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Abstract

Complex diseases are thought to be caused by both environmental and genetic fac-

tors. Single nucleotide polymorphisms (SNPs) are currently being explored for use as

genetic markers in association studies of complex diseases. SNPs are abundant in the

genome, leading to much finer scans of candidate regions. Since multiple SNPs in a

region are likely in linkage disequilibrium, it has been suggested that methods which

use the information at several SNPs at a time, along the haplotype, will be better

for finding disease-predisposing genes through association studies. For certain geno-

types, it is not possible to determine the haplotype phase so missing data methods

have been used to infer the haplotype or the haplotype frequencies in a sample. The

inferred haplotypes or frequencies are then used in association analyses. A chi square

test, either on the inferred haplotype counts or the estimated haplotype frequencies,

is commonly used but does not account for environmental factors. Currently, many

association analyses which adjust for environmental cofactors use imputed haplotypes

but do not account for this uncertainty. In this project, the expectation maximiza-

tion (EM) algorithm is used to handle the missing haplotype information in a logistic

regression with haplotypes as the genetic covariates and other fully observed envi-

ronmental covariates. The haplotypes are not imputed, instead the EM algorithm is

used to obtain maximum likelihood estimates of the regression coefficients directly.

The variance-covariance matrix is derived using Louis’ formula for the observed infor-

mation (1982) and the method is applied to a simulated cohort study dataset. This

method, which allows for both genetic and environmental factors and does not assume

that the haplotypes are fully observed, is shown to find the genetic signal better than

an analysis which does not include environmental factors.
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Chapter 1

Introduction

There is much interest in finding genetic susceptibility alleles for common “complex”

traits, such as cancer, Type II diabetes, asthma and heart disease, which represent a

significant health care burden. Complex traits are multi-factorial, with environmental

and non-genetic factors such as weight and age, as well as genetic factors influenc-

ing disease susceptibility. To differentiate between genetic factors (i.e. genotypes or

haplotypes for marker loci or candidate genes) on one hand, and environmental and

other non-genetic factors on the other, we will refer to any non-genetic factor as an

environmental factor throughout this project. With both environmental and genetic

factors contributing to disease, the relationship between an observed phenotype and

an underlying disease-predisposing genotype is not as clear as with simple Mendelian

disorders. Often candidate regions for disease-predisposing genes are suggested by

linkage studies or by biological considerations. These candidate regions can be rel-

atively large because linkage studies do not have sufficient power to find the exact

location of the disease-predisposing gene, and because many candidate genes poten-

tially involved in a disease pathway may be clustered together over a large region in

the genome. Therefore, linkage-disequilibrium (LD) mapping has become a popular

tool for fine-mapping susceptibility loci in candidate regions.

In the presence of linkage disequilibrium, a disease mutation will be associated

with the alleles at close surrounding markers. Therefore, differences in allele frequen-

cies at genetic markers between affecteds and unaffecteds can be explained by the
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CHAPTER 1. INTRODUCTION 2

marker being the actual disease-predisposing gene or being in linkage disequilibrium

with the disease-predisposing gene. A χ2 test is often used to test the frequency dif-

ferences between the two groups. Traditionally, environmental factors have not been

taken into account in LD mapping because gene mapping has been focussed on simple

Mendelian traits rather than complex traits. However, with the focus now on map-

ping the more common complex traits, methods that can accommodate both genetic

and environmental cofactors are required.

Single nucleotide polymorphisms (SNPs) are diallelic markers that are currently

used in many genetic studies. They are abundant in the genome so it is thought that

a fine map of SNPs close enough to detect linkage disequilibrium can be constructed.

However, since they are diallelic, they have low heterozygosity, meaning that the

informativity of a diallelic locus will be lower than for multi-allelic markers. The use

of SNP haplotypes rather than single-loci as markers has been suggested to increase

heterozygosity. Haplotypes are the particular combinations of alleles that are inherited

from a parent. They are not observed for all single-locus genotypes, so to include

haplotypes in the analysis, a missing data approach is required.

To compare the counts of haplotypes among affected and unaffected individuals,

existing methods like the EM algorithm (Long et al. 1995; Hawley and Kidd 1995;

Excoffier and Slatkin 1995) or Bayesian approaches (Stephens et al. 2001; Niu et al.

2002) are first used to estimate haplotypes using the data on single-locus genotypes.

Commonly, the expected cell counts of haplotypes in affected and unaffected indi-

viduals are first found using the estimated frequencies and a χ2 test is then applied

to these expected counts to determine if they differ in the affected and unaffected

groups (see for example Fallin et al. 2001). To include haplotype information and

environmental factors in a more sophisticated analysis, a two-stage approach has also

been adopted, which first involves imputing the missing haplotypes, then treating

them as known in further analysis, such as in a logistic regression. In an analysis that

uses the imputed values as the true values, the variance will not accurately reflect the

added uncertainty associated with the haplotype estimation procedure. In addition,

only the genetic data is used to impute haplotype values, even though data on disease

outcomes and environmental covariates is available for each individual.
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In this project, we describe a maximum likelihood approach that uses logis-

tic regression to estimate and test associations of a complex disease with particular

haplotypes, taking into account environmental risk factors and uncertain haplotypes.

With this method the missing haplotype covariates are not imputed in a first stage

of analysis. Instead, haplotype frequencies and regression coefficients are estimated

jointly using the EM algorithm by method of weights (Ibrahim 1990). In contrast to

the haplotype reconstruction method described above, all information known for an

individual, not just the single-locus genotypes, is used to estimate the haplotype pa-

rameters. Rather than leave the genetic covariate distributions unspecified, we make

the assumptions of Hardy-Weinberg equilibrium and independence of the genetic and

environmental covariates. These assumptions are standard in genetic data analysis

and, if valid, improve statistical efficiency and stability of estimation. However, the

method should be applied with caution when there is reason to suspect that the

candidate region contains genes which influence the environmental exposures. The

method is expected to be robust to departures from Hardy-Weinberg equilibrium, as

are its counterparts for haplotype reconstruction based on single-locus genotype data

(Fallin and Schork 2000). We derive the variance of the estimated regression coeffi-

cients using Louis’ formula (1982). With the logistic regression model, not only can

environmental covariates be included, but more detailed modeling of gene-gene and

gene-environment interactions can also be done.

Chapter 2 contains background information. Some genetic terminology is given,

as well as a brief description of gene mapping by association methods. Other ap-

proaches for handling the missing haplotypes are described, with an emphasis placed

on the maximum likelihood estimation of haplotype frequencies using the EM algo-

rithm, since it is currently a popular approach for dealing with ambiguous haplotypes,

and therefore a natural starting point for extension.

Chapter 3 describes the EM algorithm by the method of weights, as applied to a

logistic model with logit link. The parameterization of the covariate distribution that

we chose, which involves assuming Hardy-Weinberg equilibrium and independence of

genetic and environmental covariates, is also described. Finally the standard errors

of the regression coefficients are derived.
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In chapter 4, the method is applied to a simulated candidate-region scan of a

cohort of diseased and unaffected individuals. The analysis including environmental

covariates is compared to the analysis which does not adjust for environmental risk

factors to demonstrate the importance of including environmental risk factors in as-

sociation studies. The haplotype method is also compared to an association analysis

of single markers to determine its ability to pick up genetic signal.

Finally, chapter 5 contains some concluding points about this approach and

possible extensions of the method.



Chapter 2

Background

In order to understand the terminology and the current approaches used, this chapter

provides a brief explanation of some genetic concepts and techniques that are used to

map disease genes.

2.1 Genetic background and association mapping

At any given locus, each person receives one copy of a gene (called the allele) from their

mother and one from their father. The two alleles are transmitted to the offspring

independently of each other. However, when considering the transmission of two

genes, the alleles at the two loci may not be independent of each other. If the two loci

of interest are on different chromosomes, they are unlinked and the transmission of

the genes is independent. If the two loci are on the same chromosome, they may be

linked so that the genes tend to be transmitted together. During meiosis, homologous

chromosomes may undergo the process of recombination. A recombination event or a

crossover is said to occur if the DNA at one locus is of a different parental origin than

the DNA at the second locus. That is, if on one of the chromosomes transmitted,

one locus is of maternal origin and the other is of paternal origin, a crossover of

DNA must have occurred somewhere between the two loci. The association in the

population between the alleles at the two linked loci depends in part on the probability

of a recombination event occurring between the two loci. The closer two loci are to
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CHAPTER 2. BACKGROUND 6

each other on a chromosome, the smaller the probability of a recombination occurring

between them. Thus the values of the alleles at the two loci are not independent but

are also not necessarily always of the same parental origin. The two loci may be so

far apart on a chromosome that through recombination events the original association

is expected to break down after transmission to the next generation; thus they are

unlinked as well.

A haplotype is the particular set of alleles, at more than one locus, that are

transmitted from one parent. Each person inherits two haplotypes, one from their

mother and one from their father. One knows the multilocus genotype or the phase

if the set of two haplotypes transmitted is known. In most cases, it is known which

alleles the individual received at each locus (called just the single-locus genotypes),

but not necessarily the parental haplotypes. For example, a person who has alleles

‘A’ and ‘a’ at one locus, and alleles ‘B’ and ‘b’ at a second locus (that is, the observed

single-locus genotypes are Aa ; Bb), could have inherited haplotypes AB and ab (they

are AB/ab), or haplotypes Ab and aB (they are Ab/aB). The number of possible

haplotypes is the product of the number of alleles at each of the loci being considered.

