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Abstract

Capture-recapture experiments are important for monitoring many endangered animal pop-

ulations, such as salmon threatened by over-harvesting and migratory songbirds impacted

by habitat loss. An important consideration in the analysis of capture-recapture data is

potential variation in the probabilities of capture and survival. Failure to account for this

variation can lead to incorrect inference, but traditional models incorporating heterogeneity

may be very complex. This thesis presents three Bayesian methods that balance realisti-

cal modelling of variation in the capture and survival probabilities and increasing model

complexity.

In the first project, I consider the analysis of data from two-sample experiments used in

estimating the number of juvenile salmon leaving their spawning grounds. These migrations

may last for several weeks and standard models may require many parameters to account

for variations over time. My solution is to model the population size as a smooth function

of time by fitting a Bayesian penalised spline. The method is applied to two datasets from

the migration of juvenile salmon and provides more precise estimates of the population size

that are less affected by outliers in the data than previous methods.

My second project addresses estimation of the size of an open population when individual

capture or survival probabilities are functions of a time-dependent, continuous covariate.

The main challenge is that these covariates can only be observed on occasions when an

individual is captured. I develop a two-stage Bayesian method that first examines the

covariate’s effect by analysing the capture of marked individuals, and then applies the

results to estimate the total population size. The model is used to study the dynamics of a

population of Soay sheep (Ovis aries) whose survival is affected by body mass.

Finally, I develop a method to allow more flexibility in modelling the relationship be-

tween a covariate and individual survival probabilities. Standard methods assume that the
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relationship is linear on some scale. My model incorporates Bayesian adaptive splines to

allow smooth but local fitting of the linear predictor. I apply this model to study the effect

of body condition on the survival of reed warblers (Acrocephalus scirpaceus) breeding in

Holland.

Keywords: Adaptive spline; Bayesian inference; Capture-recapture; Hierarchical mod-

elling; Penalized spline; Time-dependent, Continuous covariate
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Chapter 1

Introduction

Animal populations worldwide face severe threats resulting directly from the impact of

human activities. Pacific salmon (Oncorhynchus spp.) which migrate between the ocean

and their freshwater spawning grounds are threatened by overfishing and by the construction

of hydroelectric dams which block their migration routes. Populations of neotropical migrant

songbirds have declined due to habitat fragmentation and loss to forestry and agriculture.

Many more species are affected by climate change.

To develop management programs to ensure the survival of these species, we must un-

derstand their population dynamics and the factors that affect the populations over time.

Most commonly, populations of wild animals are studied through capture-recapture exper-

iments in which samples of individuals are repeatedly captured, marked so that they can

be identified in subsequent samples, and released back into the population. An important

consideration in the statistical analysis of the data collected in these experiments is that

individuals in a population never behave in exactly the same way. Individuals may be

affected by a variety of factors, and failure to account for the variations may produce in-

correct inference including biased estimates of the quantities of interest (such as population

size or survival probability) or underestimation of uncertainty. Conventional models may

either make assumptions which ignore the variations between individuals or introduce large

numbers of parameters to account for these differences, which can lead to further problems

in inference. The three projects in this thesis develop methods that balance the need for

realistic modelling of the variations in capture-recapture experiments with increasing model

complexity.

1



CHAPTER 1. INTRODUCTION 2

1.1 Introduction to Capture-Recapture Methods

The statistical analysis of data collected in a capture-recapture experiment depends on

three factors: the design of the experiment, the assumed behaviour of the individuals in

the population, and the goals of the study. In the simplest capture-recapture experiments,

two samples are collected from the population of interest. Individuals captured in the first

sample are marked in some way and returned to the population. Fish may be stained with

coloured dyes, have their fins clipped or, more recently, be implanted with passive integrated

transponder (PIT) tags or acoustic tags that can be detected without physical recapture.

Small songbirds are most often marked with uniquely numbered leg bands while larger birds

may be marked with coloured leg bands or numbered neck bands which can be read from

a distance. New technologies have allowed the use of natural markings such as unique skin

patterning which can be identified in photographs (Holmberg et al., 2008) or DNA genotypes

that can be identified from spoor or hair samples (Lukacs and Burnham, 2005). After

allowing sufficient time for the marked individuals to mix back into the population, a second

sample is captured, and the previously marked individuals are identified. A simple estimator

of the capture probability is the proportion of marked individuals recaptured (assuming

that all marked individuals remained in the population and had the same probability of

recapture). Population size can be estimated by dividing the total number of individuals

captured in the second sample by the estimated capture probability – the Lincoln-Petersen

estimator (Williams et al., 2002, pg. 290).

In more complex capture-recapture experiments, more samples of individuals are cap-

tured either at a set of discrete times (the capture occasions) or continuously in time. This

thesis considers only the more common practise of discrete capture occasions. When sam-

pling times are discrete, the capture occasions may be spaced equally over time, perhaps

daily or yearly, or may be clustered, sampling many days in each year but only during the

month that individuals breed. Marks may be applied to the unmarked individuals captured

on every capture occasion or only to those captured on the first occasion. All of the indi-

viduals captured in a sample may be returned to the population or some may be removed

permanently (common in studies of fish populations when individuals may be captured in

a commercial fishery). Samples may be collected from one location on all occasions or

from several geographic locations and may be obtained strictly by recapturing individu-

als, by resighting them without physical capture, by recovering dead animals, or through
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some combination of these mechanisms. Different models have been developed for all of

these possible scenarios (see Amstrup et al., 2003; Williams et al., 2002; Seber, 1982, for

overviews).

The second consideration in the analysis of capture-recapture data is the assumed be-

haviour of the individuals and how this may affect their probabilities of capture, survival

etc. The primary distinction is whether the population of interest is closed or open. A

population is closed if no individuals enter into (either by birth or immigration) or depart

from the population (either by death or emigration) between the capture occasions. A pop-

ulation is open if individuals enter or depart so that the composition of the population, in

terms of the exact identity of the individuals, changes over time. In general, the statistical

models for analysing data from closed populations are simpler because there can be only

one reason that an individual was not observed on a capture occasion – it must have been

present and was simply not captured. When modelling an open population it is possible

that an individual was not captured on a specific occasion because it had not yet entered

the population or had left the population, either permanently or temporarily. Statistical

models for analysing data from open populations must model at least some of the processes

by which animals enter and/or leave the population depending on what assumptions can be

made about the animals’ behaviour and what data is considered as fixed.

Models must also account for the differences among individuals alive on each capture

occasion and the changes in these individuals over time. Survival probabilities, capture

probabilities, and other parameters of interest (e.g., fecundity) can depend on a variety

of factors. Changes in the environment may increase or decrease the chances of survival

of all individuals from one capture occasion to the next. Further differences between the

individuals, such as age, sex, body mass or breeding status, may affect the chances of survival

or capture at any given time. In some experiments, the process of capture itself may affect

the behaviour of individuals, and these effects need to be considered in fitting statistical

models. Individuals captured on one occasion may avoid traps in future, decreasing their

probability of being captured on subsequent occasions (trap-shyness) or may learn to seek

out traps if there is a reward for being captured (trap-happiness).

Differing objectives may also determine which aspects of the population dynamics need

to be modelled and which can be ignored. Some capture-recapture studies aim to estimate

the size of the population at a single instant or how population size changes over time.

This requires models which make assumptions about the entire population, including the
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individuals that were never captured during the experiments. Other studies may focus on

the rates of entry to and exit from the population and the factors that affect these rates,

and need only consider the individuals captured on one occasion or more.

1.2 Summary of Projects

The first project of my thesis (Chapter 2) addresses a problem in modelling data from

two-sample capture-recapture experiments of closed populations. This type of experiment

is commonly employed in monitoring salmon populations, either to estimate the number of

smolts (young salmon) leaving the freshwater spawning grounds in one year or the number

of adults returning upstream to breed. Fish are captured at two trapping locations along

their migration route. Those captured at the first trap (the upstream trap for smolts and the

downstream trap for adults) are marked so that they can be identified if caught again, and

are returned to the river to continue their migration. At the second trap, a new sample of

individuals is captured and the numbers of marked and unmarked individuals are recorded.

These migrations can last for very long periods of time so that trapping is conducted

each day for several weeks or even months. During this time, the sampling probabilities or

behaviour of the fish can change considerably and failure to account for this may produce

biased estimates of the population size or its uncertainty. To account for the variations

over time, the analysis is often conducted by stratifying the data – conceptually fitting

separate models with independent parameters for each day or week of the experiment. While

stratification does allow the changes over time to be modelled, the resulting models may

have large numbers of parameters, and the data collected are often too sparse to produce

precise estimates of the population size in each stratum (day or week) separately. Moreover,

this strategy does not account for the temporal structure of the data: one would expect

the number of fish migrating past the traps in one stratum to be similar to the numbers in

adjacent strata and less similar to the numbers in much earlier or later strata. Models that

reduce the number of parameters have been developed by imposing parametric assumptions

on the time fish take to move between the trapping locations (Schwarz and Dempson, 1994)

and by hierarchical Bayesian modelling (Mantyniemi and Romakkaniemi, 2002), but these

still do not account for the temporal structure. My solution is to model the number of fish in

each stratum as a smooth function of time, specifically using the Bayesian penalised spline

model (Lang and Brezger, 2004). In section 2.4, I apply this model to analyse two data sets
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collected from the migration of Atlantic salmon (Salmo salar) smolts along the Conne River

in Newfoundland and from the migration of Chinook salmon (Oncorhynchus tshawytscha)

smolts along the Trinity River in California. The new method provides estimates of the

total number of migrating smolts that are more precise and less influenced by the presence

of outliers than previous models.

My second project considers the problem of estimating the size of an open population

from capture-recapture data when the sampling probability or survival probability of indi-

viduals depends on a time-dependent, continuous covariate like body mass. The challenge

with this type of covariate is that its value can only be known for an individual on the

occasion when that individual is captured. On the occasions when the individual is not

captured the value of the covariate is unknown. Some analyses of capture-recapture data

attempting to deal with the missing values have simply treated the covariate as a constant,

considering the mean of the observed values for each individual as the fixed value on all

occasions. Others have imputed the missing values by some method and then treated the

imputed values as if they had actually been observed. Simulations that I have conducted

show that both of these approaches may produce biased inference regarding the covariate’s

effect (Bonner, unpublished work). In previous work (Bonner and Schwarz, 2006), I devel-

oped a method for including such covariates as predictors of the individuals’ capture and

survival probabilities by modelling the distribution of the covariate to make inference about

the missing values and then employing Bayesian methods to examine the covariate’s effect.

The project in Chapter 3 extends this work to estimate the population size on each capture

occasion. The method is applied to study the dynamics over a 15 year period of a popu-

lation of Soay sheep (Ovis aries) living on the Island of Hirta in the Scottish archipelago

of St. Kilda. The results of this analysis show that body mass is an important predictor

of the survival and capture probabilities, particularly for younger sheep. Simulations based

on these results indicate that estimates of the population size may be biased if the effect of

the covariate on the capture probabilities is ignored.

In Chapter 4, I develop a semi-parametric model to relate differences in individual sur-

vival probabilities to the effects of a continuous, time-dependent predictor. Again, this

builds on the model of Bonner and Schwarz (2006). When dealing with continuous predic-

tors of capture or survival probabilities, it is common to employ a generalised linear model

framework which assumes that the effect of the predictor is linear on some transformed scale.
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The specific transformation is almost always chosen for mathematical or computational con-

venience, not biological realism, and this choice often contains implicit assumptions about

the covariate’s effect that are not acknowledged. When studying complex biological rela-

tionships, the assumption of linearity may not adequately capture the predictor’s effect,

even if higher order polynomial terms are included in the linear predictor. Instead, I model

the linear predictor as a smooth but flexible non-linear function of the continuous covariate

by implementing the adaptive Bayesian spline model of Biller (2000). Simulations show that

the new model is able to capture complex relationships between a covariate and the survival

probability that cannot be fit by simple polynomial models. The method is applied to data

obtained from the Dutch Constant-Effort-Sites bird banding study between 1994 and 2003

to examine the effect of individual reed warbler’s (Acrocephalus scirpaceus ) body condi-

tion on their probability of surviving from one year to the next. Details on the differences

between the penalised and adaptive spline approach are discussed in section 1.3.3.

1.3 Common Methodology

1.3.1 Bayesian Methods

All three of these projects employ the Bayesian approach to statistical inference. In frequen-

tist methods of inference, uncertainty about model parameters is quantified by how much

the parameter estimates would vary if many data sets, all generated from the same model

with the same true parameter values, were analysed in the same way. Bayesian inference

quantifies uncertainty by assigning probability distributions to the parameters. Given a

model defined through the likelihood function, L(θ|X), inference is derived from the dis-

tribution of the parameters, θ, conditional on the observed data, X. This distribution is

called the posterior distribution of the parameters and its density will be denoted by π(θ|X).

Applying Bayes’ rule to reverse the conditioning in the likelihood, the posterior density is

computed as:

π(θ|X) =
L(θ|X)π(θ)∫
L(θ|X)π(θ) dθ

where π(θ) is the marginal density of the distribution of the parameters before any data

is collected, called the prior distribution. The denominator in this expression is unique

given L(θ|X) and π(θ), and so the posterior distribution can be defined by the simpler
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proportionality:

π(θ|X) ∝ L(θ|X)π(θ),

the product of the likelihood function and the prior density. In practise, inference is usually

described in terms of summary statistics of the posterior distribution including the most

probable values of the parameters (the mean, median or mode of the distribution) and

regions of the parameter space with high posterior probability (credible intervals and regions)

(see, for example, Lee, 2004; Gelman et al., 2003, for a thorough introduction to Bayesian

inference).

One of the challenges, and most controversial components of Bayesian inference, is the

selection of the prior distribution. Subjective Bayesian statisticians believe that the prior

distribution should encode information about the parameters that is available before the

data are collected, either from previous experiments or from expert knowledge on the system

of interest. The prior distribution is chosen to concentrate high probability in regions of the

parameter space believed more plausible before collecting the data. Bayes’ rule can then

be viewed as an explicit formula for combining these prior beliefs with new information

in the observed data to obtain new beliefs described by the posterior distribution. If the

information in the data is very strong then the prior and posterior distribution may be very

different; if the information is weak then the prior and posterior may be very similar.

An alternative approach is to select prior distributions that are vague or non-informative

so that inference is objective insofar as the shape of the posterior is determined almost ex-

clusively by the data. Common choices for non-informative distributions are flat densities

(which are improper if the parameter’s value is unbounded and admissible only if the result-

ing posterior still integrates to 1), distributions with large variances and families of reference

distributions, like Jeffrey’s priors, which are invariant to certain transformations of the pa-

rameters. However, there is no single concept of a non-informative distribution and many

formulations have been considered, both in general and for specific models (see for example

Gelman, 2006).

A great advantage of Bayesian methods is that the prior distribution can be specified to

incorporate extra structure in the model parameters that is not contained in the likelihood

function. In most capture-recapture experiments, it is not realistic to believe that the

capture probabilities are exactly the same on every capture occasion, but these values are

related and will usually be very similar. If there is no information to differentiate between
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the capture probabilities on each occasion then the parameters are exchangeable. Let p =

(p1, . . . , pT ) denote the vector of capture probabilities for a capture-recapture experiment

with T capture occasions. The elements of p are exchangeable if the joint distribution of p

is independent of the ordering of the elements (Gelman et al., 2003, pg. 121). This structure

can be included in a Bayesian model by defining a hierarchical prior distribution for the set

capture probabilities. Instead of defining an independent prior for the capture probability

on each capture occasion, the hierarchical prior models the set of capture probabilities as

a random sample from a further distribution. This distribution is called the hyper-prior

and its parameters the hyper-parameters. Hyper-parameters may be assigned fixed values

or they may be modelled further. For example, a simple Bayesian model would assign

independent prior distributions to the capture probabilities such that:

logit(pj) ∼ N(µj , σ
2
j ), j = 1, . . . , T

where µj and σ2
j are assigned fixed values, not necessarily the same for all j. A hierarchical

model might instead model the capture probabilities such that:

logit(pj) ∼ N(µ, σ2), j = 1, . . . , T

where the hyper-parameters, µ and σ2, are treated as unknown but equal for all j. These

hyper-parameters may then be assigned fixed hyper-priors, for example:

µ ∼ N(0, τ2)

1/σ2 ∼ Gamma(α, β)

or may themselves be modelled further if the experiment is repeated in several years or

at several different locations. Models of this type are referred to as hierarchical Bayesian

models because of the hierarchical structure of the prior distribution (see Gelman et al.,

2003, ch. 5).

The gain from modelling the parameters in this way is that information about one

parameter in the related set is included in inference about the other parameters in the set.

For example, in a capture-recapture study of an open population, the data contains no

information about the capture probability on the first capture occasion, p1. However, if

the hierarchical prior above is used then inference about the µ and σ2 is obtained through
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p2, . . . , pT from the data on the other capture occasions. This information can then be used

to learn about the capture probability on the first capture occasion and other important

quantities, like the initial population size and the rate of recruitment between the first and

second capture occasion. Similarly, if the sample size on day j is small and the sample size

on day k is large, then the information from day k will be used in estimating pj through

the estimation of the common hyper-parameters µ and σ2. Hierarchical modelling plays an

important role in all three projects in this thesis.

Another complication in Bayesian inference lies in computing the summary statistics for

the posterior distribution. In simple problems, the posterior distribution has a simple, recog-

nisable form that is easy to interpret. However, in most practical applications the posterior

distribution is too complex for summary statistics to be derived analytically, especially when

the model contains a large number of parameters. One solution is to approximate the poste-

rior distribution by a simpler form. Under regularity conditions, the posterior will converge

to a normal distribution as the sample size is increased, and so a normal approximation to

the posterior may be appropriate (Gelman et al., 2003, pg. 101). A second solution is to

sample from the posterior distribution and then approximate the summary statistics by the

equivalent sample statistics (e.g., approximating the true posterior mean by the average of

the sampled values).

Many different methods exist for sampling from general distributions, but the most

commonly implemented in Bayesian applications is Markov chain Monte Carlo (MCMC)

sampling. An MCMC algorithm works by defining the transition probabilities of a Markov

chain so that starting from any initial values for the parameters, the distribution of the ith

realisation of the chain converges to the distribution of interest as i increases. In practise,

realisations from the chain are simulated for a sufficiently long burn-in period until the

distribution has (approximately) converged and the values generated on the subsequent

iterations are treated as realisations from the distribution of interest.

Samples from the posterior distributions in Chapters 2 and 3 are obtained by MCMC

sampling implemented in the OpenBUGS software package (Thomas et al., 2006). This soft-

ware makes use of two specific MCMC algorithms, the Gibbs sampler and the Metropolis-

Hastings (MH) algorithm, and their variants. The Gibbs sampler generates realisations from

the posterior distribution by drawing values from the distribution of each parameter condi-

tional on the data and all other parameters in the model (the full conditional distribution).

On each iteration of the Markov chain, a new value for each parameter is generated from
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its full conditional on the most recently sampled values for the other parameters (Gelfand,

2000; Tierney, 1994; Gelfand and Smith, 1990). If full conditionals cannot be computed for

all parameters, or can be computed but cannot be sampled easily, then the MH algorithm

can be used instead. Similar to the Gibb’s sampler, the MH algorithm generates new val-

ues for each parameter on each iteration of the chain by sampling conditional on the most

recent values for the remaining parameters. Rather than sampling from the full conditional

distribution of a parameter, a value is generated from a specified proposal distribution,

with density Q(θ), which may depend on the current value of the parameter, the remaining

parameter values and the data. The value drawn from the proposal distribution is then

accepted as the new value of the parameter with probability:

A = min
(

1,
π(θ′|X) ·Q(θ)
π(θ|X) ·Q(θ′)

)
(1.1)

where θ denotes the current value of the parameter and θ′ the proposed value. If the proposal

is not accepted, then the previous value of the parameter is retained and the algorithm

continues with sampling the remaining parameters. More details of the MH algorithm are

provided in many books on Bayesian inference and statistical computing (see Lee, 2004;

Gelman et al., 2003; Chen et al., 2000; Gilks et al., 1996; Chib and Greenberg, 1995).

