with

γi,k(u) = (c− ck) +
m∑
j=1

D1(i, j)
k−1∑
l=1

∫ u−bl−2

u−bl−1

Vj,l(u− x;B)dFi,j(x). (5.27)

Then we can get ~Vk(bk−1; b) by (5.22) and ~Vk(u; b) by (5.21) for u ≥ bk−1.

6. Restricting ~Vk(u; b) to bk−1 ≤ u < bk, k = 2, · · · , n, we have

~Vk(u;B) = ~Vk(u; b) + vk(u− bk−1)~πk(B),

where vk(u− bk−1) is determined in step 2 and

~πk(B) = ~Vk−1(bk−1; b)− ~Vk(bk−1; b) + vk−1(bk−1 − bk−2)~πk−1(B).

7. For k = n + 1, we have ~Vn+1(u;B) = ~Vn+1(u; b), for u ≥ bn, and ~πn+1(B) = ~0.

Referring to the explanation in Section 4.3, the expressions of ~Vn+1(bn; b), ~Vn(u; b),
~Vn+1(u;B) and ~γn(B) are all the functions of ~π1(B). The unknown vector ~γ1(B) can

be obtained by solving

~0 = ~γn+1(B) = ~Vn(bn; b)− ~φn+1(bn; b) + vn(bn − bn−1)~γn(B),

which completes all the calculations. Now We have all the vector functions needed to

obtain an analytical expression of the piecewise-defined vector of functions ~V (u;B) in

(5.4).

5.4 Moment Generating Function of Du,B and Higher Mo-

ments

In this section, we employ similar techniques used in Section 5.1, 5.2 and 5.3 to study the

moment generating function of the dividend payments in the multi-threshold MAP risk
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model. It is shown that the higher moments of the present value of all dividend payments

prior to ruin satisfy a system of integro-differential equations.

Define

Mi,k(u, y;B) = Ei[eyDu,B |U(0) = u], bk−1 ≤ u < bk, i ∈ E,

to be the moment generating function of Du,B, given that the initial MAP phase i and the

initial surplus u. Similar to (4.3) in Section 4.1 and (5.7) in Session 5.1, conditioning on

the events that occur in an infinitesimal time interval [0, h], we have

Mi,k(u, y;B) = e(c−ck)hy

{
[1 +D0(i, i)h]Mi,k(u+ ckh, e

−δhy;B)

+
m∑

j=1,j 6=i
D0(i, j)hMj,k(u+ ckh, e

−δhy;B)

+
m∑
j=1

D1(i, j)h

[∫ u−bk−1+ckh

0
Mj,k(u+ ckh− x, e−δhy;B)dFi,j(x)

+
k−1∑
l=1

∫ u−bl−1+ckh

u−bl+ckh
Mj,l(u+ ckh− x, e−δhy;B)dFi,j(x) +

∫ ∞
u+ckh

dFi,j(x)

]

+o(h)

}
, bk−1 ≤ u < bk, i ∈ E. (5.28)

As done in Li and Lu (2007), Taylor expansions give

Mi,k(u+ ckh, e
−δhy;B) = Mi,k(u, y;B) + ckh

∂Mi,k(u, y;B)
∂u

− δyh
∂Mi,k(u, y;B)

∂y
+ o(h),

(5.29)

and

exh = 1 + xh+ o(h). (5.30)

Substituting (5.29) and (5.30) into (5.28), dividing both sides of (5.28) by h and letting

h→ 0, we then obtain

0 = (c− ck)yMi,k(u, y;B) + ck
∂Mi,k(u, y;B)

∂u
− δy

∂Mi,k(u, y;B)
∂y

+
m∑

j=1,j 6=i
D0(i, j)Mj,k(u, y;B)

+
m∑
j=1

D1(i, j)
[∫ u−bk−1

0
Mj,k(u− x, y;B)dFi,j(x)

+
k−1∑
l=1

∫ u−bl−1

u−bl
Mj,l(u− x, y;B)dFi,j(x) + F̄i,j(u)

]
, bk−1 ≤ u < bk,

(5.31)

where F̄i,j = 1− Fi,j is the survival distribution of the claim amounts.
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Define, for k = 1, · · · , n+ 1,

V n
i,k(u;B) = Ei[Dn

u,B|U(0) = u], bk−1 ≤ u < bk, i ∈ E,

to be the nth moment of Du,B, given that the initial MAP phase i and the initial surplus

u, with V 0
i,k(u;B) = 1 and V 1

i,k(u;B) = Vi,k(u;B) studied in Section 5.1. Following the

representation of moment generation function

Mi,k(u, y;B) = 1 +
∞∑
n=1

(yn/n!)V n
i,k(u;B),

and comparing the coefficient of yn/n! in (5.31), we obtain, for bk−1 < u < bk, that

ck
dV n

i,k(u;B)
du

− nδV n
i,k(u;B) +

m∑
j=1

D0(i, j)V n
j,k(u;B) + n(c− ck)V n−1

i,k (u;B)

+
m∑
j=1

D1(i, j)

[∫ u−bk−1

0
V n
j,k(u− x;B)dFi,j(x) +

k−1∑
l=1

∫ u−bl−1

u−bl
V n
j,l(u− x;B)dFi,j(x)

]
= 0. (5.32)

We can also rewrite (5.32) into matrix form as

ck[~V n
k (u;B)]′ = nδ~Vk(u;B)−D0

~V n
k (u;B)−

∫ u−bk−1

0
Λf (x)~V n

k (u− x;B)dx

−~ζnk (u), bk−1 < u < bk, (5.33)

where ~V n
k (u;B) = (V n

1,k(u;B), · · · , V n
m,k(u;B))> and ~ζnk (u) = (ζn1,k(u), · · · , ζnm,k(u))> is a

vector with the ith element in the following form for bk−1 < u < bk:

ζni,k(u) = n(c− ck)V n−1
i,k (u;B) +

m∑
j=1

D1(i, j)
k−1∑
l=1

∫ u−bl−1

u−bl
V n
j,l(u− x;B)dFi,j(x). (5.34)

Note that this non-homogeneous term for the nth moment of the discounted dividend pay-

ments in the kth layer involves all the nth moment of the discounted dividend payments in

the lower layers as well as the (n − 1)th moment of the discounted dividend payments in

the kth layer.

When k = 1, no previous layer is needed to be considered and c1 = c. Thus the second

term in (5.34) does not exist and the first term is equal to 0. Equation (5.33) is simplified

to a homogeneous integro-differential equation and its solution is given by

~V n
1 (u;B) = vn1 (u)~V n

1 (0;B), 0 ≤ u < b1.