An initial disease mutation occurs on a particular background haplotype. At

first, the mutation allele is completely associated with the alleles at the surrounding

loci. With time, recombination breaks down this association. However, loci that are

tightly linked to the disease locus take many meioses for this association to degrade,

since few recombination events will occur between the two loci. Thus, there is allelic

association or linkage disequilibrium between the marker and disease mutation locus.

For example, suppose that a mutation m occurs on a haplotype with alleles a1 and b1

at tightly linked loci A and B. The initial mutation-bearing haplotype is a1mb1 and

only individuals with a1 and b1 at the adjacent loci will have the mutation allele. If A

is assumed to be the closer of the two loci, after many generations, mutation-bearing

haplotypes could be, for example, a1mb2 and a1mb1 in proportion to the frequencies

of b1 and b2 in the population. The a1 allele is still associated with the mutation allele

but the b1 is no longer associated with the mutation allele.

Gene mapping by association methods exploits the linkage disequilibrium be-

tween a disease locus and a marker that is tightly linked with the disease locus.
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The methods used for non-family based samples examine marker alleles in affected

individuals and unaffected individuals to determine if there are differences in allele fre-

quencies between the two groups. A significant difference between an allele frequency

in the two groups is taken as evidence that the allele either predisposes towards the

disease or is in linkage disequilibrium with the disease-predisposing allele. A χ2 test

is often used to test whether the allele frequencies differ between the two groups.

Complex traits, as opposed to Mendelian diseases, do not follow typical seg-

regation patterns with any single locus. There could be numerous reasons for the

unknown underlying inheritance of complex traits. A complex trait is likely affected

by both genetic and environmental factors. Given a certain genetic background, a

person may be susceptible to disease but might not ever develop the disease (incom-

plete penetrance). Often with complex diseases the phenotype may appear the same

in many individuals, but could have different underlying non-genetic causes (pheno-

copy). There may be multiple genes which cause the disease (locus heterogeneity),

or multiple mutations within a disease gene which lead to the same disease (allelic

heterogeneity). Finally with complex diseases, there are likely multiple genes that

additively affect the disease outcome (polygenic inheritance) or interact to affect the

outcome (epistasis).

Since complex traits, such as heart disease and asthma, are often common dis-

eases, researchers are interested in finding their underlying genetic mechanisms. For

these types of diseases, it is common to test for association of the disease with a

genotype at candidate loci using data from a cohort or case-control study. However,

traditional association methods for genetic analyses, like the χ2 test given above, gen-

erally only examine the genetic effect of one locus and often do not correct for known

environmental risk factors. These approaches have served well for simple Mendelian

diseases, which are not influenced by environmental risk factors. However, for com-

plex traits, methods that can incorporate environmental information are likely to be

more successful.

Single nucleotide polymorphisms (SNPs) are currently being examined for use

as genetic markers in association studies of complex diseases. They are abundant

throughout the genome so it is possible to choose closely linked SNPs for association
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studies of a candidate region. Due to their diallelic nature, they may also be easier

to type using automated techniques. However, a drawback to using SNPs for associ-

ation studies is the decreased informativity associated with markers having only two

alleles. Association between a diallelic marker and a disease locus may be difficult

to find unless the marker is closely linked to the disease locus. Therefore, the use of

haplotypes rather than single loci in association studies can increase heterozygosity

(information content) at a marker locus and better capture linkage disequilibrium in

a region. Zöllner and Von Haeseler (2000) and Akey et al. (2001) showed that the

power of χ2 tests to detect genetic association is improved using haplotypes. However,

using simulated data, Kaplan and Morris (2001) found that even with the haplotype

phase known, there was rarely an advantage to using multiple locus haplotypes to

detect association with a single disease-predisposing allele. More recently, Morris and

Kaplan (2002) have studied the power of a likelihood ratio test to detect association

in a case-control design in the presence of multiple susceptibility alleles, using both

single-locus genotypes and both known and missing haplotype information. Their

results show that the haplotype analysis is more powerful when there are multiple

susceptibility alleles.

It is not always possible to determine haplotype phase from the single-locus

genotypes. If a person is heterozygous at h > 0 loci, then the number of multilocus

genotypes that are consistent with the observed genotype is 2h−1. For example, if

h = 1, and there are three loci A, B and C, with the third one heterozygous, the

multilocus genotype is a1b1c1/a1b1c2. If h = 2 and loci B and C are heterozygous,

the 2 possible multilocus genotypes are a1b1c1/a1b2c2 and a1b1c2/a1b2c1. Phase can

only be determined using technologically demanding and cost prohibitive laboratory

techniques (Judson and Stephens 2001) or by collecting genotype data on family

members. For example, if parental genotypes are known, the multilocus genotype

may be inferred by determining which alleles were inherited from each parent. In

many cases however, genotyping of more members of a family would have to be done

to infer the haplotypes with certainty. If the disease being studied is a late onset

disease, it may not be possible to get the genotypes of the parents or other family

members. If genotyping is not done on any family members, it is unlikely that the
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haplotype phase can be inferred for a whole sample, which is a drawback to the use

of haplotypes in association studies.

Since it is often infeasible to accurately determine the multilocus genotypes,

several methods have been proposed for estimating the haplotype frequencies or im-

puting the unknown haplotypes. Clark (1990) imputes the unknown multilocus geno-

type with unambiguous haplotypes in the sample or with combinations of haplotypes

already seen, so a haplotype not yet seen can be explained with recombination events.

The expectation maximization (EM) algorithm (Dempster et al. 1977) has been used

to estimate haplotype frequencies (Excoffier and Slatkin 1995; Hawley and Kidd 1995;

Long et al. 1995). The implementation described by Long et al. is given below in more

detail. Recently, Bayesian approaches have been suggested. Stephens et al. (2001)

describe a method (SSD) which imputes haplotype phase by modeling the prior dis-

tribution of haplotypes using population genetic theory. The SSD method has been

implemented in the program PHASE. Niu et al. (2002) also describe a Bayesian

approach to haplotype estimation that only assumes Hardy-Weinberg equilibrium.

2.2 An EM algorithm to estimate haplotype fre-

quencies

The implementation of the EM algorithm for estimating haplotype frequencies de-

scribed here is from Long et al. (1995) and is used to estimate haplotype frequen-

cies from data randomly sampled from a population. The method finds the maxi-

mum likelihood estimates of the frequencies of each haplotype by assuming Hardy-

Weinberg equilibrium of the haplotypes. Hardy-Weinberg equilibrium (HWE) is

achieved through the random union of alleles, or in this case haplotypes, in the pop-

ulation. If p and q are the frequencies of the two possible alleles A and a, then after

one generation of random-mating in a large population, the genotype frequencies are

p2, q2 and 2pq (for AA, aa and Aa respectively). Equilibrium is achieved since the

allele frequencies calculated from these genotype frequencies are again p and q.
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The log-likelihood over the n independent individuals is given by

ln L =

n
∑

i=1

ln pi,

where pi is the probability of the ith person’s observed genotype and is

pi =
∑

Pr{hk/hl}

where the sum of the probabilities is over all possible multilocus genotypes consistent

with the observed single-locus genotypes and hk/hl is the multilocus genotype made

up of haplotypes l and k. If γj is the probability of haplotype j, then given HWE,

Pr{hl/hk} =

{

γ2
l if k = l

2γlγk otherwise
.

If Nli is the number of hl haplotypes within individual i, then the EM algorithm at

the tth iteration can be written as:

1. E step- Impute the expected numbers of each haplotype.

nli = E[Nli |genotypes of individual i] =
2γ

(t)
l γ

(t)
k

p
(t)
i

,

where multilocus genotype hl/hk is consistent with i’s observed genotype. Then

nl = E[Nl|data] =

n
∑

i=1

nli .

2. M step- Find maximum likelihood estimates of haplotype frequencies using the

imputed counts.

γ
(t+1)
l =

nl

2n

Note that if the multilocus genotype is known and, for example, homozygous,

the E step gives nli = 2γ2
l /γ

2
l = 2. In the multinomial likelihood, this 2 corresponds to

the individual contributing two hl haplotypes to the total count. If the phase is known

and the two haplotypes combined are hl and hk, the expected count of haplotype hl is
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nli = 2γlγk/(2γlγk) = 1. Individual i contributes one hl haplotype to the total count

of hl haplotypes.

The algorithm can be generalized for many diallelic loci. As the number of loci

or alleles increase, the number of possible haplotypes also increases. The number of

frequencies to be estimated can get quite large, depending on the number of loci and

alleles. Since more unknown multilocus genotypes means more frequencies that need

to be estimated, the estimates will suffer if the heterozygosity is too large, limiting the

size of SNP haplotypes that can be considered. Constraining haplotype frequencies

to 0 when they appear to be close to 0 can increase the maximum number of loci,

however the small size of haplotypes that can be estimated remains a limitation of this

approach. The Bayesian approaches of Stephens et al. (2001) and Niu et al. (2002)

can handle many more diallelic loci than the EM methods because they effectively

limit the number of haplotypes to be considered.