While the MH algorithm guarantees that the parameter values from subsequent itera-

tions of the Markov chain converge in distribution to the posterior (under simple regularity

conditions), many iterations may be required to reach convergence. Moreover, the values

sampled on adjacent iterations are almost always dependent and the auto-correlation is of-

ten be very large. This means that many more samples would have to be collected to obtain

a specified level of precision in estimating the posterior summary statistics than would be

expected if the samples were independent. Some theoretical results exist concerning the time

to convergence and autocorrelation for simple models, but not for complex chains with many

parameters. To monitor the convergence of the chains generated with the MH algorithm,

I have implemented the Gelman-Rubin-Brooks (GRB) convergence diagnostic (Brooks and

Gelman, 1998,Gelman et al., 2003, pg. 296). The GRB diagnostic is computed by running

several Markov chains in parallel starting from widely spaced initial values, and then com-

paring the distribution of the samples obtained from each chain. In particular, the GRB

diagnostic compares some measure of the dispersion of the distribution within each chain

(the variance or distance between the upper and lower α/2 percentiles) with the dispersion
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of the distribution of the values from all chains. At convergence, the dispersion within and

between the chains should be the same. In practise, the GRB statistic estimates the ratio

of the dispersion and adequate convergence is achieved when the ratio is close to 1. Gelman

et al. (2003, pg. 297) recommends values of 1.1 or smaller.

In Chapter 4, the posterior distribution is a mixture of distributions with different dimen-

sions formed from a set of candidate models with different numbers of parameters. Samples

from this distribution cannot be obtained with either the Gibbs sampler or the standard MH

algorithm described above. Instead, a sample is obtained from the posterior distribution

via the reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm, which extends

the MH algorithm to the multi-dimensional parameter space (Green, 1995). Like the MH

algorithm, each iteration of the RJMCMC algorithm involves proposing a new state for the

parameters conditional on the current parameter values and accepting or rejecting the new

values. The difference is that the proposal distribution selected for the RJMCMC algorithm

must allow for the chain to move between subsets of the parameter space with different

dimensions. This is usually accomplished in two steps by first selecting a model (perhaps by

randomly adding or removing a predictor variable in the current model) and then proposing

new parameter values for the selected model. The probability with which the proposal is

accepted must also be modified to account for the possible change in dimension between the

current and proposed parameter vectors. The new acceptance probability is:

A = min
(

1,
π(θ′|X) ·Q(θ, u)
π(θ|X) ·Q(θ′, u′)

J ((θ, u), (θ′, u′))
)

(1.2)

where u and u′ are random variables required to produce a bijection between the parameter

spaces and J ((θ, u), (θ′, u′)) is the Jacobian of this transformation. The acceptance proba-

bility was first derived by Green (1995); a simplified explanation is given in Waagepetersen

and Sorensen (2001) and more details are available in recent books on Bayesian analysis or

statistical computation (e.g. Chen et al., 2000). When implementing an MCMC algorithm

for a complex model, different methods can be combined for updating the parameters on

each iteration. If the full conditional distributions can be computed for some parameters,

then these parameters can be updated by Gibbs sampling while the remaining parameters

are updated in MH or RJMCMC steps.
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1.3.2 Model Comparison and Assessing Model Fit

In Chapters 2 and 3, several models with similar structure are tested in application to

the real data sets. I have chosen to compare these models with the deviance information

criterion (DIC) introduced by Spiegelhalter et al. (2002). Given a sample of K vectors

from the posterior distribution of the model, θ1, . . . ,θK , Spiegelhalter et al. (2002) define a

measure of the effective number of parameters in the model as:

pD =
1
K

K∑
k=1

D(θk)−D(θ̂),

where D(θ) = −2 · L(θ|X) is the deviance function and θ̂ is an estimate of the param-

eter values, usually taken to be the posterior mean. By itself, pD provides a measure of

complexity that is interpreted as the number of unique, estimable parameters in the model.

This is particularly useful for understanding the structure of a hierarchical Bayesian model

in which the number of parameters depends on the variance of the prior. Continuing the

example of modelling capture probabilities on each capture occasion as independent draws

from a normal distribution with unknown mean and variance, on the logistic scale, the

number of unique capture probabilities depends on the magnitude of this variance. If the

variance is very close to zero, then the capture probabilities will all be effectively the same

and there only one parameter to estimate. If there were no other parameters in the model

then pD would be close to 1. As the variance gets larger the capture probabilities become

less dependent on each other and pD would increase.

Given this measure of the complexity of the model, the DIC is defined in analogy to

classical model comparison criterion, like the AIC, by adding twice the effective number of

parameters to the deviance function. This produces the criterion:

DIC = D(θ̂) + 2pD. (1.3)

Heuristically, the DIC penalises the likelihood for models which have better fit to the data

but many more parameters. A model with increased complexity (as measured by pD) will

have a lower DIC value than a simpler model only if the improvement of the fit to the

data (as measured by the deviance at θ̂) outweighs (twice) the extra count of parameters.

In practise, Spiegelhalter et al. (2002) suggest that differences in the DIC of 3 or more be
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considered as strong evidence in favour of one model, while differences of 2 or less may be

attributable to Monte Carlo error and should not be interpreted in favour of the model with

lower DIC.

The primary advantage of the DIC over other Bayesian methods for model comparison

and selection (e.g. Bayes factors or posterior model probabilities) is ease of computation.

The DIC is computed directly from the sample of realisations from the posterior obtained

through MCMC. The method also provides a direct measure of each model’s complexity

and there is no requirement that the different models be nested. A disadvantage is that

the DIC does not provide a basis for multi-model inference by model averaging. This

leads to difficulties when several models perform equally well because the DIC cannot be

used to combine the separate inferences from these models into a single inference. Model

averaging could be performed through RJMCMC (Green, 1995), posterior model weights

(Raftery et al., 1997) or the Bayes Information Criterion for each model (Schwarz, 1978).

These procedures require more complex computations than the DIC, and have not been

explored in Chapters 2 and 3. In Chapter 4, the adaptive spline model is fit via RJMCMC,

which effectively produces inference averaged over a set of models with different numbers of

predictor functions (splines with differing numbers of knots).

Along with model selection, tools are also needed to check that a single, selected model

is adequate. In Chapters 2 and 3 I have chosen to assess the fit of the selected models by the

method of posterior predictive p-values (also called Bayesian p-values) (Meng, 1994; Gelman

et al., 1996; Gelman et al., 2003, pg. 157-177). The philosophy underlying this method is

that data simulated from the model will resemble the observed data if and only if the model

fits the data well. Let D(X,θ) denote some measure of the discrepancy between the data

and the model given the parameters θ. The p-value associated with this discrepancy is

(Gelman et al., 2003, pg. 162):

p =
∫ ∫

1[D(X ′,θ) > D(X,θ)]f(X ′|θ)π(θ|X) dX ′ dθ,

the probability under the posterior predictive density, f(X ′|θ)π(θ|X), that simulated data,

X ′, will produce a larger discrepancy than the observed data. In practise, the integral cannot

be computed analytically and is approximated by simulation. Several sets of parameters,

θ1, . . . ,θK , are generated. A new set of data is computed for each set of parameters, denoted
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by X ′
k for θk, and the p-value is approximated by:

p =
1
K

K∑
k=1

1[D(X ′
k,θk) > D(X,θk)].

There is no evidence for poor fit of the model if p is near .5.

The essential concept of the Bayesian p-value is very similar to that of a classical

goodness-of-fit (GOF) test. In the classical GOF framework, a test statistic is computed

from the observed data and compared to its sampling distribution under the assumption

that the true parameters are fixed and equal to the computed estimates. The p-value is the

probability that a new data set from the same model would produce test statistic more ex-

treme than observed. There are two key differences between classical GOF and the Bayesian

p-value. First, the Bayesian p-value does not consider a single, fixed set of parameters and

instead integrates the probability over the entire space weighted according to the posterior.

Second, the discrepancy function may depend on both the data and the parameter values –

it need not be a test statistic in the classical sense. Moreover, as shown in the simulations

of Chapter 2 the distribution of the Bayesian p-value is not necessarily uniform over the

interval (0, 1) for repeated data sets simulated from the true model. This has important

implications for diagnosing lack of fit.

Allowing the discrepancy measure to depend on both data and parameters provides great

flexibility in the types of function used to test a model’s fit. Brooks et al. (2000) provide some

specific guidelines for the use of Bayesian p-values in assessing mark-recapture models. In

particular, they recommend measures of discrepancy based on the Freeman-Tukey statistic

for comparing observed counts with their expected values:(√
x−

√
E(X|θ)

)2

where x is the count of individuals with some outcome (capture history in the current

context) and E(X|θ) its expected value. This measure assigns less weight to outcomes with

small expected counts than other measures, like Pearson’s χ2, and provides more robust

assessment when the expected counts of some outcomes are very close to 0. Note that the

expected counts are functions of the parameter values and so this function would not provide

a proper test statistic unless the parameter values were replaced with point estimates.
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1.3.3 Splines

Splines are functions commonly employed in the problem of smoothing bivariate data –

selecting a flexible function to describe the relationship in bivariate data with few assump-

tions beyond that the function must be continuous. The models developed in Chapters 2

and 4 both incorporate splines to describe the dependence of some quantity (specifically,

daily population sizes in Chapter 2 and individual survival probabilities in Chapter 4) on an

auxiliary variable (time in Chapter 2 and a continuous covariate in Chapter 4). Part of the

appeal of fitting splines is that the model can be formulated as an extension of polynomial

regression and so much of the theory and methods of linear models applies.

Suppose that we wish to model a response variable, y, as a function of a predictor, x,

in the range [ξl, ξu]. The disadvantage of a straight polynomial regression that the fit of a

polynomial is global: the value of the function over any (small) interval determines its value

over the entire range of data (Schumaker, 1993, pg. 103). If the relationship between the

two variables has a complicated shape with local features, then the polynomial model may

require very high degree to adequately describe the data. Splines allow for local behaviour

by introducing an extra set of predictor functions which are non-zero only over sub-intervals

of the range of x. The set of basis functions for a spline of order q includes the first q

polynomial basis functions, namely {1, . . . , xq−1}, as well as K truncated polynomial terms

defined as:

(x− ξk)
q−1
+ =

{
0 x < ξk

(x− ξk)q−1 x ≥ ξk

for some set of K points, ξl = ξ0 < ξ1 < . . . < ξK < ξK+1 = ξu, called the knots of the

spline. In the interval between any adjacent pair of knots, [ξk−1, ξk], the spline will be equal

to a polynomial of order q. In the next interval, [ξk, ξk+1], the exact form of the polynomial

will be altered by the addition of some multiple of the term (x − ξk)q−1. The spline will

still be continuous and will have q − 2 continuous derivatives over the entire range, but

the q − 1st derivative will be discontinuous with a jump at each knot. Cubic splines (order

q = 4) are employed in both chapters so that the fitted curve is a sequence of connected cubic

polynomials with continuous first and second derivatives and jumps in the third derivative

at each knot (Schumaker, 1993, pg.108).

When the order of the spline model is fixed, the flexibility of the fitted curve is determined

by two factors: 1) the number and placement of the knots and 2) the size of the jumps allowed
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in the (q − 1)st derivative at each knot point. Splines with larger numbers of knots and/or

larger jumps in the derivative will produce a wider range of shapes but generally less smooth

fits. This dichotomy leads to two competing approaches for fitting splines to bivariate data.

Penalised spline methods begin by defining a large number of knots with fixed positions and

then constraining the size of the jumps allowed at each knot to maintain smoothness (Eilers

and Marx, 1996; Ruppert et al., 2003, pg.65). Adaptive or free-knot spline methods allow

the larger jumps but include the placement of knots in fitting the curve so that knots are

located only where necessary and the number of knots is kept as small as possible (Jupp,

1978; DiMatteo et al., 2001). In Chapter 2, I implement the Bayesian penalised spline

method of Lang and Brezger (2004). The method developed in Chapter 4 employs the

Bayesian adaptive spline model of Biller (2000).

In practise, computation with the basis of truncated polynomial functions can lead to

numerical problems. The columns of the design matrix will be highly correlated if two knot

points are very close to each other and the entries of the design matrix may be very large

which makes matrix operations unstable. These problems can be avoided by working with

an equivalent basis – a set of q+K functions such that every spline can be written as a linear

combination of the new set of functions and vice versa. A common choice is the basis of

B-spline functions (De Boor, 1978; Schumaker, 1993; Ruppert et al., 2003). The advantages

of B-splines over the truncated polynomial basis are: 1) that the basis functions are positive

and sum to 1 at every point in [ξl, ξu], 2) as a result, the values of the design matrix will

always be between 0 and 1, and 3) each basis function is local in that it is positive only over

a fixed sub-interval. This last point means that the design matrix has a banded structure

which further simplifies the computation. The methods of both Chapters 2 and 4 make use

of the B-spline basis instead of the truncated polynomial basis. Formulas for computing the

B-spline basis functions are provided in De Boor (1978) and Schumaker (1993).



Chapter 2

Bayesian P-Spline Methods for

Modelling Sparse Data from the

Stratified-Petersen Experiment

2.1 Introduction

Stratification is a commonly employed in modelling capture-recapture data to avoid po-

tential biases of abundance estimates that might be caused by heterogeneity in the capture

probabilities among individuals in the population of interest. Instead of estimating the total

abundance directly, the population is divided into groups of individuals, or strata, for which

the capture probabilities can be assumed equal. Estimates are then computed separately for

each stratum and summed to produce an estimate of the total population size. While this

strategy does allow heterogeneity to be accounted for, the numbers of individuals marked

and/or recaptured in some strata may be very small. This can lead to numerical problems

in computing estimates for some strata or produce estimates with very low precision. My

approach is to explicitly model the population size of each stratum using splines in order to

share information among strata and increase the precision of the estimates of abundance in

strata with sparse data.

While stratified capture-recapture models are used in studies of many different animals

and stratification may be based on many factors (e.g., geographic location, age or sex),

I will consider the specific case of the two-sample experiment with individuals stratified

17
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temporally. These types of experiments are commonly used in fisheries research to monitor

the number of salmon migrating along a river – either as juveniles moving from freshwater

to the ocean or as adults returning to the spawning grounds to breed. At one location in the

river individuals are trapped, marked in some way, and returned to the population. Farther

along the river (downstream for juveniles and upstream for adults) a second trap collects a

sample which will contain both marked and unmarked fish (see Figure 2.1). The proportion

of marked fish recaptured provides information about the capture probability, which can be

combined with the total number captured to estimate the population size.

This design is modified in some experiments so that trapping need be conducted at

only one location in order to reduce the cost and effort required. Before the single trapping

location a group of marked individuals is released into the river. Often, these are individuals

that were captured earlier in the experiment. Samples are then captured from both the

population of interest and the introduced group of marked individuals. Figure 2.2 shows

how this emulates the second trapping location in the experiment with two traps. The

difference in analysing the data from this experiment is that the population of interest does

not normally include the marked individuals. If these individuals were previously captured

then they have already been included in the estimate of population size and do not need to

be counted again.

If it is reasonable to believe that the probability of being caught in the second trap is the

same for all individuals, then no stratification is necessary. Assuming that the population

is closed, i.e. that no individuals enter or leave the population between the two capture

locations, and that individuals behave independently, the probability of capture at the

second trap can be estimated by the proportion of marked individuals that were recaptured

during the entire experiment. The total population size is then approximated by a Horvitz-

Thompson type estimator, dividing the total number of individuals caught at the second

trap by the estimated capture probability. The resulting estimator is commonly referred to

as the Lincoln-Petersen index (Seber, 1982, pg. 59).

However, salmon migrations (also called runs) often last for several weeks and the capture

probabilities may vary considerably over this time. For this reason, it is common to stratify

the population by time, estimating capture probabilities and population sizes separately for

each day, or perhaps week, of the experiment. If sufficient numbers of fish are marked in

each stratum then the Lincoln-Petersen estimator, or a variation, can be applied to each

stratum separately and the resulting estimates summed to produce an estimate of total
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Trapping Location 1

Unmarked
(U=N­n)

Marked
(n)

Population of Interest
(N)

Trapping Location 2

Marked
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(m)

Unmarked
Captured
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Figure 2.1: Schematic diagram of the standard two-sample capture-recapture experiment.
A sample of size n from the population of size N is captured at the first trapping location,
marked and released. At the second location samples are obtained from the populations of
both marked and unmarked individuals. Notations for the number of individuals in each
group are included in brackets.

Trapping Location

Marked
Recaptured

(m)

Unmarked
Captured

(u)

Population of Interest
(N)

Marked
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Figure 2.2: Schematic diagram of the modified two-sample capture-recapture experiment
with only one trapping location. At the single location samples are captured from the pop-
ulations of both marked and unmarked individuals. Notations for the number of individuals
in each group are included in brackets. Marked individuals are, most often, excluded from
the population of interest to avoid double counting.
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abundance. Often there are some days in the experiment when very few fish are marked,

making the estimated capture probability for this day, and hence the estimate of abundance,

very imprecise (Seber, 1982, pg. 60).

A second challenge that arises in most experiments of this type is that fish marked at

the first site on one day do not necessarily all pass the second site on the same day. Instead,

some fish may migrate very quickly so that they pass the second trap on the same day

that they are released at the first while other fish may move more slowly and don’t pass

the second site until several days after being marked and released. When this occurs, it

is not possible to know exactly how many marked fish were present on each day at the

second location, and so the Lincoln-Petersen estimates cannot be computed for each day

directly. Instead, it is necessary to model the movement of the marked fish between the two

sites in order to approximate the number of marked fish available on each day and then to

estimate the capture probability Darroch (1961). This adds even more uncertainty to the

daily estimates of population size.

Provided that unique marks are applied on each day it is possible to know when a

recaptured fish was originally marked, and data from these experiments are commonly

summarised by a matrix whose i, j entry indicates the number of fish marked on stratum i

and recaptured in stratum j. This matrix will be diagonal if it is known that fish passing

the first location in stratum i always pass the second location in stratum i and experiments

generating such data will be referred to as diagonal experiments. For example, data from a

diagonal experiment with three strata might be displayed as:

Marked Recaptured

10 1

10 1

10 1

Unmarked 100 100 100

indicating that in each stratum 10 individuals were marked at the first location and 1 was

recaptured at the second location along with 100 more unmarked individuals. This type of

data might arise if individuals are stratified by day and the traps are close enough to each

other so that fish take at most a few hours to move from the first location to the second.

The more general experiment in which individuals marked in stratum i may be recaptured

outside of this stratum will be referred to as the non-diagonal stratified experiment. Sample

data might be displayed as:
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Marked Recaptured

10 1 1 1

10 1 1

10 1

Unmarked 100 100 100

indicating that 10 individuals were marked in each stratum at the first location, 1 individual

from each was recaptured at the second location in each of the subsequent strata and a

further 100 unmarked individuals were captured in each stratum at the second location.

The empty cells indicate structural zeros in the data; when the strata are based on time it is

not possible for individuals marked in one stratum to be recaptured in a previous stratum.

The standard methods for analysing stratified data treat the counts in each stratum

as completely independent of counts in all other strata. This is too general for studies of

migrating salmon and other temporally stratified mark-recapture data. While fluctuations

in the counts from day-to-day will always occur, migrations tend to follow a fairly predictable

pattern: few fish pass on the days early in the migration period, the numbers grow fairly

steadily to one or two peaks in the middle of the migration and then drop back down at the

end of the period. The result is that the abundance of fish on one day is strongly associated

with the abundance on the neighbouring days. The objective of my work in this project

is to model the daily abundance of fish passing the second site as a smooth curve in order

to explicitly model this dependence. To capture this behaviour without making too many

assumptions about the exact shape of the smooth curve, I model the daily abundance by

fitting a spline. In particular, I apply the Bayesian P-spline model developed by Lang and

Brezger (2004).