When k = 2, · · · , n + 1, (5.33) satisfies a non-homogeneous integro-differential equation

described in Lemma 2 with restriction bk−1 ≤ u < bk. The solution to (5.33) is given by

~V n
k (u;B) = vnk (u−bk−1)~V n

k (bk−1;B)− 1
ck

∫ u−bk−1

0
vnk (t)~ζnk (u−t)dt, bk−1 ≤ u < bk, (5.35)
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where vnk (u) is given by a Laplace inversion of the inverse of a matrix similar to (3.11) with

c and δ being replaced by ck and nδ. That is,

vnk (u) = L−1
s

{[(
s− nδ

ck

)
I +

1
ck

(
D0 + Λf̂ (s)

)]−1
}
. (5.36)

The continuity condition for ~V n
k (u;B) is

~V n
k (bk−;B) = ~V n

k+1(bk+;B).

Similar to the case of the expected dividend payment in Section 5.1, the derivative of
~V n
k (u;B) with respect to u is not continuous at each threshold level. In fact, it follows from

(5.33) and (5.34) that

ck
d~V n

k (u;B)
du

∣∣∣
u=bk−

= ck+1

d~V n
k+1(u;B)
du

∣∣∣
u=bk+

+ n(c− ck+1)~V n−1
k+1 (bk+;B). (5.37)

In order to achieve a recursive algorithm to obtain an analytical expression of (5.35),

we need to have a starting point at the beginning and a boundary condition in the last

layer. Again, the moments of the dividend payments prior to ruin under a constant barrier

strategy plays an important role here. To be specific, we define

Mi(u, y; b) = Ei[eyDu,b |U(0) = u], 0 ≤ u < b, i ∈ E,

and

V n
i (u; b) = Ei[Dn

u,b|U(0) = u], 0 ≤ u < b, i ∈ E,

to be the moment generating function and the nth moment of the dividend payments prior

to ruin in the MAP risk model under a constant barrier strategy with barrier b, respectively,

which can be viewed as special cases for the multi-threshold MAP risk model with b1 = b

and ck = 0 for k > 0. Then the nth moment of the dividend payments prior to ruin satisfies

a system of integro-differential equations as

c[~V n
k (u; b)]′ = nδ~V n

k (u; b)−D0
~V n
k (u; b)−

∫ u

0
Λf (x)~V n

k (u− x; b)dx, 0 ≤ u < b.

The solution to the homogeneous integro-differential equation above can be expressed in

matrix form as
~V n(u; b) = vn(u)~V n(0; b), 0 ≤ u < b, (5.38)

where vn(u) is given by

vn(u) = L−1
s

{[(
s− nδ

c

)
I +

1
c

(
D0 + Λf̂ (s)

)]−1
}
.
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For the case u ≥ b, ~V n(u; b) = ~V n(u; b) + u − b. The continuity condition for ~V n(u; b)

at b is
~V n(b−; b) = ~V n(b+; b),

and following from (5.37), the boundary condition is

d~V n(u; b)
du

∣∣∣
u=b

= n~V n−1(b; b), 0 ≤ u < b. (5.39)

Then the value of ~V n(0; b) in (5.38) can be obtained from the following matrix equation,

(vn)′(b)~V n(0; b) = n~V n−1(b; b).

Thus we have

~V n(u; b) = vn(u)~V n(0; b)

= nvn(u)[(vn)′(b)]−1~V n−1(b; b)

= n!vn(u)[(vn)′(b)]−1vn−1(b)[(vn−1)′(b)]−1 · · ·v1(b)[(v1)′(b)]−1~1, 0 ≤ u < b.

(5.40)

The way of setting up a recursive algorithm for the nth moment of the discounted

dividend payments prior to ruin is similar to the one for the expected discounted dividend

payments in Section 5.3. Once we have all the moments of the discounted dividend payments

prior to ruin for each layer, the piecewise defined vector function ~V n(u;B) = ~V n
k (u;B) for

bk−1 ≤ u < bk can be obtained. Theoretically, the moment generating function of the

discounted dividend payments prior to ruin can be calculated based on the nth moments,

n = 1, 2, · · · , and the distribution of the discounted dividend payments is determined.



Chapter 6

Layer-Based Recursive Approach

As we can see from the recursive expressions in Chapter 4 for the expected discounted

penalty function and Chapter 5 for the expected discounted dividend payments in the multi-

threshold MAP model, a computational disadvantage of the differential approach based on

the integro-differential equations is the fact that the obtained recursions among different

layers have to be solved with unknown constants, which can only be evaluated in the last

layer. It makes this method computational infeasible when the number of layers is large.

In this chapter, we borrow the idea in Albrecher and Hartinger (2007) for the classical risk

model to set up an alternative layer-based recursive approach in the multi-threshold MAP

risk model, in which the complete solution of the k-layer MAP model can be obtained from

the complete solution of the (k−1)-layer MAP model with the lower k−1 layers coincidence

and the classical one-layer MAP model.

6.1 Time Value of “Upper Exit”

Recalling the concept of stopping time in (3.21) and (3.22), we denote τ∗k (u, a, b), τ+
k (u, a, b)

and τ−k (u, a, b) to be three stopping times for the MAP risk model with k layers. Referring

to Figure 1.1 in Appendix A, the structure of the surplus process implies that the upper

exit of any interval [a, b) can happen only through the continuous premium income, while

the lower drop is due to the claim arrival. The time of ruin, which is originally defined in

(1.2), is denoted as τk(u) in the k-layer risk model given the initial surplus u. Note that

τk(u) is consistent with τ−k (u, 0,∞).

Let 1[A] be an indicator function on set A. Denote

Bi,j,k(u, b) = E
[
e−δτ

+
k (u,0,b)1[J(τ+

k (u,0,b))=j]

∣∣J(0) = i
]

(6.1)

to be the Laplace transform of τ+
k (u, 0, b), given that the surplus process reaches b in MAP

phase j and the initial phase is i; Bi,j,k(u, b) can also be interpreted as the expected present

37
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Surplus U1,k(t)

Time t

u

0

Figure 6.1: Sample path of the classical (one-layer) surplus process with dividend strategy

value of a payment of 1 at the time when the surplus reaches the level b for the first time

provided that ruin has not occurred yet. Further let Bk(u, b) be a matrix with the (i, j)th

element being Bi,j,k(u, b). Note that the notation Bk−1(u, b) corresponds to Bk(u, b) with

the top threshold bk−1 shifted to infinity. For example, in a three-threshold (four layers)

MAP risk model we denote three thresholds as b1, b2, and b3, where 0 < b1 < b2 < b3 <∞.

B4(u, b) is the Laplace transform of the stopping time τ+
4 (u, 0, b) in matrix form. When the

top threshold b3 is shifted to infinity, it becomes a two-threshold (three layers) MAP risk

model and B4(u, b) reduces to B3(u, b).