Using data simulated under varying conditions and assumption violations, Fallin

and Schork (2000) studied the accuracy of the EM estimated frequencies compared to

the sample frequencies and population frequencies. Because the haplotype phase was

simulated, both the generating population haplotype frequencies and sample haplo-

type frequencies were known. They looked at the effects of sample size, number of

loci, heterozygosity, and the presence of rare haplotypes, and found the EM estimates

to be reasonably close to the sample frequencies under most circumstances (no more

than 5% difference if the sample size was larger than 100). They found that most

of the error in estimation was related to the error due to sampling versus error in

the EM estimation procedure. They did not address the subsequent error that would

be incurred if the EM frequencies were then used to impute haplotypes for further

statistical analysis.
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2.3 Improving association methods– an EM-based

logistic regression

In the present analysis, we are interested in finding an association of a complex disease

with a particular haplotype using a statistical model that allows for other, possibly

continuous, environmental risk factors to be included. A simple χ2 test for association

of haplotype frequencies with disease is not adequate since it will not allow detailed

covariate information about the patient to be included in the analysis.

Logistic regression is a common method for analyzing cohort or case-control

data. However, to include haplotype covariates, a missing data method is required.

One could take a two-stage approach by using any of the haplotype estimation proce-

dures given above to impute the values in a first stage, and then treat them as known

in a second stage of logistic regression analysis. Although the methods given have

been shown to be relatively robust to violation of assumptions such as HWE, and

the estimates are relatively close to the sample estimates (Fallin and Schork 2000),

the effects of using the imputed values in statistical analyses which treat them as

known have not been studied. Any analysis that uses the imputed values as the true

values risks underestimating the variance, since it will not include the uncertainty as-

sociated with the estimation of haplotypes. Finally in reconstructing haplotypes, we

would also like to use available information on environmental covariates and disease

status.

In the following chapter, an EM-based logistic regression for binary response

data from a cohort study is described. With this method, the EM algorithm is

not first used to impute the haplotype covariates. Instead, this maximum likelihood

approach jointly estimates the haplotype and environmental risk parameters and the

haplotype frequencies on the basis of data on affection status, non-genetic covariates

and single-locus genotypes. The approach is a natural extension of the maximum

likelihood estimation of haplotype frequencies, by use of the EM algorithm, on the

basis of data on single-locus genotypes presented in section 2.2.



Chapter 3

Logistic regression with missing

haplotypes

Assume that we have single-locus genotypic information on 2 loci for n randomly

sampled individuals. In addition, we have complete information on environmental

covariates for each of the n individuals. We would like to perform a logistic regression,

using haplotypes and environmental factors as covariates. However, the haplotypic

information will not be known for all individuals. For this reason, the EM algorithm

will be used to estimate the regression parameters. To simplify the description of

the approach, we start by considering examples where the risk model involves only

genetic covariates and then introduce environmental covariates in section 3.3

3.1 The genetic data

Indicator variables are used to describe which of the multilocus genotypes an individ-

ual has. For example, for two-loci with two alleles there are 10 multilocus genotypes.

Let a1 and a2 be the alleles at locus a, and b1 and b2 be the alleles at the second locus

b. The variables in a saturated genetic model with an intercept term for the baseline

13
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group of a2b2/a2b2 homozygotes would be:

xi0 = 1

xi1 = I(individual i is a1b1/a1b1)

xi2 = I(individual i is a1b1/a1b2)

xi3 = I(individual i is a1b1/a2b1)

xi4 = I(individual i is a1b1/a2b2)

xi5 = I(individual i is a1b2/a1b2)

xi6 = I(individual i is a1b2/a2b1)

xi7 = I(individual i is a1b2/a2b2)

xi8 = I(individual i is a2b1/a2b1)

xi9 = I(individual i is a2b1/a2b2)

A second genetic model may involve the number of copies of a particular hap-

lotype. Allowing an intercept term for the baseline group a2b2/a2b2 and considering

non-a2b2 haplotypes, the variables are:

xih =















0 individual i has 0 copies of haplotype h

1 individual i has 1 copy of haplotype h

2 individual i has 2 copies of haplotype h.

,

for h = 1, 2, 3. For example, if each haplotype consists of 2 diallelic loci, a and b, then

this haplotype-dose model could be coded as:

xi0 = 1

xi1 = # copies of haplotype a1b1

xi2 = # copies of haplotype a1b2

xi3 = # copies of haplotype a2b1

Let S be the set of all possible genetic covariate vectors for any individual. An

element of S for the saturated example given above would be (1, 0, 1, 0, 0, 0, 0, 0, 0, 0)
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for an a1b1/a1b2 heterozygote. Let x(j) denote the jth covariate vector in S. Since an

individual can only be of one type of multilocus genotype, the number of elements in

the set S is r =(# multilocus genotypes). Let the probability that an individual is

of covariate type j be γj and γ = (γ1, γ2, . . . , γr−1). Thus, the counts of individuals

having each of the possible covariate assignments are multinomial(n, γ).

For real genetic data we cannot observe these covariate values since the haplo-

type phase is not known. The number that are not observed depends on the number

of heterozygote loci. For example, if the multilocus genotype is not ambiguous, then

for the saturated genetic model x = (1, x1, x2, x3, 0, x5, 0, x7, x8, x9), where the sum

of x1 through x9 is a maximum of 1. If the multilocus genotype is ambiguous, then

x = (1, 0, 0, 0, x4, 0, x6 = 1 − x4, 0, 0, 0). For example, if the multilocus genotype is

a1b2/a2b2, then x = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0). For the haplotype-dose model, an indi-

vidual who is heterozygous at both loci will either be x = (1, 1, 0, 0) or x = (1, 0, 1, 1).

Let Si denote the subset of S containing only the covariate vectors that are com-

patible with the observed covariates for subject i. For the saturated genetic model,

the heterozygote will have Si = {(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0, 0, 0)} and

for the haplotype-dose model the heterozygote will have Si = {(1, 1, 0, 0), (1, 0, 1, 1)}.

We may think of these possible covariate vectors as belonging to “pseudo-individuals”

whose data are compatible with subject i. In other words, each individual of unknown

multilocus genotype has been broken up into pseudo-individuals representing each of

the possible haplotype configurations for that individual.

3.2 EM algorithm by the method of weights

The EM algorithm is described using a logistic model but it is applicable for all gener-

alized linear models. Let xobs,i be the observed covariate values for the ith individual,

let xi be the complete-data covariate vector for individual i and let x(j) be a pos-

sible value of xi. If the haplotype information is not ambiguous, then xobs,i = xi.

Let θ(t) = (β(t), γ(t)) be the current parameter estimates, where β is the regression

parameter and γ is the genetic covariate parameter.
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3.2.1 The Expectation step

The Expectation step involves computing Q( θ | θ(t) ), the conditional expected log-

likelihood of the complete-data (x,y) given the observed data (xobs,y) and the current

parameter estimates θ(t):

Q( θ | θ(t) ) = E
[

ly,x( θ | x,y) | xobs,y, θ(t)
]

=
n

∑

i=1

E
[

ly,x( θ | xi, yi) | xobs,i, yi, θ
(t)

]

=

n
∑

i=1

Qi( θ | θ(t) )

The E step is not as easy as imputing the missing data values and maximizing

the log-likelihood with the imputed values, a method possible for certain EM im-

plementations. Genetic examples of when this is applicable are the “gene counting”

algorithm (Ceppelini et al. 1955), which is used to estimate genotype frequencies

when only the phenotype is known, and the EM algorithm to estimate haplotype

frequencies from genotype data that was described in section 2.2. In both of these

cases, the distribution of the (complete) counts is multinomial so the complete-data

log-likelihood takes on the form

l(θ) =

k
∑

i=1

Ti(X) log(θi),

where the sum is over the k different classes and Ti(X) is a linear function of the

counts in each class. Therefore

Q( θ | θ(t) ) =
k

∑

i

E(Ti(X)|Xobs, θ
(t)) log(θi),

and since Ti is a linear function of the counts, the E step reduces to finding the ex-

pected complete counts given what is observed. The M step maximizes the complete-

data log-likelihood with the expected counts replacing the unknown counts.

The E step for a logistic regression with missing covariates, however, is not as

straightforward. The EM strategy used for generalized linear models with missing
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covariates has been named the method of weights (Ibrahim 1990), since the E step is

a problem of computing a weight of one or less and scaling each pseudo-individual’s

contribution to the likelihood by that value. The method of weights described here

uses the notation from the review by Horton and Laird (1999) and is derived as

follows:

Q( θ | θ(t) ) =
n

∑

i=1

E[ly,x( θ | xi, yi) | xobs,i, yi, θ
(t)]

=

n
∑

i=1





|S|
∑

j=1

ly,x( θ | x(j), yi)Pr{xi = x(j)|xobs,i, yi, θ
(t)}





=

n
∑

i=1





|S|
∑

j=1

ly,x( θ | x(j), yi)wij(θ
(t))





=

n
∑

i=1





|S|
∑

j=1

(

ly|x( θ | x(j), yi) + lx( θ | x(j))
)

wij(θ
(t))





=
n

∑

i=1

|S|
∑

j=1

wij(θ
(t))ly|x( θ | x(j), yi) +

n
∑

i=1

|S|
∑

j=1

wij(θ
(t))lx( θ | x(j))

where ly|x is the log-likelihood for the regression model and lx refers to the log-

likelihood for the parameters of the covariate model.

The weights are denoted wij and are equal to Pr{xi = x(j)|xobs,i, yi, θ
(t)}. If an

individual is completely observed, the weight is 1 for the genotype actually observed

since there are no other possible compatible multilocus genotypes given the observed

covariate information. If the individual has missing haplotype information, most of

the weights will be 0 since xobs,i limits the possible values x(j) that xi can take on.