The format of this chapter is as follows. Sections 2.2 and 2.3 describe the development

of the spline model for the cases of diagonal and non-diagonal stratified experiments, and

provide results from simulation studies comparing the model with other estimators of abun-

dance for stratified data. In section 2.4, the model is applied to two data sets, the first

collected during the migration of juvenile Atlantic salmon (Salmo salar) through the Conne

River in Newfoundland in 1987 and the second collected during the migration of juvenile

Chinook salmon (Oncorhynchus tshawytscha) through the Trinity River in California in

2003. This is followed by a discussion of the results and some extensions of the model.
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2.2 The Diagonal Stratified-Petersen

2.2.1 Introduction

In this section, I consider data from experiments in which individuals cannot change strata

between the two sampling locations. This would be the case in estimating the total size of

a salmon run if, for example, the two sampling locations were close enough to guarantee

that fish always pass both sites in one day. Suppose that fish are marked and released for

a total of s consecutive days. Let ni denote the number of fish marked and released at the

first site on day i, mi the number of these fish that are recaptured at the second site, and ui

the number of unmarked fish captured at the second site. Let Ui denote the total number

of unmarked individuals which pass the second site on day i. The objective is to estimate

U1, . . . , Us from which the total population size can be computed as N =
∑s

i=1(ni + Ui).

The standard assumptions for modelling data from this type of study are that the sam-

ples of marked and unmarked fish captured at the second location on each day form simple

random samples from the sets of marked and unmarked fish available, with the same sam-

pling probability for both. More formally, it is assumed that:

1) the population is closed (i.e., no fish enter or leave the population between the two sites)

2) marks are not lost between the two samples

3) all fish in one stratum have the same probability of being captured at the second site

4) and whether or not any individual is captured at the second site is independent of the

capture of all other individuals.

Under these assumptions, the numbers of marked and unmarked fish captured at the second

site on day i have independent binomial distributions:

mi ∼ Binomial(ni, pi) and ui ∼ Binomial(Ui, pi)

where pi is the probability that any individual in the ith stratum is captured at the second

site. The likelihood for the two sets of parameters p = (p1, . . . , ps) and U = (U1, . . . , Us) is

then constructed by multiplying the contributions from the marked and unmarked fish for
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each day:

L(p,U |n,m,u) =
s∏

i=1

[(
ni

mi

)
pmi

i (1− pi)ni−mi ·
(

Ui

ui

)
pui

i (1− pi)Ui−ui

]
. (2.1)

Note that the model makes no assumptions regarding the capture and marking of individuals

at the first site.

2.2.2 Previous Estimators of Abundance

Given this model, the simplest method for estimating the total population size is to estimate

each Ui separately given ni, mi and ui and then to sum these values. The intuitive estima-

tor of pi, and also maximum likelihood estimator (MLE), is the proportion of marked fish

recaptured, p̂i = mi/ni. Equating the expected and observed number of unmarked fish cap-

tured on day i and substituting p̂i then yields the estimator Ûi = (niui)/mi or equivalently

N̂i = (ni · (ui + mi))/mi, which is the Lincoln-Petersen estimator of abundance.

This estimator presents two problems in practice, particularly when the capture proba-

bilities are small. First, the estimate does not exist when mi = 0 since this entails division

by 0. Second, the estimator is biased for all experiments – in fact, E(N̂i) = ∞ because

there is always a non-zero probability that mi = 0. The estimator commonly used instead

is the Chapman estimator (Seber, 1982):

Ñi =
(ni + 1)(ui + mi + 1)

(mi + 1)
− 1. (2.2)

which essentially adds 1 to the counts of marked, recaptured and unmarked inviduals caught

in order to avoid division by 0, and then subtracts 1 from the final estimate to account for

the change. This estimator can always be computed and is known to be unbiased when

ni + ui + mi ≥ Ni, a condition which ensures that at least one marked individual was

recovered at the second site. In the case where ni +ui +mi < Ni, Seber (1982, pg. 60) notes

that the bias is negligible (< .02 95% of the time) provided that mi ≥ 7. The variance of

the Chapman estimator for a single strata can approximated by (Seber, 1982):

V̂ (Ñi) =
(ni + 1)(mi + ui + 1)(ni −mi)ui

(mi + 1)2(mi + 2)
. (2.3)
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By independence, the variance of the estimator of total abundance, Ñ =
∑s

i=1 Ñi, is ap-

proximated by the sum of the variances for the individual strata, V̂ (Ñ) =
∑s

i=1 V̂ (Ñi).

Seber (1982) demonstrates that the relative standard error of the Chapman estimator

for a single strata is approximately 1/
√

E(mi). When E(mi) is very small, the relative

standard error will be very large and the estimate of population size for stratum i will be

highly variable. With E(mi) = 5 the standard error of N̂i is approximately .45N̂i and with

E(mi) = 1 is approximately N̂i. The standard solution to this problem is to pool the data

– i.e., to reduce the number of strata by adding ni, mi and ui for several consecutive days,

and then computing the Chapman estimates for each of the new strata. Complete pooling

results if the analysis ignores the stratification entirely, summing the data over all days and

computing an estimate of the total population size directly. Let n =
∑s

i=1 ni, m =
∑s

i=1 mi

and u =
∑s

i=1 ui. The completely pooled Chapman estimator of the population size is:

Ñpool =
(n + 1)(m + u + 1)

m + 1
− 1 (2.4)

and an estimate of the variance of this estimator is:

̂V (Ñpool) =
(n + 1)(m + u + 1)(n−m)u

(m + 1)2(m + 2)
. (2.5)

Key to the validity of this estimator is the variation in the capture probabilities over the t

days. If the capture probabilities are constant, then Ñpool is unbiased for N and ̂V (Ñpool)

will provide an accurate estimate of the uncertainty. However, if the capture probabilities

vary over time the estimator may be biased and, often more importantly, ̂V (Ñpool) may

severely underestimate the true variability of the estimator. Simulations I have performed

indicate that when E(pi) is small the bias in ̂V (Ñpool) may be as much 40%. This is also

observed in the simulations presented in section 2.2.4 below.

Bayesian hierarchical modelling presents an alternative to pooling that draws on the sim-

ilarities between strata without assuming exact equality of the capture probabilities. Man-

tyniemi and Romakkaniemi (2002) developed a hierarchical model for non-diagonal data

which I have simplified here for diagonal experiments. In the simplest, non-hierarchcial

Bayesian model of the SP experiment, each pi and Ui would be assigned independent prior

distributions, and the posterior distribution for each depend would only on the data col-

lected on day i. In the hierarchical model, the parameters from different days are linked by
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assuming that p and U form random draws from some hyperpriors. Mantyniemi and Ro-

makkaniemi (2002) suggest a normal model for the logit transformed capture probabilities

and a multinomial prior for the daily run sizes where the parameters of these distributions,

including the total population size, are assigned hyperpriors with fixed parameter values.

The advantage of the hierarchical model is that inference for the parameters in one

stratum will depend on the data from all strata. In this way, data is shared among the

strata, but the parameters are still allowed to vary day-to-day. The disadvantage of the

hierarchical approach is that it makes no adjustment for the ordering of the data – the same

amount of information is shared between days 1 and 2 as days 1 and 10 or days 1 and 100.

2.2.3 The Bayesian P-Spline Model

While the hierarchical model allows for data to be shared among strata, it does not consider

the natural ordering of the data when strata are based on time. By assuming that each pi and

Ui form independent draws from their respective hyper-priors, the amount of information

shared between (pi, Ui) and (pj , Uj) is the same regardless of whether i−j is 1, 5 or t−1. In

the case of temporal stratification, and particularly the application to salmon migrations, it

seems intuitive that the number of fish passing the second trap will be more similar for days

that are close together and less similar for days that are further apart. This can be achieved

through several different extensions of the hierarchical Bayesian model, for example, by

assuming that the correlation between Ui and Uj follows some decreasing function of |i− j|
or by defining an autoregressive model as in time series analysis. I have chosen to model Uj

explicitly as a smooth curve using the Bayesian penalized spline (P-spline) method of Lang

and Brezger (2004).

As discussed in the introduction, two factors control the smoothness of a spline: the

number and locations of the knots and the variation in the coefficients of the basis func-

tion expansion. The classical P-spline method of Eilers and Marx (1996) approaches this

dichotomy by fixing a large number of knot points and then penalizing the first or second

order differences of the coefficients. In the original implementation, the spline curve is fit by

minimizing a target function which adds the sum-of-squared residuals and a penalty term

formed as the product of a smoothing parameter and the sum of the differences of the spline

coefficients. Increasing the smoothing parameter places more weight on the penalty term

and results in a smoother curve. Decreasing the smoothing parameter places more weight

on the sum-of-squared residuals and produces a fit that comes closer to interpolating the
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data.

Lang and Brezger (2004) develop a Bayesian formulation of the P-spline method which

replaces the penalty term by a particular prior distribution for the coefficients. Let

B(x)1, . . . , B(x)K+q denote the B-spline basis functions for a spline of order q with K knots

and b1, . . . , bK+q the corresponding coefficients. To ensure that the population size in each

strata remains positive, I model the log transformed daily counts and the fitted spline has

the form:

log(Uj) =
K+q∑
k=1

bkBk(j). (2.6)

The prior distribution for the parameters b1, . . . , bK+q suggested by Lang and Brezger (2004)

models the differences in these coefficients as either a first or second order random walk.

Here I apply the second order prior such that:

bk+1 − bk = (bk − bk−1) + δk

where the δk are independent, normally distributed random variables with mean 0 and

variance τ2
U . The initial coefficients, b1 and b2, are assigned improper flat priors.

In the Bayesian P-spline approach, the variance parameter τU plays the same role as

(though opposite in direction to) the smoothing parameter in the classical method. If τU is

small, then the bk will all be very similar and the spline will be smooth. If τU is large then

the bk may vary more widely and the spline will be more flexible. Rather than fixing the

value of τU , this parameter is assigned a prior distribution which incorporates uncertainty in

the amount of smoothing required. Following Lang and Brezger (2004), I define an inverse

gamma prior, 1/τ2
U ∼ Γ(α, β), with the parameters α and β chosen so that E(τU ) is small,

which a priori favours a smooth fit, but V (τU ) is large, which allows a less smooth curves

if the data requires. Lang and Brezger (2004) suggest α = 1 with β = .005, β = .0005, or

β = .00005. By default, I have chosen α = 1 and β = .0005.

Although the spline model may reflect the trend in the daily population size, similar to

a running mean, it is unlikely that Uj will exactly follow a smooth curve. If the deviations

from a smooth curve are small then it seems reasonable that forcing Uj to be smooth will not

have a large impact on the estimation of N . However, it was not clear how the estimator of

the total population size would be affected if Uj deviated significantly from a smooth curve.
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To assess this, I also consider an extension of the spline model with an added error term:

log(Uj) =
K+q∑
k=1

bkBk(j) + εj (2.7)

where the εj are assumed independent and normally distributed with mean 0 and variance

τe. The variance parameter τe was assigned the inverse gamma distribution 1/τ2
ε ∼ Γ(1, .05).

Samples from the posterior distributions of these models were generated through MCMC

sampling in the OpenBUGS software package (Thomas et al., 2006). BUGS code for the

Bayesian P-spline models with and without the error term are included in Appendix A.1 and

Appendix A.2. One complication in sampling from the posterior distribution of the Bayesian

P-splines model was that the chains had very high autocorrelation and mixed very slowly.

This was due to the strong associations between some parameters that prevented the chains

from making large jumps in the parameter space. To ensure that the samples adequately

covered the parameter space, several chains were run in parallel starting from dispersed

initial values. Each chain was also thinned considerably to reduce the auto-correlation and

avoid storing the output from many highly correlated realizations that provided little extra

information about the shape of the posterior. Convergence was assessed by comparing trace

plots for select parameters and by computing the BRG diagnostics.

Fit of the selected model was assessed by computing Bayesian p-values as described in

section 1.3.2. P-values were generated for three different discrepancy measures assessing

different components of the model:

D1(X,θ) = −2 · L(p,U |X)

D2(X,θ) =
∑s

i=1

(√
mi −

√
nipi

)2
D3(X,θ) =

∑s
i=1

(√
ui −

√
Uipi

)2
.

The first measure is simply the deviance and is intended to provide an overall assessment of

fit, the second and third are the Freeman-Tukey statistics comparing the observed and ex-

pected number of marked individuals recaptured and comparing the observed and expected

number of unmarked individuals captured at the second site.
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2.2.4 Simulation Studies

I conducted two simulation studies to assess the performance of the Bayesian P-spline model

and compare it with other methods of estimating the population size. In the first study, the

daily run size exactly followed a smooth curve. Accuracy and precision of the estimators

of total population size from the P-spline models were compared with 4 other methods of

estimating the population size: summing daily Chapman estimates, complete pooling, fitting

a simple Bayesian model with complete independence between days and fitting a hierarchical

model of the capture probabilities and daily run size. The second simulation compared only

the P-spline model with and without the extra error term when the true model deviated

from a smooth curve. Parameters values chosen for the simulations mimicked the daily run

size and capture probabilities estimated from fitting the P-spline model to the Conne River

data (see section 2.4.1 for details).

My expectation for the first simulation was that the P-spline model would outperform

the other methods for estimating the population size. I anticipated that all methods would

produce unbiased estimates. However, the precision of the estimator from the P-spline

model should have been improved by taking advantage of the knowledge that the run size

was exactly smooth. I hoped that the P-spline model without the error term would also

perform as well or better than the model with the extra error term in the second simulation

even though the daily run sizes did not follow a smooth curve. My reasoning was that

the errors from the strict P-spline model might cancel each other out so that even though

the daily run size would be overestimated on some days and underestimated on others, the

estimator of total population size would be unbiased. If this were true, it would not be

necessary to fit the more complex model with the extra error term.

Simulation 1a: Run size follows a smooth curve

The first simulation compared the performance of the P-spline model and standard models

when the true numbers of fish passing the second site each day, N1, . . . , Ns, exactly followed

a smooth curve. The shape of the run for the Conne River data Atlantic salmon smolts was

approximated by a curve formed from two quadratic segments on the log-scale with a single
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maximum at 13.5 days. The exact formula was:

Ni =

{
7100(1−(i−13.5)2/13.52) + 125 i = 1, . . . , 13

7100(1−(i−13.5)2/202) + 125 i = 14, . . . , 40
(2.8)

with Ni rounded to the nearest whole number. The number of fish marked per day was

chosen to be a fixed 100 (ni = 100, i = 1, . . . , 40), so that Ui = Ni − 100. The resulting

number of unmarked fish passing the second site per day starts and ends at 25, and reaches

a maximum of 7103 on day 14 (see Figure 2.3). The true total population size resulting for

this model was 87 thousand. Capture probabilities were simulated independently for each

day from a beta distribution with parameters α = 2.5 and β = 50. The resulting mean and

standard deviation were .05 and .03 with 5th and 95th percentiles of .01 and .10.

From these models of the run size and the capture probabilities, I generated 100 indepen-

dent data sets in two steps. First, daily capture probabilities, p1, . . . , p40 were independently

sampled from the specified beta distribution. Counts of the marked and unmarked fish ob-

served on each day at the second site were then simulated as independent binomial random

variables mi ∼ Binomial(100, pi) and ui ∼ Binomial(Ui, pi).

For each data set, estimates of the total populations size were computed from 6 methods

as follows:

1) Daily Chapman estimates

• Daily estimates computed via equation (2.2) and then summed to produce an esti-

mate of total population size.

2) Pooled estimator

• Data pooled completely by summing the number of marks, recaptures, and un-

marked individuals over all days of the experiment. An estimate of population size

was then computed via equation (2.4).

3) Simple Bayesian model

• Bayesian model fit with independent priors on each pi and Ui:

logit(pi) ∼ N(−2, 1.22)

log(Ui) ∼ N(7.5, 4).
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4) Hierarchical Bayesian model:

• Bayesian model fit with hierarchical prior distributions for both pi and Ui:

logit(pi) ∼ N(ξp, σ
2
p), with ξp ∼ N(−2, 1.22) and 1/σ2

p ∼ Γ(.001, .001)

log(Ui) ∼ N(ξU , σ2
U ), with ξU ∼ N(7.5, 4) and 1/σ2

U ∼ Γ(.001, .001).

5) Bayesian P-spline model:

• Bayesian model fit with hierarchical prior for pi, as in previous model, and Bayesian

P-spline model of equation (2.6) for log(Ui). The second difference prior was selected

for the coefficients of the spline:

b1 ∝ 1, b2 ∝ 1, bk ∼ N(2bk−1 − bk−2, σ
2
U ) for k = 3, . . . ,K + 4

and 1/τ2
U ∼ Γ(1, .0005).

6) Bayesian P-spline model with Error:

• Bayesian model fit with hierarchical prior for pi, as in model 4, and Bayesian P-

spline model with error of equation (2.9) for log(Ui). The prior for the spline

coefficients, b1, . . . , bK+q was the same as in model 4. The variance of the error

terms was assigned the inverse gamma prior 1/τ2
ε ∼ Γ(1, .05).

The prior distributions for the simple and hierarchical Bayesian models were chosen to be

somewhat informative about the model parameters. The prior median of Ui for the simple

Bayesian model was 1808 with 5th and 95th percentiles 3 and 1.30×106. The prior median of

pi was .12 with 5th and 95th percentiles .02 and .50. Summaries of the posterior distribution

of total abundance, N =
∑40

i=1(Ui + ni), for the Bayesian models were computed from

samples of Ui generated via MCMC in OpenBUGS (Thomas et al. (2006)). Each Markov

chain was run for 100,000 iterations, discarding the first 20,000 iterations as burnin and

retaining every 5th of the remaining iterations for computing summary statistics. Posterior

means were chosen as point estimates of the total population size and posterior standard

deviations as measures of uncertainty.

Note that the data generating model does not exactly match the models for analysis.

In particular, the capture probabilities were generated from a beta distribution but the 4

fitted Bayesian models assume that the capture probabilities follow a normal distribution
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on the logit scale. However, the normal distribution on the logit scale can be made to fit

very closely to the chosen beta distribution. If X ∼ N(−3.15, .65) then the distribution

function of eX/(1 + ex) differs from the distribution function of the beta distribution with

parameters α = 2.5 and β = 50 by at most .03. Because of this, the difference between the

genrating and fitted models will not affect the models’ performance.

Performance of the 6 methods was assessed in terms of the bias and mean squared

error (MSE) of the estimator of the total population size, along with the accuracy of the

associated estimator of uncertainty. For any one of the above methods, let N̂k denote

the point estimate of N computed from the kth simulated data set and Ŝk the associated

estimate of uncertainty. Let N∗ and S∗ denote the observed mean and standard deviation of

N̂k across the 100 simulated data sets: N∗ =
∑100

k=1 N̂k/100 and S∗ =
∑100

k=1(N̂k −N∗)2/99.

Accuracy of the estimate of total population size was assessed by the percent bias:

%Bias(N̂) = 100
(N∗ −N)

N
.

MSE of the estimator was computed as usual, but converted to a percentage of the square

of the true population size:

%MSE(N̂) = 100
∑100

k=1(N̂k −N)2

N2

This produced a unitless quantity that could be averaged across data sets even if the popu-

lation size was not constant, as in the second simulation. Accuracy of the estimate of error

was assessed through the percent bias:

%Bias(Ŝ) = 100
(
∑100

k=1 Ŝk/100− S∗)
S∗ .

For the daily Chapman estimators, Ŝk was computed as square root of the sum of the daily

variance provided in equation (2.3); for the pooled estimator, Ŝk was computed from the

square root of the variance in equation (2.5); and for the Bayesian models, Ŝk was taken to

be the posterior standard deviation of the total population size. The posterior predictive

p-values and DIC were also computed for the 3 Bayesian models.

Table 2.1 presents the results for all 6 methods. The pooled Chapman estimator, P-spline

model, and P-spline with error all provided nearly unbiased estimates of N – the %Bias for all
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3 estimators being within 1 standard error of 0. The summed daily Chapman estimates had

a slight negative bias, while the posterior mean from the simple and hierarchical Bayesian

model had significant positive biases. The simple and hierarchical Bayesian models also

produced the highest %MSE. The estimated %MSE for the posterior mean of the simple

Bayesian model was approximately 1.5 times that of the %MSE of both the Daily and Pooled

Chapman methods, which, in turn, were almost twice the %MSE of both the P-spline model

with and without error.