Now we revisit the classical (one-layer) model and introduce a new notation U1,k(t),

which denotes a surplus process at time t in the classical model with parameter ck. Figure

6.1 illustrates a sample path of U1,k(t). In general, the subscript {·}1,k refers to the corre-

sponding quantity in the classical model with parameters ck. For example, τ1,k(u) is the

time of ruin in the one-layer MAP risk model with premium rate ck. Note that this model

can be seen as a model with premium rate c and paying dividends at a rate c − ck. Then

the discounted dividend payments prior to ruin of the surplus process U1,k(t), denoted by

D1,k(u), is defined as

D1,k(u) = (c− ck)
∫ τ1,k(u)

0
e−δtdt.

The corresponding expected discounted dividend payments given the initial MAP phase i
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and initial surplus u is

Vi,(1,k)(u) = Ei [D1,k(u)|U1,k(0) = u] , i ∈ E.

Similar to Lemma 3.2 in Albrecher and Hartinger (2007), we have the following lemma

stating the properties of Bk(u, b).

Lemma 3 For δ > 0 and k ∈ N+, we have

1.

Bk = 1, if u ≥ b,

Bk = 0, if u < 0;

2. for 0 ≤ u < bk−1,

Bk(u, b) =

{
Bk−1(u, b), if b ≤ bk−1,

Bk−1(u, bk−1)Bk(bk−1, b), if b ≥ bk−1;

3. for bk−1 ≤ u ≤ b,

Bk(u, b) = B1,k(u− bk−1, b− bk−1) + Mk(u− bk−1)

−B1,k(u− bk−1, b− bk−1)Mk(b− bk−1),

where Mk(v) is a matrix with the (i, j)th element being Mi,j,k(v) given by

Mi,j,k(v) = E

[
m∑
l=1

e−δτ1,k(v)Bl,j,k(bk−1 − |U1,k(τ1,k(v))|, b)1[J(τ1,k(v))=l]

∣∣J(0) = i

]
.

Proof. In Case 1 , when the initial surplus is greater than or equal to b, no time is needed

for the surplus process to reach b; that is, τ+
k (u, 0, b) = 0. When the initial surplus is less

than 0, ruin has occurred. The time of the surplus process to reach b > 0 is infinity. So

Case 1 is true.

In Case 2 , the surplus process with k layers coincides with the process with k− 1 layers

before the first exit of the interval [0, bk−1), we have τ+
k (u, 0, b) = τ+

k−1(u, 0, b) and then

Bi,j,k(u, b) = Bi,j,k−1(u, b) for 0 ≤ b ≤ bk−1. Putting it in matrix form, for 0 ≤ b ≤ bk−1, we

have

Bk(u, b) = Bk−1(u, b).

For b ≥ bk−1, the surplus process of upcrossing b is equal to the surplus process which

upcrosses bk−1 first and then continues to upcross b with a new initial surplus bk−1. Thus,
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for b ≥ bk−1, we have

Bi,j,k(u, b) = E
[
e−δτ

+
k (u,0,b)1[J(τ+

k (u,0,b))=j]

∣∣J(0) = i
]

= E
[
e−δ[τ

+
k−1(u,0,bk−1)+τ+

k (bk−1,0,b)]1[J(τ+
k (u,0,b))=j]

∣∣J(0) = i
]

=
m∑
l=1

{
E
[
e−δτ

+
k−1(u,0,bk−1)1[J(τ+

k−1(u,0,bk−1))=l]

∣∣J(0) = i
]

E
[
e−δτ

+
k (bk−1,0,b)1[J(τ+

k (bk−1,0,b))=j]

∣∣J(τ+
k−1(u, 0, bk−1)) = l

]}
=

m∑
l=1

Bi,l,k−1(u, bk−1)Bl,j,k(bk−1, b), 0 ≤ u < bk−1.

Putting it in a matrix form, for b ≥ bk−1, we have

Bk(u, b) = Bk−1(u, bk−1)Bk(bk−1, b), 0 ≤ u < bk−1. (6.2)

In Case 3 , when bk−1 ≤ u ≤ b, two sample surplus paths to reach level b are illustrated

in Figure A.4 and A.5. The surplus process arrives at b directly without dropping to bk−1 in

Figure A.4. In this case, τ+
k (u, 0, b) is equal to τ+

k (u, bk−1, b). Figure A.5 describes the case

that the surplus process drops below level bk−1 first without causing ruin and then increase

to level b from a new initial surplus. Thus, we have,

E
[
e−δτ

+
k (u,0,b)1[J(τ+

k (u,0,b))=j]

∣∣J(0) = i
]

= E
[
e−δτ

+
k (u,bk−1,b)1[UB(τ∗k (u,bk−1,b))=b,J(τ∗k (u,bk−1,b))=j]

∣∣J(0) = i
]

+E
[
e−δ[τ

−
k (u,bk−1,b)+τ

+
k (UB(τ−k (u,bk−1,b)),0,b)]1[UB(τ∗k (u,bk−1,b))<b,J(τ∗k (u,bk−1,b))=j]

∣∣J(0) = i
]

= Pk,1(u) + Pk,2(u), bk−1 ≤ u ≤ b. (6.3)

In order to link equation (6.3) to Bi,j,k defined in (6.1), we resort to the surplus process

U1,k(t) under the classical one-layer model. Three sample surplus paths of this surplus

process are illustrated in Figure A.6, A.7 and A.8. Figure A.6 describes the case that the

surplus process starts from u− bk−1 and reaches b− bk−1 prior to ruin. When the premium

rate of this surplus process is the same as the one of the kth (top) layer from a (k − 1)-

threshold MAP risk model, the time of upcrossing level b − bk−1 at phase j prior to ruin

from initial surplus u − bk−1 in Figure A.6 is equal to the time of upcrossing level b at

phase j without dropping to bk−1 from initial surplus u in Figure A.4, both given the initial

phase i. That is, τ+
k (u, bk−1, b) = τ+

1,k(u − bk−1, 0, b − bk−1). We can rewrite the first term

in equation (6.3) as

Pk,1(u) = E
[
e−δτ

+
1,k(u−bk−1,0,b−bk−1)1[J(τ+

1,k(u−bk−1,0,b−bk−1))=j]

∣∣J(0) = i
]

= Bi,j,(1,k)(u− bk−1, b− bk−1), bk−1 ≤ u ≤ b.
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Figure A.7 describes the case that ruin occurs before the surplus process reaches b−bk−1.

The dash line indicates that it recovers from ruin, if possible, and further reaches b− bk−1.