For the case of two diallelic loci, there are a maximum of two x(j) which will be

compatible with xobs,i. Therefore, all the summations over the set S can be rewritten

as summations over the set Si since many of the covariate vectors are not compatible

with the observed data and therefore have a conditional probability of 0.
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The weights are calculated using Bayes rule:

w
(t)
ij = Pr(xi = x(j)| xobs,i, yi, θ

(t))

=
Pr(xi = x(j), xobs,i, yi| θ(t))

Pr(yi, xobs,i | θ(t))

=

{

0 if x(j) is not compatible with xobs,i

Pr(xi=x(j), yi| θ(t))

Pr(yi, xobs,i | θ(t))
if x(j) is compatible with xobs,i,

=

{

0 if x(j) is not compatible with xobs,i

Pr(yi|xi=x(j),θ(t))Pr(xi=x(j)| θ(t))
∑

Pr(yi,xi=x(k) | θ(t))
if x(j) is compatible with xobs,i,

=

{

0 if x(j) is not compatible with xobs,i

Pr(yi|x
(j),θ(t))Pr(x(j)| θ(t))

∑

Pr(yi|x(k),θ(t))Pr(x(k)|θ(t))
if x(j) is compatible with xobs,i,

where the summation in the denominator on the last line is over all x(k) that are

compatible with xobs,i (i.e. over the elements in Si).

The term Pr(x(j)|θ(t)) simplifies to Pr(x(j)|γ(t)) since the distribution of the co-

variates depends only on the parameters γ(t). For example, in a saturated genetic

model where an individual’s genotype has a multinomial distribution, the probability

of the covariate vector taking on value x(j) at the tth iteration is γ
(t)
j , the probability of

that genotype in the population. If the haplotype phase is known, only one covariate

vector will be compatible with the observed covariates so the weight will be one. Thus,

only the γj corresponding to ambiguous multilocus genotypes are required when im-

plementing the algorithm. Making assumptions on the genetic model can simplify the

γ parameters; this is discussed in section 3.3. In particular, the multilocus genotype

frequencies will be written in terms of the haplotype frequencies.

The term Pr(yi|x
(j), θ(t)) simplifies to Pr(yi|x

(j), β(t)), where β parameterizes the

generalized linear model of disease risk. In our context, this probability is either the

probability that yi = 1 or yi = 0 given the covariates and current parameter values.

If we assume a logistic model, these values are

Pr(yi = 1|x, β(t)) =
exp(x′β(t))

1 + exp(x′β(t))

and

Pr(yi = 0|x, β(t)) =
1

1 + exp(x′β(t))
.
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Two examples are now given to illustrate the calculation of the weights for a

saturated genetic model. Individual 1 has single-locus genotypes a1a1; b1b2. In this

case, the haplotype phase is known: the multilocus genotype is a1b1/a1b2. Thus,

the set S1 consists of only the element, say the kth covariate type, that matches the

multilocus genotype, and

w1j =

{

0 j 6= k
Pr(yi|x

(j),θ(t)) γj

Pr(yi|x(j),θ(t)) γj
= 1 j = k

.

Individual 2 has single-locus genotypes a1a2; b1b2 so the phase is not known and could

be either a1b1/a2b2 or a2b1/a1b2. The set S2 contains two elements, say the kth and

lth covariate types and

w2j =

{

0 j 6= k, l
Pr(yi|x

(j),θ(t)) γj

Pr(yi|x(k),θ(t)) γk+Pr(yi|x(l),θ(t)) γl
j = k, l

To summarize, the E step involves computing Q, the conditional expected value

of the complete-data log-likelihood given the observed data. This function is calcu-

lated as the log-likelihood for each pseudo-individual multiplied by a weight corre-

sponding to the possible covariate vector and the observed responses. For individuals

with known haplotypes, the weight will be 1 for the multilocus genotype that is made

up of the haplotypes, and 0 for all others. For unknown multilocus genotypes, the

weights are determined using Bayes rule and are the conditional probabilities of the

possible covariate vectors given the observed data.

3.2.2 The Maximization step

The conditional expected values of the complete-data log-likelihood given the observed

data and parameter estimates are maximized in the M step to find the new parameter

estimates. In the previous section the weights for the likelihood were denoted w
(t)
ij

where i referred to the individual and j referred to one of the haplotype configurations

consistent with the individual’s multilocus genotype. For simplicity, assume now

that we have augmented the data so that for all individuals of unknown multilocus

genotype in the sample, a pseudo-individual has been added for each of the possible
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multilocus genotypes consistent with the individual’s single-locus genotypes. Thus,

we can replace the double subscript on the wij’s with one subscript that goes from 1

to n + (#individuals added) = M . The weights for each of these pseudo-individuals

will now be denoted by ai to differentiate them from the previous wij.

The expected complete-data log-likelihood Q( θ | θt ) consists of two portions,

one for ly|x and one for lx with summands for each pseudo-individual multiplied by

the weight ai. Notice that ly|x is the log-likelihood for the regression parameter β,

and does not involve the parameters of the distribution of covariates γ, and vice versa

for lx. The weights are a function of θ(t) and are constant in the M-step. Therefore,

Q( θ | θt ) breaks into two portions, just like the complete-data log-likelihood, so the

maximization to update the β and γ estimates can be done separately.

At each iteration of the EM algorithm, estimation of the multilocus genotype or

haplotype distribution parameters will depend on the genetic model used, but in gen-

eral it is similar to the maximization of a multinomial likelihood. The parameters are

estimated by summing up the expected numbers belonging in each of the r genotype

or haplotype classes and dividing by the total numbers in all classes. If no assumptions

are made about the covariate distribution for the genetic model, the maximization

can be seen by examining the relevant portion of Q( θ | θt ),
∑M

i=1 a
(t)
i lx(θ|xi), more

thoroughly. Each pseudo-individual having genetic covariate type k will contribute

a portion a
(t)
i × 1 × log γk to the weighted log-likelihood, where γk is the probability

that an individual is in genotype class k. For example, if the pseudo-individual is

homozygous for haplotype 1, the contribution to the log-likelihood is a
(t)
i log γ1, where

γ1 is the probability of having two copies of haplotype 1. Note that
∑M

i=1 a
(t)
i = n and

since γr = 1 −
∑r−1

j=1 γj

∂Q( θ | θt )

∂γk

=
A

(t)
k

γk

−
n −

∑r−1
k=1 A

(t)
k

γr

,

where A
(t)
k =

∑

{i with covariate type k} a
(t)
i is the expected count in covariate class

k and (n−
∑r−1

k=1 A
(t)
k ) is the number of pseudo-individuals in the last haplotype class r,

both at the tth iteration. Note that the derivative is like the derivative of a multinomial

likelihood. Hence, setting the derivative equal to 0 and solving for γk, the parameters
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are updated at the tth EM iteration by

γ
(t+1)
k =

A
(t)
k

n
.

That is, the new estimate for γk is the expected count in covariate class k divided by

the total count in all covariate classes.

To update the p regression parameters, the weighted logistic log-likelihood is

maximized. The weighted log-likelihood is given by

M
∑

i=1

ai

{

yi log(
pi

1 − pi

) + log(1 − pi)

}

,

for the logistic model, where pi is the probability that the ith person has the disease.

Putting this into canonical form for the logistic model gives:

M
∑

i=1

ai {yiδi − b(δi)} ,

where

δi = log(
pi

1 − pi

) and b(δi) = log(1 + eδi).

With a logit link function, we have:

ηi = xiβ = δi and pi =
eηi

1 + eηi
.

Now, maximize
∑M

i=1 aily|x(β|xi, yi) with respect to β to find the new parameter

estimates.

∂(
∑M

i=1 aily|x(β|xi, yi))

∂βj

=
M

∑

i=1

ai

∂l

∂δi

∂δi

∂pi

∂pi

∂ηi

∂ηi

∂βj

and

∂l

∂δi

= yi − b′(δi) = yi − pi,

∂δi

∂pi

=
1

pi

+
1

1 − pi

=
1

pi(1 − pi)
,

∂pi

∂ηi

=
eηi

1 + eηi
−

eηieηi

(1 + eηi)2
= pi(1 − pi),

∂ηi

∂βj

= xij.
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Putting it all together,

∂(
∑M

i=1 aily|x(β|xi, yi))

∂βj

=
M

∑

i=1

ai(yi − pi)xij (3.1)

and the score function is

S(β) =















∂(
∑M

i=1 aily|x(β|xi,yi))

∂β1

∂(
∑M

i=1 aily|x(β|xi,yi))

∂β2

...
∂(

∑M
i=1 aily|x(β|xi,yi))

∂βp















The new estimate β(t) can be found by using a Newton-Raphson procedure or

code for Fisher scoring. For the Newton-Raphson algorithm, the Hessian, I(β) =
∂2(

∑M
i=1 aily|x(β|xi,yi))

∂βj∂βk
is needed.

I(β) =
∂2(

∑M
i=1 aily|x(β|xi, yi))

∂βj∂βk

=
M

∑

i=1

−aixij

∂pi

∂βk

=
M

∑

i=1

−aixij

∂pi

∂ηi

∂ηi

∂βk

=

M
∑

i=1

−aixijxikpi(1 − pi)

Therefore, the jkth element of the Hessian is

Ijk = −
M

∑

i=1

aixijxikpi(1 − pi)

and I(β) = −X ′WV X where

X =















x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xM1 xM2 · · · xMp















,
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W =















a1 0 0 · · · 0

0 a2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · aM















.