As expected, the standard error of the pooled Chapman estimator significantly under-

estimated its true variability. In contrast, the posterior standard deviation from the simple

Bayesian model severely overestimated the variability of this estimator. Posterior standard

deviations for both the P-spline and P-spline without and with error provided very accurate

measures of the variability of the estimator of total population size.

Table 2.2 presents summary statistics for the DIC and the Bayesian p-values for the 4

Bayesian models. Not surprisingly, the P-spline model has the lowest measure of complexity.

By taking advantage of the temporal structure, the effective number of parameters is reduced

by 1/3 in comparison with the hierarchical model. Introducing the extra error term into

the P-spline model did increase pD slightly, but the value was still much lower than for

the hierarchical model. The P-spline model without error also produced the lowest DIC

when averaged over all 100 datasets and was selected (i.e. had the lowest DIC) for 79% of

the simulated datasets. The P-spline model with error had the lowest DIC value for the

remaining 21%. On average, the mean difference in DIC between these two models was less

than 1.1, suggesting very little difference in the models’ fit. Indeed, the absolute difference

in the estimate of population size for the two P-spline models was less than 4300 (5% of the

total population size) for all 100 data sets.

One surprising result was that the Bayesian p-values were not uniformly distributed on

(0, 1) for any model or discrepancy measure. Given that the true daily run size followed a

smooth curve, I expected the p-values be uniformly distributed for all models. Instead, the

means of the p-value were always close to .5 but the 5th and 95th percentiles were all near

.2 and .8, not .05 and .95 as I had expected.

Simulation 1b: Uj follows a smooth curve plus noise

In reality, the true daily population sizes will never conform exactly to a smooth curve;

fluctuations will always occur as the result of changes in the environment and the natural
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behaviour of the migrating fish. To examine the effects of deviations from the smooth curve

on the performance of the Bayesian P-spline method, I conducted a second simulation study

in which random noise was introduced into the model of the run size. Daily numbers of

fish passing the second trap were generated from the same model as in the first simulation

study, except that random Gaussian noise with standard deviation of .5 was added to the

logarithm of the daily run sizes. That is:

Ni =

{
7100(1−(i−13.5)2/13.52+εi) + 125 i = 1, . . . , 13

7100(1−(i−13.5)2/202+εi) + 125 i = 14, . . . , 40
(2.9)

where each εi ∼ N(0, .52) independently, and Ni is rounded to the nearest whole number.

In this study, 30 data sets were generated from each of 30 different realizations of

N1, . . . , N40. The total population size for the 30 realizations ranged between 73 and 130

thousand, with mean 99 thousand. Capture probabilities and the numbers of marked and

unmarked fish captured at the second trap for each data set given the true counts were

simulated exactly as in the first study. I fit both the Bayesian P-spline models without and

with the error term to each data set and compared the results with the same statistics used

in the previous section.

Table 2.3 presents the summary statistics comparing the estimators of population size

from the P-spline models without and with the error term. As in Simulation 1a, both

models produced nearly unbiased estimates of the population size. However, the posterior

standard deviation from the P-spline model without error underestimated the variability

in the population size by just over 10% on average, while the model with the error extra

error still produced a very accurate estimate of the uncertainty. The actual variability in

the estimates of the daily population size, averaged over the 30 realizations, was smallest

for the Bayesian P-spline model with error.

Table 2.4 presents the DIC and Bayesian p-values for the two models. In contrast to the

previous study, the P-spline model with the extra error term produced DIC values that were,

on average, 10 units lower than the DIC values for the model without error and lowest for

more than 90% of the simulated data sets. The Bayesian p-values provide further evidence

that the strict P-spline model could not fit the simulated data adequately. The means of all

three p-values were below .5, and the 5th and 95th percentiles were not centred on the unit

interval.
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Summary

In the first simulation study, summing the daily Chapman estimates underestimated the true

population size by slightly more than 5%. The reason for this is that the daily estimator is

not unbiased when the number of individuals marked is very small. Pooling the data over all

days avoids the small counts and produces an estimator that is almost unbiased. However,

this estimator completely ignores the variation in the capture probabilities and the resulting

estimate of uncertainty was severely, negatively biased. This is very important for wildlife

managers who may be led to make strong decisions on what action to take under the false

belief that they have a very precise estimate of the population size.

The poor performance of the simple Bayesian model had two root causes. Because

the model considered data from each day independently the estimate of population size

was highly influenced by outliers in the data. In particular, the model tended to severely

overestimate the population size on days when the number of recaptured individuals was

low, which lead to the overall positive bias. When data is sparse the results are also highly

dependent on the choice of prior distributions. This was in fact the reason that the third

Bayesian p-value was consistently above .5 for this model. The prior distribution for the

capture probabilities placed significant mass on values above .5, far higher than the true

values. When data was simulated from the posterior-predictive distribution the numbers of

unmarked individuals captured at the second site almost always was much higher than the

observed number which has specific influence on the 3rd discrepancy measure. Further to

this, the choice of priors with large variances inflated the posterior standard deviation of the

total population size which biased the estimator of uncertainty. Selecting more informative

prior distributions did decrease the bias and also corrected the Bayesian p-value (results not

shown), but it is not clear that strongly informative prior distributions can be provided for

real experiments.

The hierarchical model remedies these problems somewhat by sharing information among

the days. This reduced the effect of outliers, decreased the bias of the estimator of population

size and also lessened the sensitivity to the prior distribution. However, the hierarchical

model treated all days equally without regard for the order of the data. In these simulations,

and in most real experiments, the data was most sparse at the start and end of the migration

period. The tendency of the hierarchical model was to pull the posterior distribution for

the population size on these days up toward the posterior distributions in the middle of the
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run, when more individuals were captured and data was much richer. The result was that

the daily population size was often overestimated at the start and end of the run, creating

a positive bias overall.

Estimators of the total population size from both the P-spline models without and with

the error term out-performed the other methods when the daily run size followed a smooth

curve. However, the model without the extra error term could not adapt to the noise in the

second simulation. The model over-smoothed the data and the DIC and Bayesian p-values

both indicated that the fit was not adequate. My conclusion is that the P-spline model with

error provides a compromise between complete exchangeability and exact smoothness that

performs almost as well as the strict P-spline model when the true run size is smooth but

is likely to provide better fit to real data.
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Method N∗ %Bias(SE) % MSE Mean SE Obs. SD % Bias(SE)
Daily Chapman 81.2 −7.1(1.2) 1.9 10.5 10.3 2.0(3.2)
Pooled Chapman 85.7 −1.9(1.4) 1.8 5.9 11.8 −49.6(0.9)
Simple Bayes. 97.1 11.0(1.3) 2.9 15.5 11.4 35.4(4.6)
Hierarchical Bayes. 93.8 7.3(1.3) 2.3 12.3 11.6 5.6(3.8)
P-Spline 88.0 0.7(1.0) 1.0 8.8 8.6 1.6(1.7)
P-Spline w Error 88.9 1.7(1.0) 1.1 9.1 8.9 2.2(1.7)

Table 2.1: Comparison of the estimators of abundance and their uncertainty for Simulation
1a. Estimation of abundance is assessed according to the %Bias and %MSE of the point
estimators. Values provided are the mean estimate of N (scaled by 103), the %Bias (with
standard error in parentheses), and the %MSE. The true population size in the simulations
was 87 thousand. Estimation of the uncertainty is assessed according to the %Bias of the
point estimator of the standard error. Values provided are the mean of the uncertainty
estimates from the 100 simulations and the observed standard deviation of the estimator of
N (both scaled by 103), and the %Bias of the uncertainty estimate (with its standard error
in parentheses).
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Simple Bayes. 459.6 69.9 0 .51(.46,.57) .45(.19,.73) .61(.53,.70)
Hierarchical Bayes. 455.4 61.5 0 .46(.37,.56) .41(.17,.76) .53(.42,.65)
P-Spline 435.1 41.1 79 .44(.17,.68) .48(.08,.86) .46(.20,.71)
P-Spline w Error 436.2 44.7 21 .50(.29,.68) .50(.14,.84) .49(.23,.71)

Table 2.2: DIC and Bayesian p-values for the Bayesian models applied in Simulation 1a.
The left half of the table presents the mean values of DIC and pD over the 100 simulated
data sets. Also provided is the % of the data sets for which each method produced the
lowest DIC value. The right half of the table presents the mean Bayesian p-value for each
of the three discrepancy measures. The 5th and 95th percentiles of the Bayesian p-values
are provided in parentheses.

Method %Bias(SE) % MSE Mean SE Obs. SD % Bias(SE)
P-Spline 1.4(0.4) 1.5 10.2 11.8 −11.7(0.6)
P-Spline w error 0.8(0.4) 1.3 10.8 11.1 −0.7(0.6)

Table 2.3: Comparison of the estimators of abundance and their uncertainty for Simulation
1b. Estimation of abundance is assessed according to the %Bias and %MSE of the point
estimators. Values provided are the mean estimate of N (scaled by 103), the %Bias (with
standard error in parentheses), and the %MSE. Estimation of the uncertainty is assessed
according to the %Bias of the point estimator of the standard error. Values provided are
the mean of the uncertainty estimates from the 100 simulations and the observed standard
deviation of the estimator of N (both scaled by 103), and the %Bias of the uncertainty
estimate (with its standard error in parentheses).
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P-Spline 457.5 42.4 6.8 .11(.00,.36) .25(.01,.64) .41(.14,.66)
P-Spline w error 445.6 50.0 91.4 .42(.27,.56) .45(.12,.79) .51(.27,.72)

Table 2.4: DIC and Bayesian p-values for the Bayesian models applied in Simulation 1b.
The left half of the table presents the mean values of DIC and pD over the 300 simulated
data sets. Also provided is the % of the data sets for which each method produced the
lowest DIC value. The right half of the table presents the mean Bayesian p-value for each
of the four discrepancy measures. The 5th and 95th percentiles of the Bayesian p-values are
provided in parentheses.
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Figure 2.3: Number of fish passing the second trap on each day in Simulations 1a and 1b.
The solid black line indicates the number of fish passing on each day in Simulation 1a. The
grey lines represent separate realizations from Simulation 1b, obtained by adding Gaussian
error to the values of Simulation 1a (on the logit scale). The dashed black lines indicate the
daily maximum and minimum numbers of fish passing on each day over the 300 data sets
in simulation 1b.
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2.3 Non-Diagonal Data from Two-Sample Studies

2.3.1 Introduction

In many fisheries studies, it is not reasonable to assume that all of the fish marked at the

first site on one day will pass the second site on the same day. Some fish may move between

the sites more slowly than others so that fish marked on one day are recovered for several

days afterward. The result is that the numbers of marked fish passing the second site on

each day cannot be known exactly and capture probabilities cannot be estimated simply by

comparing the daily counts of marked and recovered fish. Instead, more complex models

are needed to produce estimates of the number of marked fish in each stratum at the second

site, from which the capture probabilities can be estimated.

The general design for a stratified, two-sample experiment does not require that the

number of strata be the same in both samples. In fisheries monitoring programs, trapping

is often conducted for longer at the second site to allow the fish marked during the final days

of capture at the first site time to move to the second site. Let s denote the number of strata

in the first sample, indexed by i, and t the number strata in the second sample, indexed by

j. Let ni denote the number of individuals marked from stratum i, mij denote the number

of individuals marked in stratum i which are recaptured in stratum j and uj the number of

unmarked individuals captured in stratum j of the second sample. In fisheries work, it is

usually reasonable to assume that fish do not move backward from site 2 to site 1, so that

individuals marked on day i may only be recovered at site 2 on days i, i + 1, i + 2, . . . , t.

The resulting matrix of recoveries, the s× t matrix with entries mij denoted by M , will be

upper triangular.

The standard model for non-diagonal data assumes that the probability of belonging to

stratum j at the second site is the same for all individuals marked in stratum i at the first

site. In the fisheries context, this means that all fish released at the first site on day i have

the same probability of passing the second site on day j, for each j = i, i + 1, . . . , t. Let

θij denote the probability that an individual marked and released in stratum i at the first

site moves to stratum j at the second site. Assuming independence between movement and

capture at the second site, the probability that an individual is marked in stratum i and

recaptured in stratum j is θijpj . The probability that an individual marked in stratum i is

never recovered is 1−
∑t

j=i θijpj . The recoveries of the individuals marked in stratum i are
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then modelled according to the multinomial distribution:

(mi1, . . . ,mit, ni −mi·) ∼ Multinomial

ni,

θi1p1, . . . , θitpt, 1−
t∑

j=i

θi1pj

 (2.10)

where mi· =
∑t

j=i mij denotes the total number of individuals marked in stratum i and

ever recovered. As in the model for the diagonal experiment, the model conditions on the

number of unmarked individuals alive in each stratum at the second site, Uj , so that:

uj ∼ Binomial(Uj , pj). (2.11)

No assumptions are made concerning the movement of unmarked individuals among the

strata of the two samples. The full likelihood is again formed by multiplying the contribu-

tions for the marked and unmarked individuals over all days of the experiment yielding:

L(p,Θ,U |n,M ,u) =
∏s

i=1

[
ni!

mi1!···mit!(ni−mi·)!

(∏t
j=i(θijpj)m

ij

)(
1−

∑t
j=1 θijpj

)(ni−mi·)
]

·
∏t

j=1 p
uj

j (1− pj)Uj−uj

(2.12)

with Θ denoting the s× t matrix of transition probabilities.

2.3.2 Previous Estimators of Abundance

Several methods have been developed to compute estimates of population size based on this

model of the two-sample study. Schaeffer (1951) developed an ad hoc approach to estimation

that is credited as the first treatment of the model, though (Schwarz et al., 2008) recently

showed that the resulting estimators perform no better than pooling the data and ignoring

the stratification completely. Darroch (1961) applied the method of maximum likelihood

deriving explicit MLEs for the special case with s = t, and showing that explicit formula

did not exist otherwise. For cases with s < t or s > t Darroch recommended pooling strata

in order to reproduce the case s = t, and then applying the explicit formula. Methods for

computing MLEs and their standard errors in all cases based on numerical optimization

of the likelihood were later developed by Plante et al. (1998). Other estimators of the

total population size have been produced by the method of moments (Chapman and Junge,

1956) and by least squares estimation (Banneheka et al., 1997). The advantage of these
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approaches over maximum likelihood methods is that estimates can, in theory, be computed

analytically regardless of the relationship between s and t without the need for lengthy

numerical optimization. However, the resulting estimators do not satisfy the asymptotic

optimality properties of MLEs.

A problem that faces all of these methods is that the estimate of abundance can only

be computed if the matrix of recoveries, M , has full rank. If this is not the case, then

unique solutions to the estimating equations will not exist, and the different solutions may

produce very different estimates of abundance. For example, imagine that a simple study

was conducted with two strata in each sample and the following data was observed:

n1 = 10 m11 = 1 m11 = 1

n2 = 10 m21 = 1 m22 = 1

u1 = 10 u2 = 100.

Applying the method of moments, equating the expected values of mij and Uj with their

observed values, produces the set of six estimating equations:

10θijpj = 1, i, j ∈ {1, 2}
U1p1 = 10

U2p2 = 100

One solution to these equations is given by: θ11 = θ21 = 1/10, p1 = 1, θ12 = θ22 = 9/10,

p2 = 1/9, U1 = 10 and U2 = 900. The resulting estimate of total abundance is 930. A

second solution is given by: θ11 = θ21 = 1/10, p1 = 1/9, θ12 = θ22 = 1/10, p2 = 1, U1 = 90

and U2 = 100. This solution produces an abundance estimate of 210.

While it is unlikely that the M will be rank deficient when many fish are marked and

captured in each stratum, this happens frequently with sparse data sets either because no

fish are recaptured for one stratum (i.e., a row of 0s) or because the same pattern of recoveries

occurs in two different strata (i.e., linear dependence). The essence of the problem is that

the movement probabilities cannot all be distinguished when data is sparse or the matrix

of recoveries does not have full rank. In the example presented, it is impossible to tell if

most of the marked individuals moved into the first or second stratum of the second sample.

As a result, it is not possible to estimate the total number of marked individuals in each

stratum, capture probabilities, or the numbers of unmarked individuals in each stratum, and
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no sensible estimate of the abundance can be produced. Even if the matrix of recoveries

does have full rank, it is often the case that some linear combination of rows or columns is

close to 0 so that the resulting estimate of abundance will have very low precision.

As in the case of sparse diagonal data sets, the most common solution in problems with

sparse data is to pool adjacent strata to reduce the number of parameters needed in the

model and increase the counts in each cell of the matrix of recoveries. Another solution that

has been proposed is to define a parametric model for the movement probabilities which

depends on a smaller number of parameters. Schwarz and Dempson (1994) considered the

specific application to studies of salmon migrations and modelled the time each marked fish

takes to move between the two sites as a log-normal random variable with separate mean

and variance parameters, µi and σ2
i , for each day of marking. The probability that a fish

marked on day i passes the second site on day i + k is then given by:

θij =

 Φ
(

log(d)−µi

σi

)
k = 0

Φ
(

log(k+1+d)−µi

σi

)
− Φ

(
log(k+d)−µi

σi

)
k = 1, . . . , t− i

(2.13)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

The value d is an adjustment which Schwarz and Dempson (1994) set to .5 to account for

marked fish being released throughout each day rather than at a single time point. This

value should be set to 0 if all fish marked in one day were released at the same time. Schwarz

and Dempson (1994) numerically optimized the likelihood in equation (2.12) with each θij

replaced by the expression in equation (2.13) to compute MLEs of µi, σi, pj and Uj and

of the total population size. When t > 2, this model reduces the number of parameters

required to model the movements of marked fish from s(2t − s + 1)/2 (assuming forward

movement only) to 2s.

Mantyniemi and Romakkaniemi (2002) developed a Bayesian implementation which ex-

tended this model to the hierarchical framework. Instead of defining independent prior dis-

tributions for each parameter, the elements of the vectors µ = (µ1, · · · , µs), σ = (σ1, · · · , σs)

and p = (p1, . . . , pt) were modelled as random draws from hyper-prior distributions with

unknown hyper-parameters. Mantyniemi and Romakkaniemi (2002) specifically selected

normal hyper-priors for each of µi, log(σi) and logit(pj), these transformations being stan-

dard to ensure that σi > 0 and pj ∈ (0, 1). The prior distribution for the vector of daily

run sizes, U = (U1, . . . , Ut), was defined through a two-step process. First, the marginal
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distribution of the total number of unmarked fish was assigned the improper Jeffrey’s prior

π(U) ∝ 1/U . The daily numbers of unmarked individuals were then modelled conditionally

as:

U ∼ Multinomial(U, (ρ1, . . . , ρt))

with the hyper-parameter ρ = (ρ1, . . . , ρt) assigned a Dirichlet prior.

Both the models of Schwarz and Dempson (1994) and Mantyniemi and Romakkaniemi

(2002) provide solutions that compromise between the fully stratified and completely pooled

estimators. Information is shared among strata, so that the data is not viewed as completely

separate, but the estimated capture probabilities are still allowed to vary. In the model of

Schwarz and Dempson (1994) the sharing of information was produced through the explicit

parametric assumptions regarding the travel times, which introduced dependence among the

number of fish arriving in neighbouring strata at the second trapping location. The model

of Mantyniemi and Romakkaniemi (2002) introduced further dependence by assuming that

the parameters from separate strata are similar, but not equal, using the data to determine

the degree of similarity (quantified by the variance of the hyper-priors).