Similarly, the stopping time τ−k (u, bk−1, b) in Figure A.5 corresponds to the stopping time

τ−1,k(u − bk−1, 0, b − bk−1) in the surplus process U1,k(t). We follow the idea in the proof

of Lemma 3.2 in Albrecher and Hartinger (2007) to replace τ−k (u, bk−1, b) by the time of

ruin τ1,k(u − bk−1). When ruin happens in the surplus process U1,k(t), the deficit of ruin

is |U1,k(τ1,k(u − bk−1))|. It corresponds to the case of the surplus process UB (t) dropping

below bk−1 and start again with an initial surplus bk−1 − |U1,k(τ1,k(u − bk−1))|. However,

the event of ruin in the classical model does not distinguish whether the surplus process

hits b−bk−1 before or not prior to ruin. If U1,k(t) reaches b−bk−1 before ruin, as illustrated

in Figure A.8, it is the same case as UB(t) reaches b before dropping to bk−1, and is already

considered in the first term of equation (6.3). Those trajectories need to be corrected.

Taking the interim transition states into account, we have the following equation for the

second term in equation (6.3)

Pk,2(u)

= E

[
m∑
l=1

e−δτ1,k(u−bk−1)Bl,j,k(bk−1 − |U1,k(τ1,k(u− bk−1))|, b)1[J(τ1,k(v))=l]

∣∣J(0) = i

]

−E

[
m∑
l′=1

m∑
l=1

Bi,l′,(1,k)(u− bk−1, b− bk−1)e−δτ1,k(b−bk−1)

Bl,j,k(bk−1 − |U1,k(τ1,k(b− bk−1))|, b)1[J(τ1,k(v))=l]

∣∣J (τ+
1,k(u− bk−1, 0, b− bk−1)

)
= l′

]
.

(6.4)

Let

Mi,j,k(v) = E

[
m∑
l=1

e−δτ1,k(v)Bl,j,k(bk−1 − |U1,k(τ1,k(v))|, b)1[J(τ1,k(v))=l]

∣∣J(0) = i

]
,

and Mk(v) be a matrix with the (i, j)th element being Mi,j,k(v). Then Pk,2 can be rewritten

as

Pk,2(u) = Mi,j,k(u− bk−1)−
m∑
l′=1

Bi,l′,(1,k)(u− bk−1, b− bk−1)Ml′,j,k(b− bk−1).

Further combining Pk,1 and Pk,2, we have

Bk(u, b) = B1,k(u− bk−1, b− bk−1) + Mk(u− bk−1)

−B1,k(u− bk−1, b− bk−1)Mk(b− bk−1), bk−1 ≤ u ≤ b.

�
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Let A1,k(v) be a matrix with the (i, j)th element Ai,j,(1,k)(v) being a random variable

such that

Pr[Ai,j,(1,k)(v) = a] = Pr[e−δτ1,k(v)1[J(τ1,k(v))=j] = a
∣∣J(0) = i].

Then Mk(v) can be expressed as

Mk(v) = E [A1,k(v)Bk(bk−1 − |U1,k(τ1,k(v))|, b)] . (6.5)

Let M∗
k(v) be a matrix with the (i, j)th element being M∗i,j,k(v) given by

M∗i,j,k(v) = E

[
m∑
l=1

e−δτ1,k(v)Bl,j,k−1(bk−1 − |U1,k(τ1,k(v))|, bk−1)1[J(τ1,k(v))=l]

∣∣J(0) = i

]
.

Similar to Mk(v), with the help of matrix A1,k(v), we have an alternative expression for

M∗
k(v) as

M∗
k(v) = E [A1,k(v)Bk−1(bk−1 − |U1,k(τ1,k(v))|, bk−1)] . (6.6)

Now we obtain, from Case 2 of Lemma 3 at u = 0, that

Bk(0, b) = Bk−1(0, bk−1)Bk(bk−1, b), (6.7)

and from Case 3 of Lemma 3 at u = bk−1, that

Bk(bk−1, b) = B1,k(0, b− bk−1) + Mk(0)−B1,k(0, b− bk−1)Mk(b− bk−1). (6.8)

The relationship between Mk(v) and M∗
k(v) is then found by substituting (6.2) and (6.7)

into (6.5) and (6.6), respectively, that

Mk(v) = M∗
k(v)B−1

k−1(0, bk−1)Bk(0, b). (6.9)

Combining (6.2), (6.8) and (6.9), we obtain

Bk(bk−1, b) = Bk−1(bk−1, bk−1)Bk(bk−1, b)

= B1,k(0, b− bk−1) + M∗
k(0)B−1

k−1(0, bk−1)Bk(0, b)

−B1,k(0, b− bk−1)M∗
k(b− bk−1)B−1

k−1(0, bk−1)Bk(0, b).

After some manipulations, Bk(0, b) can be obtained from the equation above. Note that

Bk(0, b) solely depends on quantities from the classical one-layer model with parameters

from the kth layer in the multi-layer risk model such as τ1,k(u) and B1,k(u, b), and quantities

from the lower layer such as B−1
k−1(u, b).
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6.2 The Expected Discounted Dividends

In this section, we show how to use the quantities of Section 6.1 to calculate the expected

discounted dividend payments in the MAP risk model with k layers.

For 0 ≤ u < bk−1, conditioning on the event of either reaching bk−1 first or ruin occurring

without reaching bk−1, we have

Vi,k(u;B)

= E

[∫ τk(u)

0
e−δtdDu,B(t)|J(0) = i

]

= E

[∫ τ∗k (u,0,bk−1)

0
e−δtdDu,B(t)|J(0) = i

]
+ E

[∫ τk(u)

τ∗k (u,0,bk−1)
e−δtdDu,B(t)|J(0) = i

]
= Ik,1(u) + Ik,2(u). (6.10)

If ruin occurs before the surplus process reaches bk−1, τ∗k (u, 0, bk−1) = τ−k (u, 0, bk−1) =

τk(u). The second term in the equation above goes to 0. If this is the case, the dividend

payments in the k-layer model is the same as the one in the (k − 1)-layer model. That

is, Vi,k(u;B) = Vi,k−1(u;B). Otherwise, the surplus process hits bk−1 prior to ruin, and

τ∗k (u, 0, bk−1) = τ+
k (u, 0, bk−1) = τ+

k−1(u, 0, bk−1). After it hits bk−1 in phase l, l ∈ E, the

surplus process begins with a new initial surplus bk−1. The expected discounted dividend

payments thereafter are calculated as Vl,k(bk−1;B), and then we discount it back to time 0.

It follows that

Ik,2 =
m∑
l=1

E
[
e−δτ

+
k−1(u,0,bk−1)1[J(τ+

k−1(u,0,bk−1))=l]

∣∣J(0) = i
]
Vl,k(bk−1;B)

=
m∑
l=1

Bi,l,k−1(u, bk−1)Vl,k(bk−1;B).