V =















p1(1 − p1) 0 0 · · · 0

0 p2(1 − p2) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · pM(1 − pM)















.

These are the components needed to find the MLEs of the regression parameters

using Newton-Raphson. The algorithm can easily be programmed. Briefly, the t+1th

estimates of the regression parameters are found by solving

βt+1 = βt − [I(β)−1S(β)]|β=βt.

Fisher scoring involves taking the expected value of the negative of the Hessian matrix

when covariates are known. For a logistic regression model with a canonical link,

Newton-Raphson optimization and Fisher scoring are equivalent. Statistical software

packages, such as Splus, have functions that find MLEs of generalized linear models

(GLMs) using Fisher Scoring. These functions have an option to include a set of

weights for each individual. Therefore, it is easy to implement the method of weights

by writing a simple function to calculate the weights, then finding the new parameter

estimates by using the package’s pre-existing GLM procedure with the calculated

weights.

3.3 Parameterization of the covariate distribution

It is possible to use population genetic theory to model the distribution of the covari-

ates. This will reduce the number of parameters required for the covariate distribu-

tion. The first assumption that can be made is that there is independence between

the genetic and environmental covariates. This means that the covariate vector for an
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individual has two components xg and xe whose distributions depend only on the pa-

rameters γg and γe, respectively. Therefore, lx is a sum of genetic and environmental

components: lx(γ) = lxg
(γg) + lxe

(γe).

Assuming that only the haplotype information is missing results in further sim-

plification of the E step. Let xobs,i = (xg,xe)obs,i, and assume as above. Then, the

weights are calculated as

w
(t)
ij = Pr(xi = x(j)| xobs,i, yi, θ

(t))

=
Pr(yi|x

(j), θ(t))Pr(x(j)| θ(t))
∑

Pr(yi|x(k), θ(t))Pr(x(k)|θ(t))
(assuming compatibility of the

covariate vectors )

=
Pr(yi|x

(j), θ(t))Pr(x
(j)
g | θ(t))Pr(x

(j)
e | θ(t))

∑

Pr(yi|x(k), θ(t))Pr(x
(k)
g |θ(t))Pr(x

(k)
e | θ(t))

.

Note that the summation in the denominator is only over compatible covariate types.

Since the environmental covariate is not missing, only covariate categories with the

same environmental covariate value are acceptable. Thus, the probability of the envi-

ronmental covariate in the numerator and denominator will cancel and so estimation

of γe is not required. Both the independence of the genetic and environmental covari-

ates, and the assumption of completely observed environmental covariates, mean that

the algorithm can be implemented with continuous environmental covariates. With-

out these assumptions, γe would have to be estimated. Such estimation would be

impractical with continuous environmental covariates unless their distributions could

be specified in terms of a relatively small number of parameters

Another assumption that can be made is of Hardy-Weinberg equilibrium (HWE).

This means that the probability of a multilocus genotype will be the probability of

the haplotype squared if the individual is homozygous and 2 times the probabilities

of each of the haplotypes if the person is heterozygous. For example, if the multilocus

genotype is abc/a′b′c′, then

Pr{abc/a′b′c′} =

{

p2
abc if abc = a′b′c′

2pabcpa′b′c′ otherwise
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where pabc is the population frequency of the abc haplotype. With this assumption,

the covariate model parameters are the probabilities of each of the haplotypes, so

the number of parameters is r − 1, where r is the number of haplotypes. If Hardy-

Weinberg equilibrium is not assumed, the number of parameters is equal to the number

of possible multilocus genotypes minus one, or r(r + 1)/2 − 1. This assumption

therefore results in a large reduction in the number of parameters. Even for two-

locus multilocus genotypes there are 4 haplotypes and 10 multilocus genotypes. A

pseudo-individual homozygous for haplotype k will contribute 2 × 1 × log γk to the

expected complete-data log-likelihood for γ since their weight is 1, and a heterozygous

pseudo-individual with haplotypes k and l will contribute a
(t)
i log γkγl = a

(t)
i log γk +

a
(t)
i log γl to the expected complete-data log-likelihood for γ. In the maximization

step, the probability distribution of the genetic covariates is again multinomial-like,

with n now equal to the total number of haplotypes in the sample (two times the

sample size) and A
(t)
k =

∑M
i=1 a

(t)
i ×(# copies of haplotype k in individual i). The new

estimates for the haplotype frequencies are then estimated similar to the standard EM

algorithm described in section 2.2 for estimating haplotype frequencies from single-

locus genotypes: sum up the number of expected copies of a haplotype and divide by

2 times the number of haplotypes.

3.4 Standard errors for regression parameters

Maximum likelihood estimation of the regression parameters and covariate parameters

was outlined in the previous section describing the weighted EM algorithm. The

standard errors output from programs to fit a generalized linear model with weights

are not correct in this situation since they do not take into account the uncertainty

of the covariates. For this reason, the variance covariance matrix for the parameter

estimators must be derived separately.
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Louis (1982) showed that

I(θ) = Eθ[ Ic(θ) | xobs,y ]

−(Eθ[ Sc(θ)Sc(θ)
T | xobs,y ] − Eθ[ Sc(θ) | xobs,y ]Eθ[ Sc(θ)

T | xobs,y])

= Eθ[ Ic(θ) | xobs,y ] − cov[ Sc(θ) | xobs,y ]

where I(θ) is the negative Hessian of the observed data log-likelihood, and Ic(θ) and

Sc(θ) are the negative Hessian and score of the complete-data log-likelihood function,

respectively.

We assume independence between the genetic and environmental covariates,

fully observed environmental covariates and HWE, as in section 3.3. Given the as-

sumptions, the observed data likelihood is a sum of two terms, one involving the

(β, γg) and the other involving only γe since

log Pr( X = xobs,y|θ) = log(
∑

{x compatible with xobs}

Pr( x,y|θ))

= log(
∑

Pr(y|x, θ)Pr(x|θ))

= log(
∑

Pr(y|x, β)Pr(xg|γg)Pr(xe|γe))

= log(Pr(xe|γe)
∑

Pr(y|x, β)Pr(xg|γg))

= log Pr(xe|γe) + log(
∑

Pr(y|x, β)Pr(xg|γg)).

Therefore, the second derivative of log L(θ) can be written as the block diagonal

matrix
[

∂2 log(
∑

Pr(y|x,β)Pr(xg |γg))
∂θ∗∂θ∗T 0

0
∂2 log Pr(xe|γe)

∂γe∂γT
e

]

where θ∗ = (β, γg). Since we are only interested in estimating the variance of the

regression parameters, we do not need to compute ∂2 log Pr(xe|γe)
∂γe∂γT

e
; the standard er-

rors for β can be obtained by inverting the upper left-hand sub-matrix, I(β, γg) =
∂2 log(

∑

Pr(y|x,β)Pr(xg |γg))
∂θ∗∂θ∗T .

Let l(θ∗) = l(θ∗|x,y) and li(θ
∗) = l(θ∗|xi, yi). Then applying Louis’ formula,
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the first term for I(β, γg) can be found as follows

E[ Ic(β, γg)|xobs,y ] = E[ −
n

∑

i=1

∂2li(θ
∗)

∂θ∗∂θ∗T
|xobs,y ]

= −

n
∑

i=1

E[
∂2li(θ

∗)

∂θ∗∂θ∗T
|xobs,y ]

= −
n

∑

i=1

|Si|
∑

j=1

∂2li(θ
∗|x(j))

∂θ∗∂θ∗T
Pr(xi = x(j)|xobs,i, yi)

= −

n
∑

i=1

|Si|
∑

j=1

wij

∂2li(θ
∗|x(j))

∂θ∗∂θ∗T
.

Since l(β, γg) = lY |X(β) + lX(γg), E{Ic(β, γg)|xobs,y} is the block diagonal matrix

−

[

E[
∂2lY |X(β)

∂β∂βT |xobs,y ] 0

0 E[ ∂2lX(γg)

∂γg∂γT
g
|xobs,y ]

]

.

Note that −E[
∂2lY |X (β)

∂β∂βT | xobs,y ] = XT WV X from the calculations for obtaining

regression estimates using Newton-Raphson in section 3.2.2.

To compute E[ ∂2lX(γg)
∂γg∂γT

g
| xobs,y ], the assumption of Hardy-Weinberg equilibrium

is used. Supposing complete covariate data on subject i, the contribution from i to

the log-likelihood of γg is log γg,i, where γg,i is the probability of i’s two haplotypes.

For example, if i has haplotypes l and k and there are r possible haplotypes in the

population, the assumption of HWE gives

γg,i =

{

γ2
l if l = k

2γlγk if l 6= k
,

where γr = 1 −
∑r−1

j=1 γj. Thus,

log γg,i =

{

2 log γl if l = k

log 2 + log γl + log γk if l 6= k
.

Or, if xg,i gives the row vector of length r of haplotype counts for i (that is, an element

in xg,i is 0,1 or 2 depending on the number of copies of that haplotype that i has)
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then the contribution to the log-likelihood lX(γg) can be written as the product of

the two vectors

xg,i















log γ1

log γ2

...

log(1 −
∑(r−1)

i=1 γi)















r×1

,

Thus,

∂li(γg)

∂γk

= xg,i



































0
...

0

1/γk

0
...