2.3.3 The Bayesian P-spline Model

The model I develop for non-diagonal data from temporally stratified two-sample studies

incorporates the Bayesian P-spline method into the models of Schwarz and Dempson (1994)

and Mantyniemi and Romakkaniemi (2002). I begin by constructing a simple Bayesian

implementation of the model with independent prior distributions for the parameters of the

travel time distribution, µi and σi in equation (2.13), and for both pj and Uj , i = 1, . . . , s,

j = 1, . . . , t. Following the work of Mantyniemi and Romakkaniemi (2002), I propose the

prior distributions:

µi ∼ N(ξµ, τ2
µ) and log(σi) ∼ N(ξσ, τ2

σ)

for the parameters of the travel times distributions. Note that the prior distribution for

σi is not a standard prior density, the more common choices being the conjugate inverse-

gamma prior or the Jeffrey’s prior π(σ2
i ) ∝ 1/σ2

i (Lee, 2004). However, the parameters of

the log-normal distribution can be chosen to make its distribution function match that of

the inverse-gamma very closely, and this formulation is easily extended to more the more

complex models. The prior distributions selected for pj and Uj are the same as those chosen

for the diagonal model in section 2.2.3. For the simple model, the values of the parameters
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of the prior distributions (e.g., ξµ and τ2
µ) are fixed a priori and assumed to be the same for

all i or j.

Next, I extend the simple model to a fully hierarchical model by specifying hyper-prior

distributions for the parameters of the prior distributions, rather than fixing these values.

In my simple Bayesian model, the prior distributions all have the form:

ηX
i ∼ N(µX , σX)

where X is one of µ, σ, p or U , and ηµ
i = µi, ησ

i = log(σi), ηp
i = logit(p) and ηU

i = log(Ui).

Here i is used to index the strata at either site for notational convenience. The idea is that all

four sets of parameters have the exactly the same probability structure after transformation.

In my formulation of the hierarchical model the prior parameters are assigned the hyper-

prior distributions:

µX ∼ N(0, τ2
X) and 1/σ2

X ∼ Γ(αX , βX)

with τ2
X , αX and βX chosen separately for each of X = µ, σ, p, U . This formulation is similar

to the hierarchical model of Mantyniemi and Romakkaniemi (2002) except for the choice

of prior distribution for Uj . Rather than defining this prior through in two-steps modelling

U =
∑t

j=1 Ut and then (U1, . . . , Ut)|U , I have defined the prior for each Uj independently.

As with the hierarchical model of diagonal data, this model shares information among

strata but does not account for the natural ordering in temporally stratified data. To account

for this ordering, I again consider models based on the Bayesian P-spline model of Lang

and Brezger (2004). Because the four sets of parameters all share the same probability

structure in the hierarchical model, the P-spline model described in section 2.2.3 can be

applied equally to any of µ, σ, p or U . It is also possible to smooth more than one set of

parameters at the same time. In this section I focus only on smoothing of U and discuss

smoothing of the remaining sets of parameters in section 2.5.

Exactly as in section 2.2.3 I define:

log(Uj) =
K+q∑
k=1

bkBk(j) (2.14)

where Bk(·) is the kth B-spline function of order q and bk the associated coefficient. The
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coefficients are again assigned the second difference prior:

bk+1|bk, bk−1 ∼ N(bk + (bk − bk−1), τ2
U ) (2.15)

for k = 3, . . . ,K + q, with improper flat priors for the initial two coefficients and inverse-

gamma prior for the variance parameter, τ2
U . I also consider the extended model:

log(Uj) =
K+q∑
k=1

bkBk(j) + εj (2.16)

where εj ∼ N(0, τ2
ε ) allows for random deviations from the spline model. The prior for

the variance of the errors is chosen to be the same as the prior selected for τ2
U , 1/τ2

ε ∼
Gamma(α, β).

Inference for the Bayesian P-spline model was again based on numerical summaries of the

posterior distribution computed from samples obtained via MCMC in OpenBUGS. Several

chains were run in parallel and convergence was monitored by comparing trace plots and

computing the Gelman-Rubin-Brooks diagnostics.

Model fit was assessed with the Bayesian p-values computed from the discrepancy mea-

sures defined in section 2.2 adjusted to account for the non-diagonal matrix of recoveries.

The new discrepancy measures were:

D1(X,Θ) = −2 · L(µ,σ,p,U |X)

D2(X,Θ) =
∑t

j=1

(√∑s
i=1 mij −

√∑s
i=1 niθijpj

)2

D3(X,Θ) =
∑t

i=1

(√
uj −

√
Ujpj

)2
.

As in section 2.2, the first discrepancy provided an overall measure of fit based on the

likelihood in equation (2.12), the second compared the observed and expected numbers of

marked individuals recovered in each stratum, and the third compared the observed and

expected numbers of unmarked individuals captured in each stratum at the second site. I

also introduced a fourth discrepancy to compare the observed and expected counts in each

cell of M :

D4(X,Θ) =
s∑

i=1

t∑
j=1

(√
mij −

√
niθijpj

)2
.

Model selection was again based on the DIC presented in equation (1.3). However, when
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I initially computed the DIC for simulated, non-diagonal data I found that the values of

pD produced by the simple Bayesian model with independent priors were often negative.

Spiegelhalter et al. (2002) noted that this could occur if the marginal posterior distributions

of some parameters were very skewed so that posterior means were a poor measure of the

centre of these distributions. Plotting the marginal densities of the parameters of the simple

Bayesian model showed that the posterior distributions of the capture probabilities were

highly skewed and that the posterior means and medians differed considerably. Replacing

θ̂ in the DIC with the vector of marginal posterior medians produced values of pD for the

simple Bayesian model that were both positive and consistent with the other models. For

consistency, DIC values for all Bayesian models were computed with marginal posterior

medians as the point estimates of all parameters. The effect on the DIC of the remaining

models was negligible.

2.3.4 Simulation Study

I again assessed the performance of the Bayesian P-spline models by analysing simulated

data sets. In section 2.2.4, I conducted simulations for diagonal experiments with the daily

run size modelled both exactly by a smooth curve (Simulation 1a) and also by a smooth

curve plus noise on the log scale (Simulation 1b). Comparing the results in these two

situations allowed me to assess how the smoothness of the true population size affected the

performance of the P-spline estimators. The results showed that including the extra error

term in the Bayesian P-spline model made little difference when the true counts exactly

followed a smooth curve, but improved estimation when the true counts included added

noise. In reality, the true daily population size will never exactly follow a smooth curve and

so I only present simulations from the smooth curve with noise for non-diagonal experiments.

As in section 2.2.4, I designed the simulations to mimic the results of the analysis of

the Conne River data (details in section 2.4.1). The the new simulation study assumed

that fish trapping was conducted for 40 days at the first site, with exactly 100 individuals

marked per day, and 45 days the second site. Ten realizations of the vector of daily run sizes,

N = (N1, . . . , N40), were randomly generated from the model in equation (2.9), and for each

of these realizations 30 data sets were simulated as follows. First, I sampled the parameters

of the log-normal travel time distribution and capture probabilities independently from the
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distributions:
µi ∼ N(.5, 2.5) i = 1, . . . , 40

log(σi) ∼ N(−1.0, .5) i = 1, . . . , 40

pj ∼ Beta(2.5, 50) j = 1, . . . , 45.

I then computed the entries of the matrix of transition probabilities, Θ, according to equa-

tion (2.13) with d = 0, and simulated the matrix of recoveries, M , by applying the multi-

nomial model in equation (2.10) with ni = 100. I generated the numbers of unmarked

individuals present in each stratum at the second site by first generating the intermediate

values:

(U∗
ii, . . . , U

∗
it, U

∗
i−) ∼ Multinomial

Ni − ni, (θii, . . . , θit, 1−
t∑

j=i

θit)


which simulate the movements of the unmarked individuals by assuming that all fish, marked

or unmarked, have the same transition probabilities and then summing across days, Uj =∑min(i,t)
i=1 U∗

ij . The variable U∗
i− represents the number of fish passing the first site on day

i that were not marked and that arrived at the second site after the end of the study.

Although this violates the assumption of closure, estimates should still be unbiased for the

total population size, N =
∑40

i=1 Ni (Seber, 1982, pg. 72). Finally, the numbers of unmarked

fish captured at the second site on each day, u1, . . . , u45 were simulated according to the

independent binomial model in equation (2.11).

Estimates of the total population size for each of the 300 data sets were computed with

5 different methods, namely: the pooled Chapman estimator, the simple Bayesian model,

the fully hierarchical model, the Bayesian P-spline model and the Bayesian P-spline with

error. Daily Chapman estimates cannot be computed because the exact numbers of marked

individuals in each stratum at the second site are unknown. The following prior distributions

were selected for the parameters of each of the Bayesian models:

1) Simple Bayesian model:
µi ∼ N(0, 4)

log(σi) ∼ N(0, 4)

logit(pj) ∼ N(−2, 1.22)

log(Uj) ∼ N(7.5, 4)



CHAPTER 2. BAYESIAN P-SPLINES AND THE SP EXPERIMENT 49

2) Fully hierarchical Bayesian model:

µi ∼ N(ξµ, σ2
µ), with ξµ ∼ N(0, 4) and 1/σ2

µ ∼ Γ(.001, .001)

log(σi) ∼ N(ξσ, σ2
σ), with ξσ ∼ N(0, 4) and 1/σ2

σ ∼ Γ(.001, .001)

logit(pj) ∼ N(ξp, σ
2
p), with ξp ∼ N(−2, 1.22) and 1/σ2

p ∼ Γ(.001, .001)

log(Uj) ∼ N(ξU , σ2
U ), with ξU ∼ N(7.5, 4) and 1/σ2

U ∼ Γ(.001, .001).

3) Bayesian P-spline model:

Prior distributions for the parameters µ, σ and p were the same as in 2). The vector U

was modelled according to equation (2.14) with the second difference prior of equation

(2.15) for the coefficients of the spline and 1/τ2
U ∼ Γ(1, .05).

4) Bayesian P-spline model with Error:

Prior distributions for the parameters µ, σ and p were the same as in 2). The vector

U was modelled according to equation (2.16) with the second difference prior for the

coefficients of the spline, 1/τ2
U ∼ Γ(1, .05) and 1/τ2

ε ∼ Γ(1, .05).

As in section 2.2.4, I selected the parameters of the prior distributions and hyper-priors

for the simple and hierarchical models to produce weakly informative priors. For the four

Bayesian models, posterior summary statistics were computed from random samples gen-

erated via MCMC in OpenBUGS (Thomas et al. (2006)). Each chain was run for 100,000

iterations, the first 20,000 iterations were discarded as burn-in, and the remaining iterations

were thinned by a factor of 5.

Figure 2.4 illustrates ten sample realizations of the daily numbers of unmarked fish

passing the second site. Although the mean daily population size over all 300 datasets

formed a smooth curve, the daily values for one realization varied considerably from one

day to the next. Total population size for the 10 realizations of N ranged from 26,280 to

36,890.

Table 2.5 presents the statistics comparing the estimators of total population size from

the 5 methods. As in the earlier simulations, the estimator of total population size computed

from the pooled data was almost unbiased, but its standard error greatly underestimated

the estimator’s true variability. Although the mean standard error for the pooled estimator

was lower than the posterior standard deviation for any of the Bayesian models, its true

variability was in fact higher than the variability of the posterior mean for the simple

Bayesian model and both the Bayesian P-spline models.
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The estimator of population size from the simple Bayesian model had a slight negative

bias, in contrast to the previous simulations in which it showed a positive bias. However, the

overwhelming problem with this method remained; the standard deviation of the posterior

distribution greatly overestimated the true variability of the estimator. Results from the

hierarchical Bayesian model were consistent with the previous simulations, indicating that

the posterior mean slightly overestimated the true population size, on average, and that the

posterior standard deviation overestimated the true variability in the estimator. The true

variation in the posterior mean for the hierarchical Bayesian model was almost 1.4 times

that of the other Bayesian models.

When the true daily population size deviated from the smooth curve in the simulations

of the previous section, the Bayesian P-spline model with error performed better than the

model without error. In particular, the model with error produced more accurate estimates

of the uncertainty in the total population size. In contrast to this, the two models produced

virtually identical results in the current simulation study. The %Bias, %MSE, mean poste-

rior standard deviation of the population size and true variability in the posterior mean were

all very similar (within .02 for all 4 statistics). The largest difference between the models

was in the %Bias of the posterior standard deviation as an estimator of uncertainty, but

the magnitude of this difference (4%) is highly unlikely to be important for making wildlife

management decisions. Note that the %MSEs for both models were much lower than for

all other models – approximately 2/3 the %MSE for the Pooled Chapman estimator and

simple Bayesian model, and less than half the %MSE for the hierarchical Bayesian model.

Table 2.6 presents summary statistics for the DIC and the Bayesian p-values for the 4

Bayesian models. The differences in the DIC values provide very strong evidence for the

Bayesian P-spline models over the simple or hierarchical models. The difference between

the DIC for the P-spline models, on average, is marginal according to the guidelines of

Spiegelhalter et al. (2002) and does not provide strong evidence for one over the other. Note

that the complexity of the model with error was slightly greater, as would be expected. My

interpretation is that the P-spline model with the added error term does provide better fit

to the data (lower deviance) on average, but the improvement is marginal in comparison to

the extra complexity of the model. Out of the 300 data sets, the P-spline model with error

provided the lowest DIC value for almost 72%. Together, the Bayesian P-spline models with

and without error produced the lowest DIC values for just under 96% of the simulated data

sets.
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The mean Bayesian p-values for the simple Bayesian model were all above .5 and the

intervals formed by the 5th and 95th percentiles were skewed toward 1. As in section 2.2.4,

these values do not indicate poor model fit, but rather result from the non-informative prior

overwhelming the information in the data. Average p-values for the remaining models were

all between .4 and .6 with the exception of the values associated with the first and third

discrepancy measures for the P-spline model without error. This suggests that although the

estimates of total population size differ negligibly between the spline models without and

with the error term, the estimates of daily population size from the model with error fit

better with the data. This is not surprising given that the true run size does not exactly

follow a smooth curve. It is again clear that the p-values for all discrepancy measures do not

follow uniform distributions on the unit interval. In general, the distributions place more of

their mass closer to .5 than would be expected under the uniform. This means that the .05

or .1 cut off rule for assessing lack of fit would be more conservative rules than intended,

rejecting the fit of the true model less often than would be expected by chance under the

true model.
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Method %Bias(SE) % MSE Mean SE Obs. SD % Bias(SE)
Pooled Chapman −1.4(0.8) 1.9 7.2 14.5 −50.0(0.5)
Simple Bayes. −5.6(0.6) 1.7 15.7 11.6 39.5(2.7)
Hierarchical Bayes. 8.2(0.9) 2.9 15.4 15.1 4.7(2.5)
P-Spline 0.4(0.6) 1.2 11.2 11.4 −1.0(1.1)
P-Spline w error 0.5(0.6) 1.1 11.4 11.1 3.2(1.1)

Table 2.5: Comparison of the estimators of abundance and their uncertainty for Simulation
2. Estimation of abundance is assessed according to the %Bias and %MSE of the point
estimators. Values provided are the mean estimate of N (scaled by 103), the %Bias (with
standard error in parentheses), and the %MSE. Estimation of the uncertainty is assessed
according to the %Bias of the point estimator of the standard error. Values provided are the
mean of the uncertainty estimates from the 300 simulated data sets and the observed stan-
dard deviation of the estimator of N (both scaled by 103), and the %Bias of the uncertainty
estimate (with its standard error in parentheses).
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Figure 2.4: Number of unmarked fish passing the second trap on each day in Simulations
2. Each grey lines represents one of the numbers of unmarked fish. The solid black line
indicates the daily mean and the dashed black lines the daily maximum and minimum
numbers of fish passing on each day over the 300 simulated data sets.
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2.4 Applications

2.4.1 Conne River Atlantic Salmon

The data set I have analysed in this first application is a modified version of data orig-

inally collected during a study Atlantic salmon smolts migrating along the Conne River,

Newfoundland, in 1987. In the study, smolts were trapped at two sites along the river each

day for a period of 1.5 months between April 26 and June 10. A total of 4975 smolts were

captured and tagged at the first site of which 998 (20.1%) were recovered at the second site.

A further 13,363 unmarked fish were captured at the second site.

The full data set was analysed previously by both Schwarz and Dempson (1994) and

Mantyniemi and Romakkaniemi (2002). Schwarz and Dempson (1994) estimated the total

population size (including both marked and unmarked individuals) to be 74.5 thousand fish

(95% CI=62.5,76.7 thousand), though the analysis ignored data from a few days at both the

beginning and end of the study when the numbers of marked fish were too low to produce

estimates of the capture probabilities and population size. Mantyniemi and Romakkaniemi

(2002) were able to analyse the entire data set with the hierarchical Bayesian implementation

of the Schwarz-Dempson model and estimated the total run size at 74.5 thousand smolts

(95% CI=68.7,80.8).

Although Schwarz and Dempson (1994) found it necessary to exclude the data collected

from a few days at the start and the end of the migration, large numbers of smolts were

marked and recovered on most days of the study and data sparsity was not a severe issue.

Note that the analysis of Mantyniemi and Romakkaniemi (2002) including all days produced

exactly the same point estimate of the population size, suggesting that a negligible number

of fish passed on the days excluded by Schwarz and Dempson. My method is designed

specifically to address the problems of modelling sparse data, and so I modified the data

set by reducing the numbers of marked and unmarked fish captured on each day at the

second site. To do this, I generated new values for the numbers of marked and unmarked

fish captured at the second site, m∗
ij and u∗j , as:

m∗
ij ∼ Binomial(mij , .2)

u∗j ∼ Binomial(uj , .2)

where mij and uj are the original data values. In effect, this subsampling reduced the capture
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probabilities at the second site on each day of the study by a factor of 5, but maintained the

other relationships in the data. The new data set comprised the same number of releases

at the first site, but the total numbers of marked and unmarked smolts captured at the

second site were reduced to 183 and 2697 respectively. The raw proportion of marked

smolts recovered for the modified data set was .04. Table 2.7 provides the subsampled data

set.

Estimates of the population size were produced from the completely pooled Chapman

estimator and the same four Bayesian models considered in the simulations of section 2.3.4.

Inference for the Bayesian models was again based on samples from the posterior distribution

generated via MCMC sampling implemented in OpenBUGS. For each model, 5 chains were

run for 500,000 iterations each, the first 200,000 iterations of each chain were discarded as

burn-in and values from every 50th of the remaining iterations were retained for inference.

Dispersed initial values for the 5 chains were generated by running a single chain for 100,000

iterations, computing the mean and variance matrix for the final 50,000 iterations, thinned

every 10 iterations, and then simulating 5 independent multivariate-normal values with

that mean and an inflated variance matrix. Convergence of each model was confirmed by

computing the GRB diagnostics. Figures 2.5 and 2.6 depict summary statistics for the

posterior distributions of the daily numbers of unmarked fish and the capture probabilites

for each of the Bayesian models. Table 2.8 summarizes the posterior distributions of total

population size.

The pooled estimate of the total run size was 77.9 thousand fish with 95% CI (72.5,83.4).

Although the point estimate is very close to the estimates produced from the full data, the

simulations in section 2.3.4 suggest that the interval estimate greatly underestimated the

true variability. The 95% CI was in fact narrower than the interval estimates produced by

both Schwarz and Dempson (1994) and Mantyniemi and Romakkaniemi (2002) for the full

data set, even though the amount of information had been greatly reduced.

Estimates of the daily numbers of unmarked fish passing the second location, Uj , from

the simple Bayesian model increased over the initial days of the run, peaked at day 14 and

declined thereafter with the exception of a slight increase on day 17 to 18. Points estimates

of pj did not show a strong trend and varied considerably over time. However, the inference

regarding these parameters was very imprecise. The 95% CIs for many values of pj ranged

from near .00 to above .40 and the average width of these CIs was .34. The uncertainty in

pj also lead to high uncertainty in Uj . At the peak of the run, the 95% CIs for the number
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of unmarked smolts extended from below 5 thousand to above 15 thousand. The estimate

of total population size from the simple model was 58.4 thousand, which was well below

the estimate from the full data. The absolute width of the 95% was 41.0 thousand and the

width relative to the point estimate was 69.1%.