The first term of (6.10) corresponds to the expected discounted dividend payments of the
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surplus process hitting bk−1 before ruin and it can be calculated as

Ik,1 = E

[∫ τ∗k (u,0,bk−1)

0
e−δtdDu,B(t)

∣∣J(0) = i

]

= E

[∫ τ+
k−1(u,0,bk−1)

0
e−δtdDu,B(t)

∣∣J(0) = i

]

= E

[∫ τk−1(u)

0
e−δtdDu,B(t)

∣∣J(0) = i

]

−
m∑
l=1

{
E
[
e−δτ

+
k−1(u,0,bk−1)1[J(τ+

k−1(u,0,bk−1))=l]

∣∣J(0) = i
]

E

[∫ τk−1(bk−1)

τ+
k−1(u,0,bk−1)

e−δtdDu,B(t)
∣∣J(τ+

k−1(u, 0, bk−1)) = l

]}

= Vi,k−1(u;B)−
m∑
l=1

Bi,j,k−1(u, bk−1)Vl,k−1(bk−1;B).

The third equality in the equation above holds because the discounted dividend payments

in the (k−1)-layer model prior to ruin can be divided into two parts. One is the discounted

dividend payments prior to the time of upcrossing level bk−1, which is the one we are

interested in. The other is the discounted dividend payments accumulated from the time of

starting at bk−1 to the time of ruin in the (k − 1)-layer model, which is the one needed to

be subtracted from the total discounted dividend payments prior to ruin. We can evaluate

the second part by first discounting the dividend payments gained after hitting bk−1 to the

time of hitting bk−1 and further discounting it to time 0. Hence, equation (6.10) can be

rewritten as

Vi,k(u;B) = Vi,k−1(u;B) +
m∑
l=1

Bi,l,k(u, bk−1) [Vl,k(bk−1;B)− Vl,k−1(bk−1;B)] , (6.11)

and in matrix form,

~Vk(u;B) = ~Vk−1(u;B) + Bk−1(u, bk−1)
[
~Vk(bk−1;B)− ~Vk−1(bk−1;B)

]
. (6.12)

When u = 0 in (6.11) and (6.12), we have

Vi,k(0;B) = Vi,k−1(0;B) +
m∑
l=1

Bi,l,k(0, bk−1) [Vl,k(bk−1;B)− Vl,k−1(bk−1;B)] , (6.13)

and
~Vk(0;B) = ~Vk−1(0;B) + Bk−1(0, bk−1)

[
~Vk(bk−1;B)− ~Vk−1(bk−1;B)

]
.

Thus we arrive, provided that the B−1
k−1(0, bk−1) is invertible, at

~Vk(u;B) = ~Vk−1(u;B) + Bk−1(u, bk−1)B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
. (6.14)
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For u ≥ bk−1, we employ the techniques used in deriving Lemma 3 to link the quantities

in the k-layer MAP risk model to the one-layer model with parameter ck. Conditioning on

the events of dropping below bk−1 or not, we have

Vi,k(u;B)

= Vi,(1,k)(u− bk−1) + E

[
m∑
l=1

e−δτ1,k(u−bk−1)Vl,k(bk−1 − |U1,k(τ1,k(u− bk−1))|;B)

1[J(τ1,k(u−bk−1))=l]

∣∣J(0) = i

]
.

Putting it in matrix form and using (6.14), we obtain

~Vk(u;B)

= ~V1,k(u− bk−1) + E
[
A1,k(u− bk−1)~Vk(bk−1 − |U1,k(τ1,k(u− bk−1))|;B)

]
= ~V1,k(u− bk−1) + E

[
A1,k(u− bk−1)

{
~Vk−1(bk−1 − |U1,k(τ1,k(u− bk−1))|;B)

+Bk−1(bk−1 − |U1,k(τ1,k(u− bk−1))|, bk−1)B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]}]
= ~V1,k(u− bk−1) + E

[
A1,k(u− bk−1)~Vk−1(bk−1 − |U1,k(τ1,k(u− bk−1))|;B)

]
+M∗

k(u− bk−1)B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
. (6.15)

According to the continuity of ~Vk(u;B) at u = bk−1, we evaluate (6.14) and (6.15) at

u = bk−1 to obtain

~Vk(bk−1;B)

= ~Vk−1(bk−1;B) + Bk−1(bk−1, bk−1)B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
= ~V1,k(0) + E

[
A1,k(0)~Vk−1(bk−1 − |U1,k(τ1,k(0))|;B)

]
+M∗

k(0)B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
,

and further get

B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
= [I−M∗

k(0)]−1
{
~V1,k(0)− ~Vk−1(bk−1;B)E

[
A1,k(0)~Vk−1(bk−1 − |U1,k(τ1,k(0))|;B)

]}
.

(6.16)

Subsequently we can evaluate ~Vk(u;B) in (6.14) and (6.15) by replacing

B−1
k−1(0, bk−1)

[
~Vk(0;B)− ~Vk−1(0;B)

]
with (6.16).

Note that in (6.14), (6.15) and (6.16), for all values of u, ~Vk(u;B) is expressed as a

function of ~Vk−1(u;B) and ~Vk(u; b), which is related to τ1,k(u). That implies that we can
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recursively determine the solution beginning from the classical one-layer model and adding

one more layers once a time based on the previous coincidence layers.



Chapter 7

Numerical Examples

In this chapter, we illustrate the applicability of the differential recursive approach derived

in Chapter 4 for the ruin probability as a special case of the expected discounted penalty

function and in Chapter 5 for the expected discounted dividend payments prior to ruin.

First, we consider the multi-threshold classical compound Poisson risk model with a two-

threshold dividend strategy as the simplest case. Then we consider the case where the

inter-claim times follow an Erlang(2) distribution as a special case of the Sparre-Andersen

risk model. Further we give examples where the claim arrival process follows a Markov-

modulated Poisson process with two phases, which may reflect the external environment

effects due to normal or abnormal risk. The final example illustrates the case where the

claim amounts are related to the transition changes. In all of the examples, we assume that

three layers (two thresholds) are involved and the claim sizes are exponentially distributed.

Example 1 (Probability of Ruin in the Classical Compound Poisson Risk Model)

As a special case of the MAP risk model, the classical compound Poisson risk model

has only one phase; that is, m = 1. In this case, we have D0 = −λ and D1 = λ, where λ

is the parameter in a Poisson process modeling the number of claims up to time t, N(t).

Further setting discounting factor δ = 0 and penalty function w(x, y) = 1, (4.1) reduces to

the probability of ruin in the multi-threshold MAP risk model. That is a piecewise function

as

ϕ(u;B) =


ϕ1(u;B) 0 ≤ u < b1,

ϕ2(u;B) b1 ≤ u < b2,

ϕ3(u;B) b2 ≤ u <∞,

and for k = 1, 2, 3,

ϕk(u;B) = E[I(τ <∞)|U(0) = u] = Pr[τ <∞|U(0) = u], bk−1 ≤ u < bk.

47
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When the claim amounts are exponentially distributed with mean 1/µ with Laplace

transform µ/(s+ µ), Lc(s) in equation (3.9) reduces to Lc(s) in the form of

Lc(s) = s− λ

c
+

λµ

c(s+ µ)
.