0

−1/(1 −
∑(r−1)

i=1 γi)



































r×1

, (3.2)

∂2li(γg)

∂γk∂γk

= xg,i



































0
...

0

−1/γ2
k

0
...

0

−1/(1 −
∑(r−1)

i=1 γi)
2



































r×1

,

and
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∂2li(γg)

∂γk∂γl

= xg,i

























0
...

0
...

0

−1/(1 −
∑(r−1)

i=1 γi)
2

























r×1

.

Finally E[ ∂2lX(γg)
∂γg∂γT

g
| xobs,y ] = −

∑n

i=1

∑|Si|
j=1 wij

∂2lX(γg |x(j))
∂γg∂γT

g
with the second deriva-

tives given above, or written more explicitly

[

E [−
∂2lX(γg)

∂γg∂γT
g

|xobs,y ]

]

kk

=
1

γ2
k

{
n

∑

i=1

|Si|
∑

j=1

wijx
(j)
k,i} +

1

(1 −
∑(r−1)

i=1 γi)2
{

n
∑

i=1

|Si|
∑

j=1

wijx
(j)
r,i },

and

[

E[ −
∂2lX(γg)

∂γg∂γT
g

|xobs,y ]

]

kl

=
1

(1 −
∑(r−1)

i=1 γi)2
{

n
∑

i=1

|Si|
∑

j=1

wijx
(j)
r,i },

where x
(j)
k,i refers to the kth element in x

(j)
g,i , the jth possible row vector of haplotype

counts for subject i that is consistent with that subject’s observed genotype data.

It can then be shown that the first term in Louis’ formula for the observed Fisher

information (the conditional expected value of the complete-data information given

the observed data) can be written in matrix form as

[

XT WV X 0

0 NG + nr/(1 −
∑(r−1)

i=1 γi)
2J

]

,

where X, V and W are the augmented matrices as defined in section 3.2.2, N(r−1)×(r−1)

is a diagonal matrix whose elements are the sums over all individuals of the weighted

counts of the first r − 1 haplotypes, nr is the sum of the weighted numbers of the rth

haplotype, G(r−1)×(r−1) = diag(1/γ2
k) and J(r−1)×(r−1) is a matrix of 1’s.

The second term in I(β, γg) using Louis’ formula, cov[Sc(θ)|xobs,y], can be

found by first noting that the n subjects are independent. Therefore Sc(β, γg) =



CHAPTER 3. LOGISTIC REGRESSION WITH MISSING HAPLOTYPES 30

∑n
i=1 Sc,i(β, γg) and

cov[Sc(β, γg)|xobs,y] = cov

[

n
∑

i=1

Sc,i(β, γg)|xobs,y

]

=

n
∑

i=1

cov [Sc,i(β, γg)|xobs,y]

=
n

∑

i=1

{

E[Sc,i(β, γg), Sc,i(β, γg)
T|xobs,y]−

E[Sc,i(β, γg)|xobs,y]ET[Sc,i(β, γg)|xobs,y]
}

For those people whose covariate information is fully known, the variance is 0, there-

fore the sum is only over those n∗ pseudo-individuals corresponding to subjects with

ambiguous haplotype phase. Substituting the expected values for the score using the

weight notation and letting Sc,ij be the complete data score on the jth covariate type

compatible with the observed data for subject i gives

cov [ Sc(β, γg) | xobs,y ]

=

n∗
∑

i=1







|Si|
∑

j=1

Sc,ij(β, γg), Sc,ij(β, γg)
T wij − (

|Si|
∑

j=1

Sc,ij(β, γg)wij)(

|Si|
∑

k=1

Sc,ik(β, γg)wik)
T







=
n∗
∑

i=1

|Si|
∑

j=1

Sc,ij(β, γg), Sc,ij(β, γg)
T wij −

n∗
∑

i=1

|Si|
∑

j=1

|Si|
∑

k=1

Sc,ik(β, γg)Sc,ij(β, γg)
T wijwik.

Let S be a matrix whose rows are complete-data score vectors Sc,ij for pseudo-

individuals, with rows arranged so that the pseudo-individuals for subject i are in

consecutive rows. Then, it can be shown that the covariance matrix can be written

as

ST WS − ST WBWS,

where W is the diagonal matrix of weights corresponding to each individual and B is a

block diagonal matrix of 1’s with the number of rows and columns of each block equal

to the number of haplotypes compatible with a given subject’s observed covariates.

For example, if there are three compatible covariate vectors for one person, and two
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compatible for a second person, the block diagonal matrix would be

B =



















1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1



















.

Note that for all matrices S, W and B, the number of rows is n∗ since the summation

is only over the pseudo-individuals for subjects with ambiguous haplotype phase.

The score matrix S can be broken up into columns for the derivatives with

respect to the regression parameters and derivatives with respect to the covariate

parameters. That is

S =
[

Sβ | Sγg

]

.

Using the logistic model as defined, and assuming HWE for the haplotypes,

Sβ = HX and Sγg
= XgenG̃

where X is the augmented matrix of covariates used in the regression model for the

ambiguous individuals only and H is a diagonal matrix of elements (yi − pij), where

pij = Pr{yi = 1|x
(j)
i , β} which corresponds to the first derivatives of the regression

parameters. Note that in equation 3.1, each pseudo-individual’s unweighted contribu-

tion to the derivative with respect to βj is (yi − pij)xij. Since [Sβ]ij represents the ith

pseudo-individuals contribution to the derivative with respect to βj, each element in

the matrix is given by (yi − pij)xij or in matrix notation Sβ = HX. The Xgen matrix

has rows of length r which count the haplotypes for each augmented individual, and

the matrix G̃ is














1/γ1 0 · · · 0

0 1/γ2 · · · 0
...

...
. . . 1/γr−1

−1/(1 −
∑(r−1)

i=1 γi) −1/(1 −
∑(r−1)

i=1 γi) · · · −1/(1 −
∑(r−1)

i=1 γi)















r×(r−1)

.
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The justification for Sγg
= XgenG̃ can be seen by examining equation 3.2, which is

the ith pseudo-individual’s contribution to the derivative with respect to γk. If the

row vector xg,i, which is a count of each of the haplotypes, is multiplied by G̃, the

corresponding row vector is i’s contribution to the derivative for γ. If each pseudo-

individuals haplotype row vector is a row of the matrix Xgen, then Sγg
= XgenG̃.

Should any of the genetic modeling assumptions be changed, the variance need not

be derived again, only the score matrix for the new parameterization.

Therefore, the observed Fisher information, found using Louis’ formula, is

[

XT WV X 0

0 NG + nr/(1 −
∑(r−1)

i=1 γi)
2J

]

− ST (W − WBW )S.

The variance can now be estimated by substituting the estimated parameters and the

weights from the final iteration of the EM algorithm into the matrix given above and

calculating the inverse.



Chapter 4

Analysis of a simulated data set

Logistic regression can be useful in finding the effect of genetic markers on the proba-

bility of getting a disease. SNP markers are becoming increasingly popular as genetic

markers due to their abundance in the genome and the more cost-effective methods of

genotyping. They are diallelic and are expected to have high linkage disequilibrium

between adjacent markers in a candidate region. Hence, we consider the haplotypes as

the covariates instead of genotypes at a single locus. Since haplotypes are not observed

for all individuals, in chapter 3, the method of weights, an implementation of the EM

algorithm for generalized linear models, was described for a logistic model with haplo-

types as the missing covariates. The method of weights as originally formulated does

not incorporate the biologically reasonable assumptions of HWE and independence

of genetic and environmental covariates. We incorporated these assumptions, which

are standard in genetic analyses, in order to improve the statistical efficiency and

stability of the resulting parameter estimates. In addition, these assumptions sim-

plify the implementation of the algorithm and calculation of standard errors. Under

these assumptions, the standard errors of the regression coefficients were derived us-

ing Louis’ formula for the observed Fisher information. In this chapter, the resulting

EM procedure is applied to an association scan of a simulated candidate region for a

complex disease.

The genetic data were simulated under a neutral coalescent with recombination

(Hudson 1983), using a C program kindly provided by R.R. Hudson. The data are

33
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from a hypothetical cohort study of a common complex, late-onset genetic disease in

which 500 disease-free subjects between the ages of 50 and 70 years were sampled from

a closed population isolate and followed for a short period of time. Genotype data

for 196 SNP markers in a 5 cM candidate region were simulated for all individuals

assuming HWE. The average spacing of the markers is 23.7 kilobase pairs (kbp). The

susceptibility locus was removed from the dataset for analysis. The susceptibility allele

frequency in the sample is 28%. The environmental data simulated for each individual

was their age, gender and Body Mass Index (BMI). The environmental covariates were

simulated independently of the genetic information and mimicked covariate values

found in middle-aged and older individuals in North American populations. Affection

status was generated randomly, with disease probability determined by a logit function

of the number of susceptibility alleles, age, BMI, and a “polygene” effect. More

information about both the population-genetic model and the risk model used to

simulate the data can be found in Appendix A, which also provides an excerpt of the

data.

For the analysis, haplotypes from adjacent pairs of loci were used as the genetic

data. If the two alleles at each SNP locus are denoted by 1 and 0, the four pos-

sible haplotypes are 00, 01, 10 and 11. There are 10 possible multilocus genotypes

and 9 possible combinations of single-locus genotypes. Only the double heterozygote

0/1,0/1 has unknown haplotype phase and there are two possible multilocus geno-

types consistent with the single-locus genotypes: 00/11 and 01/10. A haplotype-dose

model is fit, so if nXX represents the number of XX haplotypes, the model equation

is:

logit(p) = β0 + β1 × age + β2 × gender + β3 ×BMI + β4 × n01 + β5 × n10 + β6 × n11.