The most obvious changes in the inference between the simple and hierarchical Bayesian

models concerned the estimation of the capture probabilities. Posterior estimates of pj for

the hierarchical model were lower on average, were much less variable among days, and

had much higher precision. These changes in the estimation of pj also had corresponding

effects on the estimation of Uj . Most obviously, the estimates of p10, . . . , p13 were much

lower for the hierarchical model and this lead to a corresponding increase in the estimates of

U10, . . . , U13, creating an earlier, and more extended, increase in the run size. The estimated

total population size from the hierarchical model was 81.5 thousand; the absolute and

relative widths of the 95% CI were both approximately half those of the simple Bayesian

model.

Figure 2.5C shows that point estimates of Uj produced from the Bayesian P-spline

model effectively smoothed the point estimates from the hierarchical model. The result was

a smooth, unimodal curve that increased steadily from the start of the study, peaked on

days 13 and 14, and then decreased to the end of the study. Throughout all 46 days, the

smoothed estimates were much more precise than those produced by the hierarchical model.

Introducing the error term into the P-spline model, Figure 2.5D, reintroduced some of the

daily variation seen in the hierarchical model, including the increase from U17 to U18, but

the magnitude of these variations was diminished. As expected, the precision of the estimate

for each Uj was lower for the P-spline model with error than for the model without, but this

had a minimal effect on the precision of the estimate of total population size. The estimates

of total population size for the Bayesian P-spline models with and without error were 68.6

thousand and 71.2 thousand and the 95% CIs from the two models were very similar, both

absolutely and relative to the estimated run size. These intervals were .8 times as wide as

the 95% CI for the hierarchical Bayesian model.

Table 2.9 compares the DIC and Bayesian p-values for the 4 Bayesian models. The lowest

DIC was produced by the Bayesian P-spline model with the added error term, followed

in order by the P-spline model without the error, the hierarchical model and the simple

Bayesian model. The difference in DIC between the P-spline models with and without the

error term was on the border of significance suggested by Spiegelhalter et al. (2002) and
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provides weak evidence that the model with the error better fits the daily run size. The

remaining DIC values provided strong evidence in favour of the P-spline smoothing of U .

Bayesian p-values for the hierarchical model and both Bayesian P-spline models were

all greater than .20 and less than .66. Based on the results of the simulation, I believe that

these values provide no evidence of lack of fit. Note that the Bayesian p-values based on

discrepancy measures 2 and 3 for the simple Bayesian model were well below the values

obtained in the simulation. Further, the value of pD for the simple Bayesian model was

lower than the value for the hierarchical model suggesting that the simple model had fewer

effective parameters. These results will be discussed further in section 2.5.

Figure 2.7 provides traceplots and plots of the estimated auto-correlation function of the

5 MCMC chains for the Bayesian P-spline model with error for selected values of log(Uj).

These plots demonstrate that the 5 parallel chains converged very quickly from the initial

values to a common distribution and that the correlation between iterations in the same

chain were very low, after thinning. In fact, the correlation between the values on successive

iterations (lag of 1) retained for inference was negligible suggesting that the chains could

have been run for fewer iterations with less thinning to obtain the same level of precision in

the posterior summary statistics. Table 2.10 summarises the GRB diagnostics for both the

posterior mean and 97.5 percentile of log(Uj). After the selected burn-in period, 200,000

iterations, the maximum GRB values were 1.01 and 1.04 for the mean and 97.5 percentile

respectively. This confirmed that the 5 chains had converged to similar distributions by this

point. GRB diagnostic values were similar for the remaining parameters.
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Date Number Recoveries on Days Following Tagging Total Number

Tagged 0 1 2 3 4 5 6 7 8 9 Recoveries Untagged

26/04/1987 8 0 0 0 0 2 0 0 0 0 0 2 0

27/04/1987 5 0 0 0 0 0 0 0 0 0 0 0 2

28/04/1987 6 0 0 0 0 0 0 0 0 0 0 0 1

29/04/1987 17 0 0 2 1 1 0 0 0 0 0 4 2

30/04/1987 66 0 1 0 2 3 2 0 0 0 0 8 39

01/05/1987 193 0 1 7 7 2 2 0 0 0 0 19 226

02/05/1987 90 0 2 0 0 0 2 0 0 0 0 4 75

03/05/1987 260 0 0 14 6 1 1 1 0 1 0 24 129

04/05/1987 368 0 9 46 4 2 1 0 3 0 1 66 120

05/05/1987 506 0 38 33 11 0 1 3 0 0 0 86 380

06/05/1987 317 1 27 26 3 1 4 0 0 0 0 62 921

07/05/1987 43 0 4 3 0 2 0 0 0 0 0 9 1005

08/05/1987 259 1 42 5 2 0 0 0 0 0 0 50 1181

09/05/1987 259 1 32 27 1 0 0 0 0 0 0 61 1087

10/05/1987 249 1 85 3 1 0 0 0 0 0 0 90 1108

11/05/1987 250 3 21 19 2 0 0 0 0 0 0 45 1685

12/05/1987 298 42 16 11 9 1 0 0 0 0 0 79 671

13/05/1987 250 1 7 25 6 4 0 0 0 0 0 43 1766

14/05/1987 193 0 9 18 8 0 0 0 0 0 0 35 636

15/05/1987 207 0 17 21 2 0 0 0 0 0 0 40 483

16/05/1987 175 0 18 10 1 0 0 0 0 0 0 29 170

17/05/1987 141 0 12 14 7 1 1 0 0 0 0 35 269

18/05/1987 155 0 1 19 13 6 2 0 0 0 0 41 212

19/05/1987 123 0 5 22 5 0 0 0 1 0 0 33 260

Continued on following page.
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Date Number Recoveries on Days Following Tagging Total Number

Tagged 0 1 2 3 4 5 6 7 8 9 Recoveries Untagged

Continued from previous page.

20/05/1987 128 0 6 17 2 1 0 0 0 0 0 26 154

21/05/1987 72 0 11 9 2 0 0 0 0 0 0 22 145

22/05/1987 57 0 6 8 0 1 0 0 0 0 0 15 99

23/05/1987 49 0 4 2 1 0 0 0 0 0 0 7 58

24/05/1987 57 14 2 1 0 0 0 0 0 0 0 17 74

25/05/1987 18 0 3 0 0 0 0 0 0 0 0 3 40

26/05/1987 20 0 3 4 0 0 0 0 0 0 0 7 50

27/05/1987 16 0 3 0 0 0 0 0 0 0 0 3 59

28/05/1987 15 0 0 2 0 0 0 0 1 0 0 3 40

29/05/1987 10 0 1 0 1 0 0 0 0 0 0 2 9

30/05/1987 13 0 0 2 0 0 0 0 0 0 0 2 14

31/05/1987 8 0 3 1 0 0 0 0 0 0 0 4 13

01/06/1987 2 0 1 0 0 0 0 0 0 0 0 1 22

02/06/1987 23 0 6 0 0 0 0 0 0 0 0 6 24

03/06/1987 20 0 2 0 0 0 0 0 0 0 0 2 33

04/06/1987 10 0 4 1 0 0 0 0 0 0 0 5 19

05/06/1987 10 3 1 0 0 0 0 0 0 0 0 4 12

06/06/1987 5 0 2 0 0 1 0 0 0 0 0 3 7

07/06/1987 2 0 0 0 0 0 0 0 0 0 0 0 4

08/06/1987 2 0 1 0 0 0 0 0 0 0 0 1 0

09/06/1987 0 0 0 0 0 0 0 0 0 0 0 0 0

10/06/1987 0 0 0 0 0 0 0 0 0 0 0 0 59

Total 4975 183 2697

Table 2.7: Data for the analysis of the 1987 run of Atlantic salmon along the Conne River.

This data is sub-sampled from the data originally collected in the experiment.
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Mean 95% HPD Width Rel. Width
Simple Bayes. 54.4 (37.2,78.3) 41.0 75.4
Hierarchcial Bayes. 77.5 (62.2,94.8) 32.5 42.0
Bayes. P-spline 68.6 (56.9,81.1) 24.3 35.4
Bayes. P-spline + Error 71.2 (58.3,84.1) 25.8 36.2

Table 2.8: Abundance estimates from the four models of the subsampled Conne River
Atlantic Salmon smolt data.

Bayesian P-values
DIC pD 1 2 3 4

Simple Bayes. 761.2 89.4 0.97 0.03 0.05 0.55
Hierarchcial Bayes. 673.4 90.6 0.47 0.20 0.24 0.48
Bayes. P-spline 667.1 82.8 0.66 0.23 0.37 0.50
Bayes. P-spline + Error 664.2 83.8 0.55 0.26 0.33 0.47

Table 2.9: DIC and Bayesian p-values for the Bayesian models applied to the subsampled
Conne River Atlantic Salmon smolt data. The left half of the table presents the DIC and
pD for each of the four models. The right half of the table presents the observed Bayesian
p-value for each of the four selected discrepancy measures.

50000 100000 200000 500000
Mean 1.01(1.00,1.04) 1.00(1.00,1.03) 1.00(1.00,1.01) 1.00(1.00,1.00)
97.5% Percentile 1.02(1.00,1.10) 1.01(1.00,1.07) 1.01(1.00,1.04) 1.00(1.00,1.01)

Table 2.10: Summary of the Gelman-Rubin-Brooks diagnostics for assessing convergence of
log(Uj). The diagnostics were computed from 5 parallel chains of 500,000 iterations for each
of the 46 days. The table reports the mean(minimum,maximum) value of the diagnostic
over the 46 days at 50, 100, 200, and 500 thousand iterations for both the posterior mean
(top row) and the 97.5% percentile (bottom row).
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Figure 2.5: Estimated daily abundance of unmarked fish for the subsampled Conne River
Atlantic Salmon data. The four panels illustrate the results from the 4 models fit to the data:
A) simple Bayesian model, B) hierarchical Bayesian model, C) Bayesian P-spline model, and
D) Bayesian P-spline model with error. In each plot, the solid black line connects the daily
posterior median abundance and the error bars indicate the extents of the daily 95% CIs.
The dashed grey lines in panels B, C and D indicate the daily medians from the preceding
models, A, B and C respectively.
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Figure 2.6: Estimated daily capture probabilities for the subsampled Conne River Atlantic
Salmon data. The four panels illustrate the results from the 4 models fit to the data: A)
simple Bayesian model, B) hierarchical Bayesian model, C) Bayesian P-spline model, and
D) Bayesian P-spline model with error. In each plot, the solid black line connects the daily
posterior median capture probabilities and the error bars indicate the extents of the daily
95% CIs. The dashed grey lines in panels B, C and D indicate the daily medians from the
preceding models, A, B and C respectively.
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Figure 2.7: Traceplots and auto-correlation profiles for selected values of log(Uj). Traces
for all 5 chains are represented in the left-hand plots for 5 equally spaced days, j =
1, 12, 24, 35, 46. The points at iteration 0 represent the randomly generated initial values
for each of the chains. The right-hand plots illustrate the auto-correlation of the first chain
at lags from 0 up to 30 iterations.
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2.4.2 Trinity River Chinook Salmon

A second data set to which I have applied the Bayesian P-spline model was collected from

an experiment monitoring the migration of Chinook salmon smolts along the Trinity River

in Northern California. This data was collected as part of the Trinity River Restoration

Program, a long term project aimed at restoring and monitoring fish habitat, and was pro-

vided by the Hoopla Valley Tribal Fisheries Department. My analysis focuses on estimating

the number of migrating smolts from data collected at one trapping location, near Junction

City, in 2003. In this year, smolts were trapped at the site for 38 consecutive weeks. Along

with the wild smolts migrating downstream, smolts were released from a hatchery above

Junction City in the 15th and 31st weeks of trapping.

The challenge in analysing this data set was not the sparsity of the data. A total of

50,660 salmon were marked over the 38 week period and 2442 of these were recaptured, an

average of 64 (.05%) per week. Moreover, the data was almost diagonal; only 27 smolts were

recovered outside of the week in which they were marked and these were ignored during the

analysis. Summing the weekly Chapman estimates of the run size produced an estimate

of 16.2 million smolts migrating over the entire period. However, there was one week in

the data set, week 33, when the capture probability was apparently much lower than in

the other weeks. In week 33, 2880 salmon were marked and only 8 (.003%) recovered. The

proportion of marked fish recovered in this week was 6 times lower than the lowest recapture

rate in the remaining 37 weeks, and the Chapman estimate of population size in this week,

11.1 million fish, was more than 2/3 of the estimate of the total population size.

It is clear that the numbers of smolts marked and recaptured in week 33 are not reliable.

Either one of these numbers has been recorded incorrectly (e.g., the number of recaptures

should be 80 not 8), or something happened during the experiment that greatly reduced

the recapture rate (e.g., a large proportion of the marked fish were killed as they were

transported to the release site). I have chosen to delete both the number of individuals

marked and recaptured in week 33, but this leaves no information about the catchability

in this week without assuming some relationship to the data in other weeks. The challenge

in this analysis was to compute a reliable estimate of the total population size without any

direct information regarding the capture probability in week 33.

In my analysis I fit two different models to the Trinity River Chinook data after deleting

the numbers of smolts marked and recaptured in week 33: the fully hierarchical model and
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the Bayesian P-spline model with error. The fully hierarchical model was exactly the same

as that described in section 2.2 with the same prior distributions as chosen in the simulation

of 2.2.4. The run size could not be expected to be smooth over all 38 weeks because of the

two introductions of hatchery fish and so the Bayesian P-spline model had to be modified to

allow for jumps in the run size. To accommodate the additions before weeks 15 and weeks

31 the spline was broken into 3 segments: the first modelled the run over weeks 1 to 14

with 3 equally spaced knots, the second modelled weeks 15 to 31 also with 3 equally spaced

knots, and the third weeks 32 to 38 with only 1 knot. Prior distributions for the coefficients

of each segment of the spline were defined separately, but the hyper-parameters were forced

to be the same in order to achieve a constant degree of smoothnes. Explicitly, the prior

distributions were:

π(b1) ∝ 1, π(b2) ∝ 1, bk+1 − bk N(0, τ2
U ) k = 3, . . . , 7

π(b8) ∝ 1, π(b9) ∝ 1, bk+1 − bk N(0, τ2
U ) k = 10, . . . , 14

π(b15) ∝ 1, π(b16) ∝ 1, bk+1 − bk N(0, τ2
U ) k = 17, 18, 19

where τ2
U was the same for all 3 segments of the spline and was modelled with the same

inverse gamma prior as in section 2.2.4.

Models were again fit via MCMC sampling in OpenBUGS, though only 1 chain of 500,000

iterations with a burn-in of 100,000 was run for each model. Figure 2.8 summarizes the pos-

terior distributions of the capture probabilities and numbers of unmarked fish passing per

week for both models. The plot of the capture probabilities shows that in week 33, the

capture probability estimated from the hierarchical model shrank back toward the hierar-

chical mean (on the logistic scale) estimated from the remaining weeks. However, in the

adjacent weeks the posterior mean capture probabilities were all lower than the hierarchical

mean and there was a clear decreasing trend from weeks 29 to 35. Although the number of

unmarked fish captured decreased from week 32 onward, the posterior mean run size for the

hierarchical model drops from week 32 to 33, rises to week 34, and then drops again for the

remaining weeks. Jumps in the estimated daily population size in weeks 15 and 32 result

from the addition of the hatchery fish.

The Bayesian P-spline model applies the same hierarchical prior to the capture proba-

bilities, but the shrinkage to the hierarchical mean in week 33 did not occur. Instead, the

daily run sizes were smoothed by the spline such that the posterior means actually increased

slightly from week 32 to 33 and then decreased steadily from week 33 onward. The posterior
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mean capture probability in week 33 was well below the hierarchical mean to accommodate

the trend in run size, but this estimate seemed to fit better with the pattern of capture

probabilities observed on the neighbouring weeks.

Inference for both the capture probabilities and the run sizes for the remaining weeks

were almost identical between the two models. Estimates of the total population size for

the two model were 6.1 million (95% CI=5.6,6.7) for the hierarchical model and 6.3 million

(95% CI=5.9,6.8) for the Bayesian P-spline model. However, the DIC for the P-spline model

(686.7) was substantially lower than for the fully hierarchical model (693.8), mostly because

the estimate of the effective number of parameters for the P-spline model (pD = 71.8) was

smaller than that of the hierarchical model (75.2). Goodness of fit was not examined for

these models.
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Week Number Recoveries Total Total

Tagged 0 1 2 Recoveries Catch

1 0 0 0 0 0 4135

2 1465 32 19 0 51 10449

3 1145 120 0 0 120 2188

4 229 25 0 0 25 669

5 20 0 0 0 0 294

6 183 17 0 0 17 699

7 707 74 0 0 74 969

8 632 93 0 0 93 974

9 1372 62 0 0 62 2398

10 283 7 3 0 10 467

11 647 31 0 0 31 895

12 275 11 0 0 11 422

13 277 12 1 0 13 406

14 335 13 1 0 14 524

15 4000 212 0 0 212 39917

16 4000 55 0 0 55 17588

17 2890 114 1 0 115 7861

18 3119 197 0 1 198 6891

19 2479 80 0 0 80 3571

Continued on following page.



CHAPTER 2. BAYESIAN P-SPLINES AND THE SP EXPERIMENT 69

Week Number Recoveries Total Total

Tagged 0 1 2 Recoveries Catch

Continued from previous page.

20 1292 71 0 0 71 1715

21 2336 153 0 0 153 4220

22 2544 155 0 0 155 5014

23 2341 275 0 0 275 3288

24 1013 101 0 0 101 1301

25 729 65 1 0 66 989

26 333 44 0 0 44 444

27 269 33 0 0 33 339

28 77 7 0 0 7 107

29 62 9 0 0 9 79

30 26 3 0 0 3 35

31 20 1 0 0 1 26

32 4791 188 0 0 188 35131

33 2880 8 0 0 8 34530

34 3993 74 0 0 74 14832

35 1761 27 0 0 27 3617

36 1535 28 0 0 28 1819

37 485 14 0 0 14 632

38 115 4 0 0 4 115

Total 50,660 2442 209,550

Table 2.11: Data for the analysis of the 2003 run of Chinook salmon along the Trinity River.

The columns indicate how many fish were tagged, how many of these were recovered and

the total catch for each week. Smolts were recovered in the same week as tagging (lag 0)

or 1 or 2 weeks after tagging.
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Figure 2.8: Summaries of the posterior distributions of the daily unmarked population size
and the capture probabilities for the Trinity River Chinook salmon data. Grey lines and
symbols represent the results from the fully hierarchical model. Black lines and symbols
represent the results from the Bayesian p-spline model with error. For each model, the points
indicate the posterior means and the error bars the extents of the 95% CIs. The solid, grey
horizontal line in the second panel indicates the posterior mean of the hierarchical mean of
the capture probabilities from the fully hierarchical model, transformed to the natural scale.
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2.5 Discussion

The objective of this project was to develop a method for smoothing estimates of the popu-

lations size from temporally stratified capture-recapture data in order to share information

between strata, reduce the effective number of parameters and produce more precise esti-

mates when the data are sparse. I have done this by explicitly modelling the run size as a

smooth curve using the Bayesian P-spline model proposed by Lang and Brezger (2004). In

the Bayesian P-spline approach, the smoothness of the fitted curve is ensured by specifying

a prior distribution on the coefficients of the basis functions which favours small changes in

the spline at each knot and hence a smooth fit. The simulations I have presented demon-

strate that the strict spline model produces better estimates of the total population size

when the daily population size exactly follows a smooth curve, but I found it necessary to

introduce an extra error term into the model when the population size deviated from the

smooth curve. This was the preferred model in application to the Conne River Atlantic

Salmon smolt data.

The previous method which is most similar to the Bayesian P-spline model is the hi-

erarchical Bayesian model of Mantyniemi and Romakkaniemi (2002). In this approach, a

Dirichlet prior distribution is specified for the proportions of unmarked individuals passing

the second location in each stratum. In theory, the parameters of this distribution could be

chosen to favour specific shapes for the run; e.g, if one specified parameters for the Dirichlet

distribution that follow a parabolic curve then the expected prior daily run sizes would

follow a similar shape. However, these parameters are fixed in the model of Mantyniemi

and Romakkaniemi (2002) and there are many questions that would need to be answered in

specifying the prior: How fast is the run size expected to increase/decrease? Are the increase

and decrease symmetrical? Exactly where should the peak occur? Is one peak correct or

should there be multiple peaks? The spline model avoids these questions by assuming only

that the curve is smooth without imposing any further restrictions on its shape.