Let θ be the security loading factor such that

c =
(1 + θ)λ

µ
.

The solutions of equation Lc(s) = 0 are 0 and −θµ/(1 + θ) < 0. It is discussed in Lin and

Pavlova (2006) that the probability of ruin, ϕ(u), under the classical compound Poisson

model with premium rate c has the explicit form

ϕ(u) =
1

1 + θ
e−Ru,

where R = θµ/(1+θ) is the so-called adjustment coefficient of Lundberg equation. Further-

more, the Laplace inversion of the inverse of Lc(s), which is v(u) given by equation (3.11),

is obtained explicitly as

v(u) = 1 +
1− e−Ru

θ
=

1 + θ

θ
[1− ϕ(u)].

Let ϕ1(u) be the probability of ruin under the classical compound Poisson risk model with

premium rate c1 and θ1 be the security loading factor in the first layer. We have the

following expression for the first layer,

ϕ1(u;B) = ϕ1(u) +
κ1(1 + θ1)

θ1
[1− ϕ1(u)], 0 ≤ u < b1.

Details of the derivation of the probability of ruin for the higher layers can be found in Lin

and Sendova (2008).

We follow the parameters in Albrecher and Hartinger (2007) that λ = 1, β = 1, b1 = 5,

b2 = 10, c1 = 1.4, c2 = 1.3 and c3 = 1.2, and consider two threshold sets, B1 = {0, b1,∞}
and B2 = {0, b1, b2,∞}. Then we have explicit formulas for different dividend strategies as

follows:

• no dividend strategy,

ϕ(u) = 0.7143e−0.2857u, u ≥ 0;

• one-threshold dividend strategy,

ϕ(u;B1) =

0.6757e−0.2857u + 0.0540, 0 ≤ u < 5,

0.6845e−0.2308u, u ≥ 5;
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Figure 7.1: Ruin probabilities in the classical compound Poisson risk model under different
dividend strategies

• two-threshold dividend strategy,

ϕ(u;B2) =


0.6536e−0.2857u + 0.84926, 0 ≤ u < 5,

0.6622e−0.2308u + 0.03271, 5 ≤ u < 10,

0.5199e−0.1667u, u ≥ 10.

Figure 7.1 depicts the ruin probabilities as a function of u for compound Poisson risk

models with no dividend strategy, with a one-threshold strategy and with a two-threshold

strategy. As expected, the ruin probabilities decrease as the initial surplus increases. The

ruin probabilities in the model under a multi-threshold strategy always increases with the

number of thresholds.

Example 2 (Probability of Ruin in the Sparre Andersen Risk Model)

In this example, we consider the distribution of inter-claim times to be Erlang (2) with

parameter λ. That is, ~a = (1, 0)>, ~s = (0, λ)>, and

S =

(
−λ λ

0 −λ

)
.
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In this case, the density function, cumulative function and the Laplace transform of the

inter-claim times are given by,

fZ(x) = λ2xe−λx, x ≥ 0,

FZ(x) = 1− e−λx − e−λxλx, x ≥ 0,

f̂Z(s) =
λ2

(s+ λ)2
.

As mentioned in Chapter 2, the Sparre-Andersen risk model is a special case of the MAP

risk model with D0 = S and D1 = −S~1~α>. It is obtained from equation (3.9) that matrix

Lc(s) has the following form:

Lc(s) =
1
c

(
cs− λ λ
λβ
s+β cs− λ

)
,

and it follows from Example 1 in Li (2008) and Example 1 in Lu and Li (2009b) that H

is a transpose of a Vandermonde matrix, which is a matrix with geometric progression in

each row; it is given by

H =
1
c

(
1 1

λ−cρ1
λ

λ−cρ2
λ

)
,

with ρ1 and ρ2 are solutions to equation

0 = det[Lc(s)] =
1
c

[
(cs− λ)2 − λ2β

s+ β

]
(7.1)

in the right half complex plain.

When the claim amounts are exponentially distributed, it is derived in Gerber and Shiu

(2005) that θi(u) given in (3.27) is of the form

θi(u) =
β −R
β + ρi

e−Ru, i = 1, 2,

where the Lundberg adjustment coefficient R is the absolute value of the negative solution

to equation (7.1). Now the expression of vk(u) can be computed for k = 1, 2, 3.

We choose λ = 2 such that the expected number of claim arrivals up to time t, E[N(t)],

equals to the one in Example 1. Other parameters such as premium rates, threshold levels

and claim amount distribution remain the same as those in Example 1. Following the

recursive algorithm described in Chapter 4, the ruin probabilities for the Sparre-Andersen

risk model with Erlang (2) inter-claim times under different dividend strategies are given

by

• no dividend strategy,

ϕ(u) = 0.6330e−0.3670u, u ≥ 0;
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• one-threshold dividend strategy,

ϕ(u;B1) =

−8.5041× 10−9e2.2242u + 0.03657 + 0.6098e−0.3670u, 0 ≤ u < 5,

0.5941e−0.2989u, u ≥ 5;

• two-threshold dividend strategy,

ϕ(u;B2) =


−1.4591× 10−7e2.2242u + 0.0521 + 0.5998e−0.3670u, 0 ≤ u < 5,

4.1927× 10−14e2.3758u + 0.0002 + 0.6141e−0.2989u, 5 ≤ u < 10,

0.2825e−0.2178u, u ≥ 10.

Figure 7.2 shows the ruin probabilities as a function of u for this model under no dividend

strategy, a one-threshold strategy and a two-threshold strategy. We reach the same conclu-

sions as in Example 1 that, the more initial surplus we have, the lower ruin probabilities

we face. Also the ruin probabilities in the model under a multi-threshold strategy always

increases with the number of thresholds. It is interesting to note that, with the same claim

amount distribution and expected claim numbers, the ruin probabilities in the Sparre An-

dersen risk model are lower than those in the classical compound Poisson risk model under

the same dividend strategy.