The number of 00 haplotypes is 2−n01−n10−n11. There are 196 SNP loci in total,

so moving along the haplotype, the first analysis is for the haplotypes from locus 1

and 2, the second from locus 2 and 3 and so on. In total, 195 analyses are done.

The weighted EM method was implemented using R (www.r-project.org). For

each analysis, the single-locus data for the two loci was first converted into haplotypes.

The dataset was augmented by the appropriate number of pseudo-individuals. Since
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there are only two possible multilocus genotypes consistent with the observed genotype

for the phase-unknown individuals, an extra row was added for these individuals with

only the haplotype information different between the two rows.

For each locus pair, EM was performed using the haplotype and environmental

covariates. The initial values of the regression parameters were found by first fitting

the non-weighted logistic model to the augmented dataset. The haplotype frequencies

are all initially set equal. A drawback to this initialization of the haplotype parameters

versus estimating the initial values from the unambiguous individuals is that the

parameters could be far from their true values, slowing down the EM convergence.

However, these initial values are then used to calculate the weights that are the initial

values in the E step, and usually less than 10 iterations were required for convergence.

Using the augmented dataset and the associated weights, the R glm routine is used

to calculate the new estimates of the regression parameters. The new haplotype

parameters are calculated by summing up the weighted numbers of each haplotype

and dividing by 1000 (two times the sample size). These values are then used to

calculate the next set of weights, and the process continues until convergence. The

standard errors are then calculated using the final set of weights, estimates and fitted

values.

For 30 of the 195 locus sets, not all four haplotypes were observed in the indi-

viduals whose haplotype phase was known. This is probably partially due to the fact

that the markers for these loci are less than 10 kbp apart. The distance is so small

that few recombinations have occurred between the two loci, causing a greater allelic

association and fewer haplotypes. In these cases, the EM algorithm will not converge

because it is attempting to maximize a likelihood that is formulated assuming the

existence of all 4 haplotypes in the population. We therefore make the reasonable

simplifying assumption that if a haplotype is not observed in the non-ambiguous indi-

viduals, it does not exist in the population. Under these circumstances, the haplotype

phase for the double heterozygote individuals will be known as well. Since with this

assumption there is no missing haplotype information, the unweighted glm function

was used on the logistic model to estimate the regression coefficients of the remaining

haplotypes.
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For each set of loci, we test whether there is a genetic effect from the haplotypes.

The null hypothesis is that there is no haplotype effect or β4 = β5 = β6 = 0. A Wald

test was used to test this hypothesis and p-values were calculated using the asymptotic

χ2 distribution of the test statistic, with 3 degrees of freedom for the datasets with

all haplotypes observed, and 2 or 1 degrees of freedom for those with one or two

haplotypes not observed in the sample. Alternatively, a likelihood ratio test could be

performed using the log-likelihoods at convergence for both models. A score test for

a genetic effect described by Schaid et al. (2002) is another possibility. To visualize

the relative departures from this hypothesis for each of the sets of loci, the negative

base-10 logarithm of the p-value was plotted versus the midpoint position of the two

loci on the chromosome, with the position measured in kbp relative to the true disease

susceptibility locus (Figure 4.1).

From the plot, the peak over all loci pairs in the scan occurs for loci 86 and

87 (-80 kbp to -77.5 kbp from the true location) and it is distinct in its height from

the other peaks. The chromosomal distance between these two markers is 2.5 kbp,

a size so small that two haplotypes are unobserved. The tests at the sets of loci

adjacent to the peak also give relatively high values. The haplotype spanning the

disease-predisposing locus is 132 kbp, which is a relatively large distance. Since this

distance is large, more recombinations are expected to have occurred between the two

markers. This would break up the ancestral haplotype bearing the disease mutation,

making it more probable that any single haplotype is no more likely to be associated

with the disease than another.

The analysis was repeated removing the environmental covariates to see what

effect adjusting for environmental covariates has in finding the genetic signal. Even

though it is known that in many complex diseases environmental factors play a signifi-

cant role in developing disease, many association analyses that use haplotypes, such as

the χ2 test described in section 2, do not take the environmental factors into account.

Figure 4.2(a) is a plot of the − log10(p-value) from the Wald test for haplotype effect

for the model without environmental covariates versus the midpoint of the haplotype

position relative to the disease locus, and Figure 4.2(b) has superimposed the analyses

with and without the environmental covariates to compare the two results.
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Figure 4.1: Genetic signal for haplotype effect versus chromosome position; model
with environmental covariates.
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Figure 4.2: (a)Genetic signal for haplotype effect versus chromosome position; model
without environmental covariates. (b) The analysis with the environmental covariates
and without superimposed. The horizontal line is the maximum signal for the analysis
with no environmental covariates.



CHAPTER 4. ANALYSIS OF A SIMULATED DATA SET 39

In the analysis without environmental covariates, the peak again occurs for the

86th and 87th markers. However, the peak height is lower than in the analysis that

adjusted for environmental factors. A second high peak occurs at the haplotype for

markers 145 and 146, 1272.5 kbp to 1317.5 kbp from the true location. Without

knowing where the disease locus is actually located, both regions might be considered

to have strong enough signals relative to the other regions to pursue further studies

on. In the analysis with the environmental factors however, this second peak is not

present, meaning that the association in that region is explained by correcting for

environmental factors. Therefore, adjusting for environmental factors had two benefits

in this simulated dataset. The height of the true peak was increased, making it less

likely for the genetic signal to be missed, and the false peak was decreased to such a

point where it would not be considered a signal.

In fitting the logistic model along the haplotype for adjacent locus pairs, a

total of 195 tests are performed. Since multiple tests are done, the p-value at each

locus pair is lower than it should be if the number of tests is taken into account,

making a Type I error more likely. However, the scan is a way to narrow down

the candidate region to areas where the disease locus is more likely to be found

so that those searching for the cause of the disease-predisposing locus do not waste

resources on unlikely regions. The p-value can be considered as another measure of the

genetic signal. From the results of a candidate gene scan such as this, the candidate

region of 5 cM has now been reduced to a much smaller region. The Bonferroni

corrected p-value for the analysis including environmental covariates would be about

.096, and 0.35 for the analysis which does not correct for environmental covariates.

However, this is likely too conservative since tests are not independent; tests are

positively correlated owing to linkage disequilibrium. By contrast, a much stronger

indication of the genetic signal was obtained from permutation tests based on 650

permutations of the affection status, which yielded p-values of 0.03 for the analysis

including environmental covariates and 0.12 for the analysis without environmental

covariates.

The results of the analysis with haplotypes can also be compared to the results
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using a single-locus genetic covariate and the environmental covariates in the regres-

sion. A Wald test was used to test for the genetic effect of each of the 196 loci. Figure

4.3 shows − log10(p-value) versus the position along the chromosome (a) in the single-

locus analysis and (b) the haplotype and single-locus results superimposed. For both

analyses, the peaks are at the same location and are about the same height. This is

not an unexpected result; Kaplan and Morris (2001) found that the single-locus and

haplotype based χ2 tests often give concordant results in simulation studies based on

a single susceptibility allele at the disease-predisposing locus, as in this case. The

difference in the two analyses for this scan of a candidate region seems to occur in the

non-signal regions. The haplotype model seems to have smoothed out some of the

peaks in the regions far away from the actual disease locus. The potential smoothing

effect that using haplotypes has on the p-values was also noted in Akey et al. (2001).

In conclusion, including haplotypes and environmental covariates in a logistic

regression model to find association between a haplotype and disease has some ad-

vantages. When compared to the single-locus logistic regression model, the haplotype

analysis was as good in finding the true peak signal, but was better at smoothing

out the false peaks. When compared to the logistic regression without environmen-

tal covariates, the haplotype analysis with environmental factors had a higher peak

close to the true disease locus and removed strong signals farther from the disease

locus. Therefore, for this simulated gene-scan data, the haplotype model analysis

that adjusts for environmental factors decreased the false-positive rate and increased

power.
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Figure 4.3: (a)Genetic signal for locus effect versus chromosome position. (b) Hap-
lotype model and single-locus model results superimposed. Horizontal line indicates
maximum signal from single-locus analysis.



Chapter 5

Summary and conclusions

Gene mapping for complex diseases is more complicated than for Mendelian diseases.

Complex diseases are multi-factorial– there may be several environmental and genetic

factors that contribute to the disease. For the genetic component of the disease, there

may be multiple genes or mutations which contribute to the disease, or multiple genes

that cause an indistinguishable disease phenotype. Thus, association methods which

account for the contribution of one gene may not be sufficient to find the disease-

predisposing gene without controlling for other important factors.

It has been suggested that the power of association methods can be improved

by using haplotypes rather than single loci (Akey et al. 2001; Daly et al. 2001;

Zöllner and von Haeseler 2001). Haplotypes are only observed if there is genotypic

information on family members or if high cost laboratory techniques are used. In

the case of association studies, neither of these approaches are feasible. For this

reason, methods of estimating the haplotypes and the haplotype frequencies, such as

Clark’s method (1990), the EM algorithm (Long et al. 1995; Hawley and Kidd 1995;

Excoffier and Slatkin 1995) and Bayesian approaches (Stephens et al. 2001; Niu et

al. 2002) have been developed. The statistical approaches have been shown to be

good at estimating the haplotypes and frequencies, but the consequences of using

imputed haplotypes in further statistical analyses has not been studied. Since further

analysis will not include the uncertainty associated with the reconstructed haplotypes,

one might be concerned about any conclusions based on the results. Furthermore,
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available information on disease status and environmental covariates is not used in

the haplotype reconstructions.