Although I have focused this chapter on smoothing the run size between strata, exactly

the same methodology can be applied to the other sets of parameters in the model. For

example, if the time that fish take to move between the two locations is a function of an

environmental quantity that is unknown but thought to change smoothly over time (perhaps

water flow rate) then one might hypothesize that the daily mean log travel-times follow a
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smooth curve over time. Several models combining independent Bayesian P-splines for dif-

ferent combinations of the model parameters (e.g., smoothing only the capture probabilities

or smoothing the run size as well as both the mean and standard deviation of the log-travel

time) were tested on simulated data and also fit to the modified Conne River data. These

models did not provide as good a balance between the number of parameters and fit to the

data as measured by the DIC (results not shown).

One unexpected result of combining smoothing for different parameters was that any

model that simultaneously smoothed both the run size and the capture probabilities pro-

duced a very poor fit to the Conne River data. The reason for this is that smoothing the

run size and smoothing the capture probabilities are essentially opposite operations when

the observed numbers of unmarked fish captured in each strata vary non-smoothly. If the

true run size follows a smooth curve, then the capture probabilities must fluctuate in order

to allow for the variation in the counts of unmarked fish and vice versa. Imposing smooth

models on both sets of parameters results in a model that cannot adjust to the variation

and fits neither the run size nor the capture probabilities properly. As a result, any model

combining the P-spline for both the run sizes and capture probabilities produced a much

higher DIC value than any other model, even though the effective number of parameters

was reduced.

An approach that might improve the fit of these models is to incorporate the effects

of covariates on the capture probabilities, parameters of the travel time distribution, or

possibly the daily population size. For example, water flow rate is known to be a predictor

of the capture probabilities in some experiments on Pacific salmon. The effect of this variable

could be included in the linear predictor in order to explain some of the variation in the

capture probabilities about the fitted spline and reduce the unexplained variation. However,

such information was not available for either the Conne River or Trinity River data sets.

One extension of the model which I explored briefly removed the assumption of log-

normally distributed travel times for the marked fish in each strata. The assumption of

log-normality was first imposed by Schwarz and Dempson (1994) in order to reduce the

number of parameters in the stratified-Petersen model and avoid problems with sparse data.

My hope was that smoothing the run size might reduce the effective number of parameters

sufficiently that this assumption could be relaxed. Allowing the transition probabilities,

{θij}, to vary completely independently would require a very large number of parameters,

and so I decided to apply a similar smoothing method to share information between the
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travel times in adjacent strata at the first location (e.g., so that θi,i+j would be similar

to θi+1,i+1+j). The main challenge is that the number of transition probabilities for each

stratum at the first location vary between strata (there are t − i possibly non-zero values

of θij for stratum i) but must sum to 1 in each strata. This makes it difficult to relate the

vectors of transition probabilities between different strata.

The solution I have considered is to assume that all fish marked at the first location

must pass the second location in a fixed and known number of days, d, and that trapping

is continued at the second location for at least this number of days after marking ends

(t− s ≥ d). This forces the number of (possibly) non-zero transition probabilities to be the

same for all strata at the first location. I then implement the methods of Pawlowsky-Glahn

and Egozcue (2006) for component data to map the vectors of transition probabilities for

each stratum into a d−1 dimensional space where each element is unbounded and the sum-to-

one constraint is enforced by the inverse mapping. Finally, I smooth the transformed vectors

in the new space by modelling the differences in these vectors between adjacent strata as

random draws from a multivariate normal distribution with mean zero vector and variance

matrix selected to favour small changes. I have tested this approach in some simple models

with limited simulations and the results are promising, but more work needs to be done.

The challenges that still need resolving include choosing an appropriate transformation to

the d−1 dimensional space and selecting the structure of the variance matrix. For example,

one might assume a model for the covariances (perhaps AR(1) or exponential decreases) so

that smoothing of the transition probabilities occurs within as well as among the strata.

One aspect of the approach I have taken that I find somewhat unsatisfactory is that

the Bayesian P-spline models the number of unmarked individuals in each stratum, not

the total population size. The total population in each stratum is the quantity of real

interest and would be more likely to follow a smooth curve than the numbers of unmarked

individuals which depend on the protocol for capture and marking at the first location.

The problem with modelling the total in each stratum directly is that this quantity does

not appear as a parameter in the model likelihood. Although this might be an issue in

some experiments with high capture probabilities, I believe that modelling the numbers

of unmarked individuals will be adequate for most applications. The number of marked

individuals is usually a very small proportion of the total population size so that if the total

follow a smooth curve then the numbers of unmarked individuals will also fall very close to

a smooth curve. If the differences are large, then this can be accommodated in the P-spline
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model with the extra error term. Another possible solution is discussed in Chapter 5.

There were two results in the analysis of the Conne River data that I found strange

and that I believe require further discussion, both concerning the simple Bayesian model.

First, the pD value was lower for the simple Bayesian model than for the hierarchical model,

suggesting that the simple model had fewer unique parameters. The reason for this is that

pD quantifies the number of estimable parameters in a model and the thinned Conne River

data was too sparse for all of the parameters to be estimable without further assumptions.

The second odd result was that the Bayesian P-values for the 2nd and 4th discrepancy

measures suggested poor model fit, though the P-values for the hierarchical and P-spline

models, which can be viewed as sub-models, did not. As discussed in section 2.2.4, this is

caused by the influence of the prior distribution in the simple model. Figure 2.6 shows that

the marginal posterior distributions of the capture probabilities for the simple model placed

considerable mass on values well above what is known to be realistic. When parameters were

simulated from this part of the posterior distribution and new data were generated from

these values, the discrepancy for the observed data was higher than the discrepancy for the

simulated data, resulting in the small p-value. Repeating the analysis with more informative

prior distributions restricting the capture probabilities to smaller values produced Bayesian

P-values that were closer to .5, but it may not be reasonable to assume this level of prior

knowledge in practice. My conclusion is that the simple model does not provide enough

structure for estimation from sparse data sets.

A second issue with the Bayesian P-values was that the values produced in the simulation

studies did not follow a uniform distribution, even under the true model. This makes it

difficult to interpret the P-values obtained from a single data set. From the simulations it

seems that P-values outside of (.2, .8) may be indicative of poor fit, but it is not clear if

these bounds are fixed or depend on the parameters of the true model.

In conclusion, I believe that the Bayesian P-spline model provides an important improve-

ment for estimating population size from temporally stratified data. By taking advantage

of the temporal structure, the model produces more precise estimates of the population size

than standard methods. In particular, I believe that the P-spline model with the extra error

term will be applicable in a wide range of fisheries monitoring studies.



Chapter 3

Continuous, Time-Dependent,

Individual Covariates in the

Jolly-Seber Model

3.1 Introduction

This chapter and the next consider problems in the analysis of capture-recapture data

from open populations – populations which change over the duration of the experiment as

individuals enter through birth and immigration and depart through death and emigration.

In particular, both chapters consider challenges in the analysis when the probabilities of

capture or survival depend on covariates like body mass or fitness that are continuous and

vary over time as well as among individuals.

There are two models which provide the basis for studying open populations from

capture-recapture data, the Jolly-Seber (JS) and Cormack-Jolly-Seber (CJS) models (Cor-

mack, 1964; Jolly, 1965; Seber, 1965). The key difference between the two is that the CJS

model makes no assumptions about the behaviour of the individuals in the population that

are never captured and remain unmarked for the entire experiment. Instead, the likeli-

hood function models only the behaviour of each individual after it is first captured and

marked. This provides inference about the survival rates during the experiment, but not

about the population size. To make inference about the population size, the JS model adds

the assumption that all individuals have the same probability of capture on each occasion,

75
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regardless of whether they are marked or not.

Imagine an experiment comprising T capture occasions spaced far enough apart in time

that individuals may enter or leave the population over the course of the experiment. Data

for each of the individuals captured during the study can be summarized in a capture

history, a vector of T 1’s and 0’s indicating whether or not the individual was captured

on each occasion. The CJS model essentially assumes that the set of marked individuals

captured on an occasion and the set which survive to the next occasion both form simple,

random samples from the set of all marked individuals alive (full assumptions can be found

in many sources including Seber (1965, pg. 197), Williams et al. (2002, pg. 422) and Pollock

and Alpizar-Jara (2005, pg. 42)). Given these assumptions, a probability can be assigned

to each capture history that is defined in terms of two sets of parameters, the T capture

probabilities:

pt = P (an individual alive on occasion t is captured), t = 1, . . . , T

and the T − 1 survival probabilities:

φt = P (an individual alive on occasion t survives to t + 1), t = 1, . . . , T − 1.

Because the assumptions of the CJS model concern only the marked individuals, the prob-

ability assigned to each history considers only the events after the individual was first

captured, marked and released. For example, an individual captured on occasions 2 and 4

of an experiment with 5 occasions would have the capture history 01010 which is assigned

the probability:

φ2(1− p3)φ3p4((1− φ4) + φ4(1− p5)).

This models the survival of the individual from occasion 2 to 3, the failure to capture it

on occasion 3, etc. The full likelihood is constructed by multiplying these contributions

for all individuals captured on at least one occasion, and maximum likelihood or Bayesian

methods can be applied to make inference about the probabilities of survival (Seber, 1965;

Poole, 2002).

To make inference about the population size on each occasion it is necessary to estimate

the number of individuals, both marked and unmarked, that were alive but not captured.

This requires further assumptions regarding the behaviour of the unmarked individuals alive
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on each occasion. The JS model extends the CJS model by assuming that all individuals

share the same probability of capture, whether or not they have been previously captured

and marked. A new component is then added to the likelihood which models the number of

individuals captured for the first time on each occasion of the experiment. In the classical

methods originally provided by Jolly (1965) and (Seber, 1965), inferences about population’s

size are obtained in two steps. First, the CJS likelihood is maximized to produce estimates

of the capture probabilities, p̂2, . . . , p̂T (note that p1 is not estimable). The number of

individuals alive on occasion t is then estimated by the ratio estimator:

N̂JS
t =

nt

p̂t

where nt is the total number of individuals captured on occasion t, both marked and un-

marked. Bayesian methods have also been developed (e.g. Royle et al., 2007).

The key assumption for estimating population size is that all individuals alive on one

occasion have the same probability of capture. Although this might be a reasonable ap-

proximation in some populations, there are many factors that might affect an individual’s

catchability. This heterogeneity has long been known to induce bias in the estimates of pop-

ulation size (Gilbert, 1973; Carothers, 1973). In general, there have been two approaches

to account for natural variation in the capture and survival probabilities. The first is to

consider all differences as the results of unexplainable, random heterogeneity. Hwang and

Chao (1995) derived a large sample bias correction for the specific case in which capture

probabilities vary randomly among individuals, but with additive effects for variation over

time. Pledger and Efford (1998) introduced a simulation based method for a simplified

model involving individual capture probabilities, but assuming that all parameters, includ-

ing the population size, are constant over time. Attempts have also been made to explicitly

model individual capture probabilities as random effects with a parametric distribution

(Pledger et al., 2003; Otis et al., 1978), but these methods have seen limited application.

Large amounts of data are necessary to estimate separate parameters for each individual.

Furthermore, Link and Barker (2005) demonstrated that two different distributions for the

random effects can fit the data equally well but produce very difference estimates of the

populations size.

The approach which has been applied more widely models the capture and survival

probabilities as functions of explanatory variables. Lebreton et al. (1992) constructed a
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general method for including predictors of the parameters of the CJS model by considering

the capture and survival probabilities in a generalized linear modelling (GLM) framework.

This was extended to the JS model and estimation of population size by McDonald and

Amstrup (2001). As in the original JS model, inference for the population size on each

occasion is obtained in two steps. First, the extended CJS likelihood of Lebreton et al.

(1992) is maximized to produce estimates of the capture probabilities for each individual

on each occasion after it is first captured. The number of individuals alive on occasion t is

then estimated by the Horvitz-Thompson (HT) estimator:

N̂HT
t =

nt∑
i=1

1
p̂it

where i indexes only the nt individuals captured on occasion t and p̂t is the estimated capture

probability for the ith individual. Note that this is exactly the JS estimate of population

size if p̂it = p̂t for all individuals.

Part of the appeal of the GLM framework was that it unified the models for many

different types of variation. Explanatory variables included in the model could be discrete or

continuous, individual or environmental (i.e., common to all living individuals) and constant

or time-varying, provided that their values were known on all occasions after each individual

was first captured. However, there are some explanatory variables which vary both among

individuals and over time and which can only be known for an individual on the occasions

that it was actually captured.

If the covariate is discrete then the multi-state model can be applied (Arnason, 1973;

Schwarz et al., 1993; Brownie et al., 1993). This model was originally developed to account

for differences in catchability when individuals could move randomly among different geo-

graphic locations. By assuming that movements follow the Markovian property, it is possible

to model the location of each individual even when it is not captured. The likelihood con-

tribution for each individual is then formed by summing the CJS likelihood contributions,

with location specific capture and survival probabilities, over all possible sets of locations,

weighted according to the transition probabilities. Inference about the population size may

again be obtained with either classical maximum likelihood or Bayesian methods (Schwarz

et al., 1993; Dupuis and Schwarz, 2007).

Bonner and Schwarz (2006) developed a method to incorporate continuous covariates as

predictors in the CJS model. As in the multi-state model, it is assumed that the covariate
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follows the Markovian property, but now with a continuous kernel. The resulting likelihood

function requires integration over the unknown covariate values for each individual, which

makes it very difficult to compute for any specific set of parameter values. Instead, infer-

ence was conducted through Bayesian methods via Markov chain Monte Carlo (MCMC)

sampling.

The objective of the current project is to extend this model to the estimation of popu-

lation size. The method I develop is similar to the two step procedure of both the standard

JS model and the method of McDonald and Amstrup (2001). In the first step, the model of

Bonner and Schwarz (2006) is applied to determine the effect of the covariate on the prob-

abilities of capture and survival for each individual. In particular, MCMC sampling is used

to generate a sample from the posterior distribution of these parameters. Inference about

the population size is then made by computing a modified HT estimator for each realization,

and treating these values as a sample from the posterior distribution of the population size.

The structure of this chapter is as follows. In section 3.2, I review the extended CJS

model of Bonner and Schwarz (2006) and then describe the method for estimating population

size. In section 3.3, I provide justification for this method as a fully Bayesian procedure.

Sections 3.4 and 3.5 present an application of the method to study the dynamics of a

population of Soay sheep and the results of a subsequent simulation study. The final section

provides some comments on the method and discusses future work.

3.2 Methods

3.2.1 Notation

Data

T Number of capture occasions (indexed by t)

n Number of individuals captured at least one time (indexed by i)

ωi Capture history for captured individual i

Ω n× T matrix of capture histories for the captured individuals

zi Vector of covariate values for individual i (partially observed)

Z n× T matrix of covariates for the captured individuals
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Parameters

Population Size:

Mt Number of marked individuals alive on occasion t

Ut Number of unmarked individuals alive on occasion t

Nt Total number of individuals alive on occasion t (Nt = Mt + Ut)

Bt Number of individuals recruited into the population between occasions t

and t + 1 which are alive on occasion t + 1. B0 is the number of individuals

recruited before the first occasion which are still alive on the first occasion.

S Size of the super-population, the set of individuals ever available for capture

during the study (S =
∑T−1

t=0 Bt)

Capture and Survival Probabilities:

pit Probability that individual i is captured on occasion t given that it is alive

β0t, β1 Coefficients of the linear predictor of log(pit/(1− pit)) as a function of zit

φit Probability that individual i survives to occasion t+1 given that it was alive

on occasion t

γ0t, γ1 Coefficients of the linear predictor of the log(φit/(1 − φit)) as a function of

zit

χit Probability that individual i is not captured after occasion t

Distribution of Covariates:

z∞ Asymptotic mean value of the covariate

r Growth rate parameter

σ Standard deviation of zit|zi,t−1

3.2.2 Cormack-Jolly-Seber Model with a Continuous Covariate

The first step in estimating the population size is to determine the effect of the covariate

on both the capture and survival probabilities. This is done by restricting the model to

consider only the events after each individual is first captured, marked, and released. The

restricted model is commonly referred to as the Cormack-Jolly-Seber model. Suppose that a

total of n individuals are each captured one or more times over T capture occasions. When

an individual is first captured, it is marked with a unique mark so that it can be identified if

captured again. Every time an individual is captured the value of the continuous covariate
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thought to affect the capture or survival probability is recorded without error. The data

from this experiment are summarized by a pair of vectors for each individual. The first

vector is the capture history, denoted ωi for individual i, a string of T indicator variables

such that ωit = 1 if individual i was captured on occasion t and 0 otherwise. Two useful

summary statistics are ai = min{t : ωit = 1} and bi = max{t : ωit = 1}, the first and last

occasions that individual i is captured. The second vector, zi, records the values of the

covariate for individual i. For simplicity, I consider the case when zit is a scalar, though the

method should also apply when zit is itself a vector quantity. It is assumed that zit is known

if individual i is captured on occasion t and is missing otherwise. The n× T data matrices

with (i, t) entries ωit and zit summarizing all data from the experiment will be denoted by

Ω and Z.

The assumptions of the extended model are almost identical to those of the original CJS

model. It is assumed that the sampling periods are instantaneous (so that the population

does not change during a capture occasion), that emigration is permanent, that events in

one individual’s capture history are independent of the events in the capture histories of all

other individuals, that tags are not lost between capture occasions, and that marks are not

missed or misread when individuals are captured. The only difference is that the assumption

of homogeneous capture and survival probabilities is relaxed so that these probabilities vary

among the individuals alive on each occasion as functions of the covariate. In particular,

it is assumed that the probability that individual i is captured on occasion t, pit, and the

probability that it survives to the next occasion, φit, can be modelled as:

logit(pit) = β0t + β1zit

logit(φit) = γ0t + γ1zit

such that the effect of the covariate is linear on the logistic scale with time dependent

intercept and constant slope. Models with different structures, e.g. constant intercept or

quadratic effects, could be fit and tested against each other, but this is not my focus. Losses

on capture have been ignored but could be incorporated by modelling the probability that

a captured individual is not returned to the population exactly as in Seber (1965) and Jolly

(1965).

One way to make inference about the capture and survival probabilities in spite of the

missing covariate data is to model the distribution of the unknown values of the covariate.



CHAPTER 3. CONTINUOUS COVARIATES IN THE JS MODEL 82

The model developed in Bonner and Schwarz (2006) assumes that changes in the value of

the covariate between two capture occasions are identically distributed for all individuals.

Specifically, I defined the diffusion based model:

zi,t+1|zit ∼ N(zit + µt, σ
2) (3.1)

allowing the mean, µt, to vary over time but assuming a constant variance, σ2. In Bonner

and Schwarz (2006) the model was applied to study the effect of body mass on the survival

rates of meadow voles (Microtus pennsylvanicus) and the population was restricted to adult

voles only. In this case, it was reasonable to assume that all individuals had reached their

adult body mass and that changes over time were the effect of external pressures affect-

ing all individuals in the same way. This justified modelling the change in a vole’s mass

independently of its current mass. In the application to Soay sheep that I will consider,

individuals of all ages are included in the population of interest and so it is necessary to

adapt the model so that younger, smaller sheep have, on average, larger changes in body

mass than older, bigger sheep.

The new model I use is based on the Ludwig van Bertalanffy (LVB) model of growth.

This model derives from the assumption that the rate of change of a quantity, in continuous

time, is proportional to the difference between the current value and an asymptotic value,

z∞, described mathematically by the differential equation:

dz

dt
= r(z∞ − z).

The parameter r is the constant of proportionality which determines the exact rate of change.