Example 3 (Probability of Ruin in the Markov-Modulated Risk Model)

In this example, we consider a two-state Markov-modulated risk model with a two-

threshold dividend strategy, that is, {J(t); t ≥ 0} is assumed to be a two-state Markov

process, which can be interpreted as the external environment effects due to normal risk or

abnormal risk. Under the normal risk condition, the claim arrivals are assumed to follow

a Poisson distribution with parameter λ1. While under the abnormal risk condition, they

follow a Poisson distribution with λ2. The intensity of transition from state 1 to state 2 is

α12 and from state 2 to state 1 is α21. Further the claim amount distributions f1 and f2

are exponentially distributed with means 1/β1 and 1/β2. It is reasonable to assume that

λ1 > λ2 and β1 < β2. That is, we would have more claims with larger claim amounts in

one environment state and less claims with smaller claim amounts in the other state. As

introduced in Chapter 2, in the Markov-modulated risk model case,

D1 =

(
λ1 0

0 λ2

)
, D0 = Λ−D1 =

(
−α12 − λ1 α12

α21 −α21 − λ2

)
,

and, matrix Lc(s) given by (3.9) has the form

Lc(s) =
1
c

(
cs− α12 − λ1 + λ1β1

s+β1
α12

α21 cs− α21 − λ2 + λ2β2

s+β2

)
.
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Figure 7.2: Ruin probabilities in the Sparre Andersen risk model with Erlang(2) inter-claim
times under different dividend strategies

We denote ρl, l = 1, 2, 3, 4 to be the solutions of equation det[Lc(s)] = 0 and assume that

they are distinct for simplicity. That is, we can obtain four distinct roots which satisfy the

following equation,

0 =
1
c

[(
cs− α12 − λ1 +

λ1β1

s+ β1

)(
cs− α21 − λ2 +

λ2β2

s+ β2

)
− α12α21

]
. (7.2)

Recall that there are two approaches to evaluate v(u) in Section 3.3. In the case where

the claim amounts are exponentially distributed, Li and Lu (2007) obtained an explicit

expression for v(u) = [vi,j(u)]mi,j=1 based on the method of direct Laplace inversion as

vi,j(u) =
4∑
l=1

ri,j,le
ρlu, i, j = 1, 2.

The coefficients, ri,j,l, are given by(
r1,1,l r1,2,l

r2,1,l r2,2,l

)
=

(ρl + µ1)(ρl + µ2)∏4
l=1,l 6=l(ρl − ρl)

L∗c(ρl), l = 1, 2, 3, 4,

where L∗c(s) is the adjoint matrix of Lc(s).
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The second approach to tackle v(u) is also applicable here. Note that there are two roots

of equation (7.2) with positive real parts. For each of them, say, ρ1 and ρ2, we can compute

the special case of the Gerber-Shiu function with penalty function wi(x, y) = e−ρiy, i = 1, 2

in the Markov-modulated risk model without any dividend strategy. That is,

θi(u) =
2∑

j1=1

αj1

2∑
j2=1

θi,j1,j2(u)k u ≥ 0, i ∈ E,

where the θi,j1,j2(u) is the (j1, j2)th element of the following matrix,

E
[
e−δτ−ρi|U(τ)|I(τ <∞)|U(0) = u

]
, u ≥ 0, i ∈ E.

The initial value θi(0) can be solved from (3.36) and θi(u) can be obtained by following

the decomposition steps of the expected discounted penalty function discussed in Li and Lu

(2007).

The premium rates for different layers and the threshold levels are set to be the same

in Example 1. We also set λ1 = 1, λ2 = 0.4, α12 = 1/4, α21 = 3/4, β1 = 1 and β2 = 2.

Following the recursive algorithm in Chapter 4, we have the ruin probabilities under the

two-threshold (three-layer) Markov-modulated risk model illustrated in Figure 7.3, and the

numerical expressions for ~ϕ(u), ~ϕ1(u;B), ~ϕ2(u;B) and ~ϕ3(u;B) in terms of linear combi-

nations of exponential functions in the following forms:

• no dividend strategy,

~ϕ(u) =

(
0.6120 0.0029

0.3827 0.5083

)(
e−0.3903u

e−1.7779u

)
, u ≥ 0;

• one-threshold dividend strategy,

~ϕ1(u;B1) =

(
0.6025 0.0029 6.3775× 10−6 0.0156

0.3767 0.0574 1.3179× 10−5 0.0156

)
e−0.3903u

e−1.7779u

e0.8824u

1

 ,

0 ≤ u < 5,

~ϕ2(u;B1) =

(
0.5824 −0.0482

0.3904 −0.9360

)(
e−0.3491u

e−1.7651u

)
, u ≥ 5;



CHAPTER 7. NUMERICAL EXAMPLES 54

• two-threshold dividend strategy,

~ϕ1(u;B2) =

(
0.6000 0.0028 6.3615× 10−6 0.0196

0.3752 0.0572 1.3146× 10−5 0.0196

)
e−0.3903u

e−1.7779u

e0.8824u

1

 ,

0 ≤ u < 5,

~ϕ2(u;B2) =

(
0.5800 −0.0480 6.3615× 10−9 0.0041

0.3887 −0.9321 −1.3603× 10−8 0.0041

)
e−0.3491u

e−1.7651u

e0.9603u

1

 ,

5 ≤ u < 10,

~ϕ3(u;B2) =

(
0.4453 0.1771

0.3202 0.1317

)(
e−0.3015u

e−1.7509u

)
, u ≥ 10.

Figure 7.3: Ruin probabilities in the Markov-modulated risk model under different dividend
strategies

As illustrated in Figure 7.3, it is not surprising that, if viewed separately, the ruin

probabilities in state 2 are lower than those in state 1 under the same dividend strategies

because of the fact that less claim arrivals and smaller claim amounts are expected in state

2.

Example 4 (Expected Discounted Dividend Payments in the MAP Risk Model)
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In this example, we further look at the numerical results for the expected present value

of the total dividend payments prior to ruin. Similar to Example 3, claims occur under

two conditions. While under the abnormal condition, there is a probability p for the claim

arrival process to return back to the normal condition. The claim amounts are related to

the phase transition. For example, the distribution of the claim amounts from phase 1 to

phase 2 is exponentially distributed with mean 1/β12. With m = 2, we have

D1 =

(
λ1 0

pλ2 (1− p)λ2

)
, D0 =

(
−α12 − λ1 α12

α21 − pλ2 −α21 − (1− p)λ2

)
.

For the claim amounts matrix, we have

f(x) =

(
β11e

−β11x β12e
−β12x

β21e
−β21x β22e

−β22x

)
.

In this case, matrix Lc(s) is given by

Lc(s) =
1
c

(
cs− δ − (α12 + λ1) + λ1β11

s+β11

α12β12

s+β12

α21 − pλ2 + pλ2β21

s+β21
cs− δ − (α21 + (1− p)λ2) + λ2β22

s+β22

)
.

For δ > 0, equation det[Lc(s)] = 0 has two positive real roots which we denote by ρ1

and ρ2. The approach to evaluate v(u) is similar to the one in Example 3.