Our method involves a logistic regression model of association between a marker

genotype and disease in a cohort sample. In order to use haplotypes as covariates in

the regression, a likelihood method for generalized linear models with missing co-

variates called the method of weights is proposed. With this EM implementation,

the haplotype values for each individual are not imputed. Instead, the weights ac-

count for the uncertainty of the haplotype phase. In the calculation of the weights,

we have included a population-genetic model of genotype frequencies by assuming

Hardy-Weinberg equilibrium, and we have assumed independence of the genetic and

environmental covariates. This makes the estimation in the M step more efficient and

stabilizes the estimated values. Using EM to estimate the coefficients directly, versus

estimating the haplotype covariates and treating them as observed as is traditionally

done, allows us to calculate standard errors using Louis’ formula (1982) and correct

for the uncertainty in the haplotypes explicitly.

In the simulated gene-scan dataset, both single-loci and haplotypes were used

as covariates. Both analyses showed the most evidence for association around marker

86 and an association region of about 200 kbp. In fact, for both analyses the height

of the strongest genetic signal is about the same. The difference in the two analyses

on the simulated dataset is seen in the other regions, where the haplotype analysis

has smoothed out some of the other peaks of genetic signal.

Perhaps the most important consequence of using logistic regression for associa-

tion studies is the flexibility of the modeling that it allows. Not only can environmental

factors easily be included in the model, but interaction between the genetic and en-

vironment effects can also be modeled. Since it is believed that these interactions are

significant to disease development, this is an important benefit of this method. Not

only can environmental covariates be included, but other unlinked genes which are

known to also have an effect on the disease can easily be included as covariates in the

analysis as well.

The effect of adjusting for environmental covariates in the analysis was shown

using the simulated gene scan data. In the logistic regression analysis that only
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included haplotypes, the association close to the true disease locus was not as strong

as that from the analysis that included environmental information, and a false peak

was present. One would not be as confident in the true peak, since it is not much

higher than the false one.

Overall, the results of the data analysis suggest that the proposed approach to

association mapping is more powerful than other approaches which do not include

environmental factors. However, these results are based on only the one dataset

that was simulated with a genetic model. The performance of the method should

be assessed on data simulated under a variety of scenarios including violation of

the Hardy-Weinberg assumption and the assumption of independence of genetic and

environmental covariates. Additionally performance should be assessed using real

genotype data.

The simulated data was of a gene-scan from a cohort study, so in this specific

example, the focus was on using logistic regression to detect the association between

disease and marker loci after adjusting for non-genetic covariates. The method is

also applicable for genotype data on a few markers from a candidate gene. In this

case, it can be used for detailed modeling of gene-by-environment and gene-by-gene

interactions and to estimate odds ratios for disease-influencing haplotypes.

An important technical issue concerns the applicability of the logistic regression

model to case-control data. We have made covariate distributional assumptions by

using HWE as well as independence between the environmental and genetic covariates

to formulate the likelihood. Although it is beyond the scope of this work, the appli-

cation of this method to case-control studies should be examined. The key issue is

that the classic justification for fitting a prospective logistic regression to retrospective

(case-control) data (Prentice and Pyke 1979) assumed no modeling of the distribution

of covariates.

As proof-of-principle, the algorithm was implemented for haplotypes of two loci

only, but it is possible and potentially more useful to implement the algorithm so that

there are more loci in a haplotype. For 3 diallelic loci, there are already 8 possible

haplotypes, and 7 genetic variables in the regression model. Due to the biological

process underlying haplotype creation, as well as sampling, it is likely that if the
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number of haplotypes is high, not all haplotypes will be seen both in the population

and in the sample. For our method to converge, these frequencies will have to be

constrained to 0. As with using EM to estimate haplotype frequencies, our method is

likely limited to a small number of diallelic loci. Building in more population genetic

theory, as in Stephens et al. (2001), into the formulation of the likelihood could

improve the number of loci that this method can handle.

Changes can be made to the regression model to allow for non-binary disease

outcomes. The method of weights is appropriate for any generalized linear model,

and has been extended to other regression models including those for survival data.

See Horton and Laird (1999) for a general review of the method of weights and a

discussion of its extensions to other types of data. Changes can also be made to the

haplotype-effect model. By counting the number of copies of a particular haplotype,

we are using a haplotype-dose model. This means that a person with more copies of

the haplotype containing the disease mutation has a higher chance of developing the

disease than a person with fewer copies of the haplotype. Specifically, an individual’s

odds of being affected changes by the same multiplicative factor for each additional

copy of a haplotype. Recessive and dominant genetic risk models are also possible.

For a recessive risk model, a person with two copies of a susceptibility allele is much

more likely to develop the disease than if they have at least one allele that is not the

disease-predisposing allele. Assuming that the disease-predisposing allele is associated

with a putative “disease haplotype”, this may be recoded as

x =

{

1 homozygote for disease haplotype

0 heterozygote for disease haplotype or homozygote normal
.

For a dominant risk model, having one or two copies of the susceptibility haplotype

leads to the same predisposition to disease. This can be coded as

x =

{

1 has disease haplotype

0 does not have disease haplotype
.

Implementing either of these two different codings is not difficult and since these are

the traditional inheritance models, they are probably worth trying on real datasets.



CHAPTER 5. SUMMARY AND CONCLUSIONS 46

In conclusion, the method presented here for association mapping has potential

advantages over current approaches. First, it allows for environmental covariates,

possibly continuous, to be included and adjusted for. It also allows for detailed

modeling of gene-environment and gene-gene interactions. The haplotype data is

not imputed, and although the haplotype is not explicitly estimated, all data on

an individual is used for determining the weight to be assigned to each haplotype

configuration. If desired, the final weights can be used to infer haplotypes in a way that

incorporates information of the disease status and environmental covariates. However,

the importance of these advantages to the overall utility of this method can only be

demonstrated when it is applied to more data.



Appendix A

The coalescent and the simulated

data

SNP genotypes, non-genetic covariates and final disease status were simulated for 500

individuals in a cohort study of a late-onset complex disease. The randomly-paired

chromosomes of individuals in the cohort were generated from a neutral coalescent

with recombination (Hudson 1983) using a C-program kindly provided by R.R. Hud-

son. The coalescent (Kingman 1982) is a population-genetic model of ancestry for

selectively neutral loci that provides a useful tool for simulating a sample of chro-

mosomes under a variety of population genetic parameters. The coalescent with re-

combination allows for recombination events along the chromosome. Demographic

parameters for the coalescent were chosen to reflect a population which had grown

exponentially from an effective size of 5000 individuals 200 generations ago, to a cur-

rent effective size of 2000000 individuals. Prior to 200 generations ago, the population

was of constant effective size 5000. Effective sizes reflect the number of reproducing

individuals under an idealized population-genetic model of reproduction and are rea-

sonable for a modern European population. SNPs were simulated in a 5cM candidate

region with 2000 segregating sites. Segregating loci were declared to be SNPs if the

minor allele frequency in the sample was at least 20%. Of the 197 resulting SNPs, one

from the middle of the 5cM region was chosen to be the primary susceptibility locus,

47
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Affection
Status Gender Age BMI SNP1 SNP2 SNP3 · · · SNP195 SNP196

0 0 63.7 29.2 1,1 0,0 1,1 · · · 1,1 0,1
0 0 67.5 19 0,0 0,1 0,1 · · · 0,0 0,1
0 0 53.9 24.1 1,1 0,0 1,1 · · · 1,1 1,1
1 0 51.9 25.2 1,1 0,0 1,1 · · · 0,1 0,1
0 1 59.2 28.3 0,1 0,1 0,1 · · · 1,1 1,1

Table A.1: Subset of the simulated data set.

with susceptibility allele frequency 28% in the sample. Values of non-genetic covari-

ates “gender”, “age” and “body mass index” (BMI) were simulated independently

of the genetic information and of each other. The distributions of these covariates

mimicked those of gender, age and BMI in middle-aged and older North American

populations. Affection status was generated randomly based on probabilities specified

by the logistic regression model

logit(p) = −1 + 0.6 ∗ nsusc + 0.3 ∗ age + 0.6 ∗ BMI + 0.3 ∗ pgene.

Age and BMI were taken to be continuous covariates. Covariates have been centered

by their sample mean and scaled by their sample standard deviation to provide an

indication of the relative importance of effects. In the equation, p is the conditional

probability of becoming affected during the study period given the covariate infor-

mation, logit(p) is the log-odds log[p/(1 − p)] of becoming affected, “nsusc” is the

standardized number of susceptibility alleles at the primary susceptibility locus and

“pgene” is a standardized version of a uniformly distributed index between 0 and 10

indicating up to ten susceptibility alleles at other unlinked loci (polygenes) besides

the major susceptibility locus. The sample prevalence of the disease was 28%. After

generating disease status, information on the susceptibility locus was discarded from

the dataset. Thus the data to be analyzed was single-locus genotypes for 196 SNPs,

and information on non-genetic covariates gender, age, and BMI. An excerpt of the

data is given in table A.1.
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