To illustrate it numerically, we set p = 0.5, β11 = 1, β12 = 1, β21 = 0.5 and β22 = 0.5. In

the case, the claims occurring in the same phase follow the same claim amount distribution,

regardless the fact that they will transit to other states or not. Also we set the threshold

level to B = {0, 20, 40,∞}, the premium rates for three layers to c1 = 163.5, c2 = 133.5 and

c3 = 103.5, and the discounted valuation factor δ to 0.1. Table 7.1 displays the expected

discounted dividend payments prior to ruin in the MAP risk model with a one-threshold

(two-layer) strategy and with a two-threshold (three-layer) strategy for the same initial

surplus values. It is interesting to see that, when u ≤ 40, the discounted dividend payments

Table 7.1: Expected discounted dividend payments in the multi-threshold MAP risk model

u Three layers Two layers
0 152.71 311.33
10 321.06 671.02
20 347.29 730.80
30 355.21 792.82
40 423.23 821.51
50 871.54 846.15
60 937.18 855.69

in the three-layer model are smaller than the one in the two-layer model with the same



CHAPTER 7. NUMERICAL EXAMPLES 56

initial surplus. When the initial surplus u is higher than the second (last) threshold, the

expected discounted dividend payments in the three-layer model are higher. It is the same

case as the Strategy 3 and Strategy 4 in Table 3 in Badescu et al. (2007), though different

parameters are used. We explain it as the situation that when the multi-threshold strategy

is involved, the ruin probability in this model would increase to some extend such that ruin

occurs earlier than the one in the model with a one-threshold strategy only. If it is the

case, the expected discounted dividend payments are smaller. When the surplus process

starts at a high initial level, for example, above b2 in the example, larger dividend payments

in the multi-threshold risk model are paid out immediately, leading to a larger expected

discounted dividend payments in total.

Example 5 (“Contagion” Example)

In this example, we illustrate the applicability of our results from the differential ap-

proach by examining the “contagion” risk model introduced in Badescu et al. (2005). This

contagion model assumes that there are two types of claims here. One is the standard

claims which occur according to a Poisson process at rate λ1 = 1 all the time. The other

one is the additional infectious claims which occur at rate λ2 = 10 during the contagion

periods, say the abnormal state B. Standard claim amounts have mean 1/β1 = 1/5, while

the infectious claim amounts have mean 1/β2 = 3. It is also assumed that the rate at which

the system switches from A to B is αA = 0.02 and the rate at which the system switches

from B to A is αB = 1. So the stationary distribution for state A is αB/(αA + αB) and for

state B is αA/(αA +αB). Following the parameters from Badescu et al. (2007), we suppose

that premiums are collected at rates 2, 1.5 and 1 for the first, second and third layers,

respectively, and the corresponding threshold levels are located at B = (0, 20, 40,∞).

Table 7.2: Expected discounted dividend payments in “contagion” example

u δ = 0.1 δ = 0.01 δ = 0.001 Badescu et al. (2007), δ = 0.001
0 158.99 323.23 356.68 N/A
10 350.55 457.58 500.95 503.00
30 417.19 671.02 692.82 692.60
50 688.25 802.29 821.50 842.07
70 814.98 926.93 942.78 968.82

Table 7.2 displays the expected discounted dividend payments prior to ruin under dif-

ferent settings for δ, including the results from Badescu et al. (2007) with δ = 0.001 for

the comparative purpose. Recall that the MAP risk model in Badescu et al. (2005) is stud-

ied through fluid queues, while our results come from the differential recursive approach.

As we can see from Table 7, with the same parameters, the expected discounted dividend
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payments by using two different methods are relatively close to each other. When δ is

larger, the expected discounted dividend payments are smaller for the same initial surplus

as expected.



Chapter 8

Conclusion

In this thesis, we have examined the expected discounted penalty function and the distri-

bution of the total dividend payments prior to ruin in the multi-threshold MAP risk model.

It is seen that the differential approach is applicable to derive systems of integro-differential

equations for the discounted penalty function and the moments of the dividend payments

prior to ruin. Analytical solutions are provided by Theorem 1 and computations can follow

the corresponding algorithms. Also it is illustrated in numerical examples that with differ-

ent settings on transition matrices, the multi-threshold MAP risk model has an extensive

flexibility in modeling the claim arrivals and the claim amounts, including the compound

Poisson risk model, the Sparre Andersen risk model and the Markov-modulated risk model

as special cases.

In addition to the differential approach, we have considered an alternative recursive

method which is called the layer-based approach for the expected discounted dividend pay-

ments prior to ruin. It is a generalization from the one used in the classical compound

Poisson risk model in Albrecher and Hartinger (2007). The complete solution of the ex-

pected discounted dividend payments for the k-layer MAP risk model is shown to be in the

form of the solution for the classical one-layer model and the solution for the (k − 1)-layer

model with the lower layers coincidence.

In reality, fitting data into the MAP risk model can be a big challenge. The moment

matching technique is computationally more efficient but somewhat restrictive because it

mainly deals with two-state Markov-modulated Poisson process. See Guselia (1991). The

MLE-based technique is applicable and has been developed by Horvath et al. (2000). Also

the so-called EM algorithm has proved to be a good means of approximating the maximum

likelihood estimator and been used as an estimation procedure for the MAP model. See, for

instance, Breuer (2002). Another challenge comes from a possible hidden Markov model.

Indeed, the states described as high risks and low risks, for instance, are not directly visible
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and we need to resort to the Baum-Welch algorithm to find the unknown parameters of a

hidden Markov model. Detailed discussion can be referred to Welch (2003).

Even though the method presented in this thesis can be applied to the MAP risk model

with any arbitrary threshold setting, we do not claim to answer the question of optimal div-

idend strategy, in which the ultimate goal is to maximize the expectation of the discounted

dividends. For the classical compound Poisson risk model, such a strategy is discussed

extensively in Gerber and Shiu (2006) and is implemented by later literature. In certain

cases, the optimal strategy for the classical compound Poisson risk model is obtained in the

constant barrier strategy. In Albrecher and Hartinger (2006), it is shown that the optimal-

ity of horizontal barrier strategies does not carry over to the Sparre Andersen models in

general and a counter-example is provided.

Another limitation of our model is that the multi-threshold dividend strategy in terms

of the threshold levels does not depend on the external environmental process {J(t); t ≥ 0}.
There is a practical motivation to adopt the dividend payment strategy that depends on

the threshold levels. As remarked in Cheung and Landriault (2009), it is reasonable for the

insurer to set a higher threshold level in the periods of the so-called dangerous state, such

that dividends are paid only if the surplus reaches a more secure level and more capital is

available to face the adverse claims experience.



Appendix A

Some Sample Paths

Figure A.1: Sample path of the surplus process under the constant barrier dividend strategy
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Figure A.2: Sample path of the surplus process under the threshold dividend strategy
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Figure A.3: Sample path of the surplus process under the multi-threshold dividend strategy
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Figure A.4: Sample path 1 of the surplus process UB(t) to reach b
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Figure A.5: Sample path 2 of the surplus process UB(t) to reach b
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Figure A.6: Sample path 1 of the surplus process U1,k(t) to reach b− bk−1
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Figure A.7: Sample path 2 of the surplus process U1,k(t) to reach b− bk−1
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Figure A.8: Sample path 3 of the surplus process U1,k(t) to reach b− bk−1
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