The analytic solution to this equation is:

zt = z∞(1− e−r(t−t0)) (3.2)

where t0 is the constant of integration needed to produce a unique solution. For r > 0

and z∞ > 0 the differential equation produces a growth-like trajectory which starts at

z0 = z∞(1−ert0) at time 0 and increases asymptotically toward z∞ at a constantly decreasing

rate.

To make use of this function in the extended CJS model, equation (3.2) needs to be

adapted to discrete time. Moreover, the age of individuals cannot usually be known exactly
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and so it is not possible to model the covariate as a function of absolute time since birth.

Instead, the model will be defined in terms of the changes in the covariate between capture

occasions conditional on the value when the individual is first captured. Suppose that the

value of the covariate is known for individual i on occasion t. From equation (3.2), the ratio

between zit and the covariate’s asymptotic value is:

zit

z∞
= (1− e−r(t−t0))

which implies that:

e−r(t−t0) = 1− zit

z∞
.

Substituting into the expression for zi,t+1 yields:

zi,t+1 = z∞

(
1− e−r(t+1−t0)

)
= z∞

(
1− e−r

(
1− zit

z∞

))
= z∞(1− e−r) + zite

−r.

Quinn and Deriso (1999, pg. 156) suggest taking this to be the expected value of the covariate

on occasion t+1 conditional on the value at occasion t and further assuming additive errors

that are normally distributed with mean 0 and constant variance σ2. The new model is:

zi,t+1|zit ∼ N(z∞(1− e−r) + zite
−r, σ2) (3.3)

and the density of this distribution will be denoted by f(zi,t+1|zit). The joint density of the

covariate values for individual i conditional on the value observed when it is first captured,

zi,ai , is simply the product f(zi|zi,ai) =
∏T

t=ai+1 f(zit|zi,t−1). Note that conditioning on

the value of the covariate the first capture has entirely removed the parameter t0 so that

f(·|·) depends obn only two parameters, z∞ and r. The time since birth, t, is also removed

from the model. Non-constant time between capture occasions can be handled easily by

multiplying both the rate of growth, r, and the error variance, σ2, in equation (3.3) by ∆t,

the time between capture occasions t and t + 1.

The likelihood function for the CJS model including a continuous covariate is most

easily formed by starting with the complete data likelihood as if there were no missing data.

Suppose that the value of the covariate could in fact be known on every occasion after an

individual was first captured and not only the occasions when it actually was captured. The
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complete data likelihood contribution for individual i would then be:

Li(β0, β1,γ0, γ1, z∞, r|ωi,zi) =
bi∏

t=ai+1

(
φi,t−1p

ωit
it (1− pit)(1−ωit)

)
χibi

· f(zi|zi,ai) (3.4)

where χibi
is the probability that individual i is not observed after occasion bi. This quantity

is defined by the recursive relationship χit = (1−φit)+φit(1−pit)χi,t+1 with χiT = 1. Adopt-

ing the convention that empty products are equal to 1, Li(β0, β1,γ0, γ1, z∞, r|ωi,zi) = χibi

if ai = bi and Li(β0, β1,γ0, γ1, z∞|ωi,zi) = 1 if ai = T . As in the CJS model, the like-

lihood contribution conditions on the individual’s first release so that only the events in

the capture history after ai are modelled, and not the initial capture on occasion ai. The

complete data likelihood is formed by multiplying these contributions for each individual.

The observed data likelihood function could then be computed by integrating with respect

to each of the missing covariate values; however, these integrals do not have analytic solu-

tions and would be difficult to approximate numerically each time the likelihood function

needed to be evaluated. Instead, the integration can be performed implicitly by forming

the posterior distribution from the complete data likelihood and then treating the missing

covariate values in the same way as the other unknowns in the model, simulating new values

on each iteration of the MCMC sampling algorithm.

The final step in constructing the posterior distribution is to define a prior for the

model parameters. For the vectors of time-dependent intercept terms, β0 and γ0, I adopt a

hierarchical approach modelling the elements of each vector as random draws from a common

normal distribution on the logistic scale and then assigning vague, conjugate hyper-priors.

The intention is to encode the belief that the intercept terms on different occasions should be

similar without making strong assumptions about their exact values. The full distribution

for β0 is defined by:
β0t∼N(µβ, τ2

β), t = 1, . . . , T

µβ∼N(0, 1000)

1/τ2
β∼Gamma(.001, .001)

and exactly similar for γ0t. The remaining parameters have been assigned vague priors such
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that:
β1∼N(0, 1000)

γ1∼N(0, 1000)

z∞∼U(0, 100)

r∼U(0, 10)

and 1/σ2∼Gamma(.001, .001).

All values are assumed independent a priori, except for the dependence introduced by the

hierarchical structures on β0 and γ0.

The posterior distribution for the full set of parameters in the extended CJS model,

θ = {β0, β1,γ0, γ1, z∞}, is then defined by the product of the joint prior density and the

complete data likelihood above. Inference about these parameters is obtained by generating

D random realizations from the posterior, θ̃1, . . . , θ̃D, via MCMC sampling. Simulation was

performed in OpenBUGS (Thomas et al., 2006).

3.2.3 Estimating Population Size

The second step in my method is to simulate values for the population size on each capture

occasion for each of the sets of parameters sampled above. This is done by separately

generating values for the number of marked and unmarked individuals alive on occasion t

for each θ̃d and summing the two to obtain a value for the total population size, Ñd
t . I then

derive inference about the population size by treating the resulting values, Ñ1
t , . . . , ÑD

t ,

as a sample of size D from the posterior distribution of Nt. The posterior mean of Nt is

approximated by N̄t = 1
D

∑D
d=1 Ñd

t , the variance by
∑D

d=1(Ñ
d
t − N̄t)2/(D−1) and quantiles

by the order statistics of Ñd
t .

To simulate the number of marked individuals alive on occasion t, Mt, I define the vector

of indicator variables St = (s1t, . . . , snt) such that sit = 1 if individual i is alive on occasion

t and was previously marked and 0 otherwise. By definition, sit = 0 for t ≤ ai and sit = 1

for ai < t ≤ bi. The remaining values of sit can then generated sequentially as conditional

Bernoulli random variables with:

P (sit = 1|si,t−1) =

{
φi,t−1(1−pit)χit

χi,t−1
si,t−1 = 1

0 si,t−1 = 0

where pit, φit and χit are computed given θd
t and the completed matrix of covariates for the
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dth iteration of the Markov chain. This produces a complete vector of indicator variables,

Sd
t , from which I compute M̃d

t =
∑n

i=1 sd
it as an estimate of Mt.

An estimate for the number of unmarked individuals alive on occasion t, Ut, is generated

through a modification of the HT estimator. Let At = {i : ai = t} denote the set of

individuals first captured on occasion t. Given θd
t it is possible to compute the capture

probability on occasion t for each individual in At, denoted p̂d
it. The HT estimate of Ut

would then be:

Ûd
t =

∑
i∈At

1
p̂d

it

.

However, as shown in the following section, direct use of Ûd
t would underestimate the un-

certainty in Ut. Instead, I replace 1/p̂d
it with a randomly generated value:

Ũit ∼ Neg. Bin.(1, p̂d
it)

for each i ∈ At and define:

Ũd
t =

∑
i∈At

Ũd
it.

Applying the procedure for each realization of θ produces the set of values Ũ1
t , . . . , ŨD

t for

each t. The value Ñd
t is then defined as Ñd

t = M̃d
t + Ũd

t . Note that E(Ũd
it|θ̃d) = 1/p̂d

it so that

E(Ũd
t |θ̃d) = Ûd

t , but the sample variance of Ũ1, . . . , ŨD is greater than the sample variance

of Û1, . . . , ÛD.

Given these simulated values it is also possible to construct an estimate of the number of

individuals recruited on each occasion from each iteration of the Markov chain. The method

is similar to that used by Seber (1965) and Jolly (1965). First, I estimate the number of

marked and unmarked individuals alive on occasion t that were also alive on occasion t− 1

and then I subtract these values from Ñd
t to estimate the number of new individuals in

the population. For the dth iteration of the Markov chain, an estimate of the number of

individuals alive on both occasions and marked on occasion t is M∗d
t =

∑n
i=1 1(t−1 ≥ ai)·sd

it.

An estimate of the number of individuals alive on both occasions and unmarked on occasion

t is U∗d
t =

∑
i∈At−1

U∗d
it where U∗d

it ∼ Binomial(Ũit−1 − 1, φi,t−1) models the number of

individuals similar to individual i that were alive but not captured on occasion t−1 and that

survived to occasion t. It is necessary to subtract one individual from the number of trials

in the binomial because individual i itself has already been included as a marked individual
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in M∗d
t . My estimate of the number of recruits on occasion t is then B̃t−1 = Ñt−M∗d

t −U∗d
t

for t = 2, . . . , T . Note that it is possible that B̃t−1 < 0, yielding a negative estimate of

recruitment. On occasion 1, the estimated number of recruits is simply B̃0 = Ñd
t . The

super-population size, the number alive and available on at least one capture occasion,

can then be estimated by S̃d =
∑T−1

t=0 Bt. Simulation from the posterior distribution and

computation of the population size on each occasion, the number of recruits, and the super-

population size were all performed in OpenBUGS (Thomas et al., 2006). BUGS code is

included in Appendix B.

3.2.4 Goodness of Fit

To assess the fit of the LVB growth model, I propose a Bayesian p-value comparing the

observed and expected covariate values. The exact discrepancy measure I have selected is

the mean of standardized errors:

D(Z,θ) =
1

nrecap

n∑
i=1

∑
{t:t>ai,ωit=1}

zit − E(zit|θ, zit−i
)

σ
√

t− t−i

2

(3.5)

where nrecap =
∑n

i=1

∑T
t=ai+1 ωit denotes the total number of recaptures over all individ-

uals and t−i = max{s = 1, . . . , t : ωis = 1} the last occasion prior to t that individual i

was captured. Because the LVB growth model specifies the conditional behaviour of the

covariate, expected values can only be computed for the occasions after the each individual

is first captured, limiting the sum to the occasions when each individual was recaptured.

Division by
√

t− t−i is required to standardize the residuals whose variance is proportional

to the time since last capture. Division by σ is not a necessity, but converts the discrepancy

measure into a scaleless quantity. As discussed in section 1.3.2, the Bayesian p-value is

computed by simulating new data, (Ω′
d,Z

′
d), for each of the D sets of parameters sampled

from the posterior and computing the discrepancies for both the observed and simulated

data, D(Z, θ̃d) and D(Z ′
d, θ̃

d). The Bayesian p-value is the proportion of the K sets of

parameters for which D(Z, θ̃d) is less than D(Z ′
d, θ̃

d).
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3.3 Justification

To justify this method of making inference about the population size, I will demonstrate that

the two step procedure actually produces a valid sample from the joint posterior distribution

of Nt and θ for a specific choice of prior on U = (U1, . . . , Ut). First note that the joint

posterior density of the entire set of parameters, U ∪ θ, can be decomposed as the product

of the conditional posterior distribution of U given the data and θ and the marginal posterior

distribution of θ:

π(U ,θ|Ω,Z) = π(U |θ,Ω,Z) · π(θ|Ω,Z).

The implication of this result is that samples can be obtained from the joint posterior distri-

bution in two steps, first simulating from θ|Ω,Z and then drawing values from U |θ,Ω,Z.

These steps are equivalent to the two steps in my method. Two things remain to be shown:

1) that π(θ|Ω,Z) depends only on the events in each individual’s capture history after its

first release

2) that Ũd = (Ũd
1 , . . . , Ũd

T ) can be considered a random realization from π(U |θ̃d,Ω,Z).

I will begin by proving these claims for the case where the capture and survival probabilities

for each individual are restricted to a finite set of K values. The results will then be extended

to the case where the capture and survival probabilities may take any value in a continuous

range.

Suppose that the individuals alive on each occasion can be assigned to K different

groups and that all individuals in group k on occasion t have the same probabilities of being

captured and of surviving to the next occasion. The complication of unequal numbers of

groups on different occasions can be removed by allowing empty groups so that K can be

assumed the same for all t. Let pkt and φkt denote the probabilities of capture and survival

for group k on occasion t, Ukt the number of unmarked individuals alive in group k, and ukt

the number of these individuals that are captured. As in the continuous case, ωi will denote

the capture history for individual i but now zi will denote the vector of group memberships

such that zit = k if individual i belongs to group k on occasion t. The full data are still

defined by the two matrices Ω and Z. Note that ukt is simply a summary statistic which

can be formally defined as ukt =
∑

i∈At
1(zit = k).
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Following the development of Seber (1965) for the JS model (but ignoring losses on

capture) the full likelihood can be formed as the product of two components, the first mod-

elling the capture of unmarked individuals on each occasion and the second modelling the

subsequent events for these individuals. Taking Ukt to be fixed and assuming independence

among individuals, the number of unmarked individuals captured on occasion t will have a

binomial distribution with parameters Ukt and pkt. The resulting likelihood contribution is:

L1kt =
(

Ukt

ukt

)
pukt

kt (1− pkt)Ukt−ukt

and the first component of the likelihood is the product of these terms over all groups and

occasions, L1 =
∏T

t=1

∏K
k=1 L1kt. The exact form of the second component of the likelihood

is not needed in the following theory and so it will simply be denoted by L2. If each

individual’s group membership is fixed in time then L2 is simply the product of standard

CJS likelihoods defined separately for each group; if individuals are allowed to move among

the groups then L2 would represent the likelihood of a multi-state CJS model (Arnason,

1973; Schwarz et al., 1993; Brownie et al., 1993); and in the problem with a continuous

covariate L2 is exactly the likelihood defined in equation (3.4).

The only prior distribution that needs to be specified for the following theory is the

prior on the number of unmarked individuals alive on each occasion, π(U). The standard

non-informative prior distribution for the number of trials in a binomial distribution is the

improper Jeffrey’s prior π(N) ∝ 1/N (King and Brooks, 2001). This suggests that the prior

for U be specified by assuming that π(Ukt) ∝ 1/Ukt independently for each k and t. The

difficulty that arises with this choice is that the prior is not defined when Ukt = 0 and the

resulting posterior distribution is not determined if ukt = 0 for any k and t. My solution to

this problem is to approximate the standard prior by the, still improper, distribution:

π(Ukt) ∝

{
1/π0 Ukt = 0

1/Ukt Ukt > 0
(3.6)

for some π0 << 1.

One final assumption required in the following theory is that the probability of capture is

bounded below by some known value greater than 0. That is, ∃pmin > 0 such that pkt > pmin

∀k = 1, . . . ,K, ∀t = 1, . . . , T .
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My first claim is that L1, the component of the likelihood modelling when individuals

are first captured, contributes no information about the capture probabilities, the survival

probabilities or any parameters modelling the distribution of the individuals among the

K groups. Intuitively, this seems fairly clear. It is not possible to know if an individual

captured for the first time on occasion t was present on previous occasions, so that its

capture provides no information about survival before occasion t. Further, the parameters

Ukt and pkt are completely confounded when considering only L1. Capturing only a few

individuals from group k on occasion t may indicate either that there were few individuals

in group k or that the capture probability was small.

Claim 1. The marginal posterior distribution of θ does not depend on L1 in that ∀ε1 > 0

∃π0 dependent only on pmin, K, and T such that:

L2π(θ)∫
L2π(θ) dθ

· (1− ε1) < π(θ|Ω,Z) <
L2π(θ)∫
L2π(θ) dθ

· (1 + ε1) .

Lemma 1.1. If ukt > 0 then the marginal posterior distribution of θ is independent of L1kt.

Proof. The full posterior distribution for (U ,θ) is defined by the proportionality:

π(U ,θ|Ω,Z) ∝ L1 · L2 ·
K∏

k=1

π(Uk)π(θ) = L2π(θ) ·
T∏

t=1

K∏
k=1

L1ktπ(Ukt). (3.7)

To compute the marginal posterior distribution of θ one needs to sum this expression over

all possible values of U and then normalize to obtain a proper distribution. That is:

π(θ|Ω,Z) ∝ L2π(θ) ·
∑∞

U11=u11
· · ·
∑∞

UKT =uKT

[∏T
t=1

∏K
k=1 L1ktπ(Ukt)

]
= L2π(θ) ·

∏T
t=1

∏K
k=1

[∑∞
Ukt=ukt

L1ktπ(Ukt)
]
.

Then: ∑∞
Ukt=ukt

L1ktπ(Ukt) =
∑∞

Ukt=ukt

(
Ukt
ukt

)
pukt

kt (1− pkt)Ukt−ukt · 1
Ukt

=
∑∞

Ukt=ukt

1
ukt

(
Ukt−1
ukt−1

)
pukt

kt (1− pkt)Ukt−ukt

= 1
ukt

by noting that
(
Ukt−1
ukt−1

)
pukt

kt (1−pkt)Ukt−ukt is the probability mass function (pmf) of a negative

binomial random variable with parameters ukt and pkt and the summation is over the entire
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range of this variable.

Finally, ukt belongs to the observed data which implies that:

π(θ|Ω,Z) ∝ L2π(θ) ·
∏

{(l,s):l=1,...,K;s=1...,T}\(k,t)

[∑∞
Uls=uls

L1lsπ(Uls)
]

which is independent of L1kt.

Applying this result for all k and t such that ukt > 0, the marginal posterior distribution

for θ can be defined by the proportionality:

π(θ|Ω,Z) ∝ L2π(θ) ·
∏

{k,t:ukt=0}

[∑∞
Ukt=0 L1ktπ(Ukt)

]
. (3.8)

The same strategy cannot be applied for k and t such that ukt = 0 because the cancellation

resulting in the negative binomial pmf does not occur when ukt = 0, and hence
(
Ukt
ukt

)
= 1

for all values of Ukt. Instead, I show that the effect of L1kt is negligible for small enough π0.

Lemma 1.2. The sequence:
∞∑

U=1

(1− p)U

U

converges for any p ∈ (0, 1).

Proof. The ratio of the U + 1st and U th terms of the sequence is:(
(1−p)U+1

U+1

)
(

(1−p)U

U

) = (1− p)
U

U + 1

which tends to (1 − p) < 1 as U → ∞ for any p ∈ (0, 1). Hence, by the ratio test, the

sequence is absolutely convergent. Since all terms are positive, it is convergent.

Let c1 =
∑∞

U=1
(1−pmin)U

U .

Proof of Claim 1. Suppose that ukt = 0. Then:

∑∞
Ukt=0 L1kπ(Ukt) = 1

π0

(
0
0

)
p0

kt(1− pkt)0 +
∑∞

U=1

(
U
0

)
p0

kt(1− pkt)U 1
U

= 1
π0

+
∑∞

U=1
(1−pkt)

U

U .
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Substituting this expression into equation (3.8), the normalized marginal posterior dis-

tribution of θ is given by:

π(θ|Ω,Z) =
L2π(θ) ·

∏
{k,t:ukt=0}

(
1
π0

+
∑∞

U=1
(1−pkt)

U

U

)
∫

L2π(θ) ·
∏

{k,t:ukt=0}

(
1
π0

+
∑∞

U=1
(1−pkt)U

U

)
dθ

.

Noting that:
1
π0

<

(
1
π0

+
∞∑

U=1

(1− pkt)U

U

)
<

1
π0

+ c1

implies:

i)

π(θ|Ω,Z) >
L2π(θ)·

“
1

π0

”K0·

R
L2π(θ)·

“
1

π0
+c1

”K0·
dθ

= L2π(θ)R
L2π(θ) dθ

· (1 + π0c1)
−K0·

> L2π(θ)R
L2π(θ) dθ

· (1 + π0c1)
−KT

ii)

π(θ|Ω,Z) <
L2π(θ)·

“
1

π0
+c1

”K0·

R
L2π(θ)·

“
1

π0

”K0
dθ

= L2π(θ)R
L2π(θ) dθ

· (1 + π0c1)
K0·

< L2π(θ)R
L2π(θ) dθ

· (1 + π0c1)
KT

where K0t =
∑K

k=1 1(ukt = 0) < K is the number of groups in which no unmarked individu-

als were captured on occasion t and K0· =
∑T

t=1 K0t < KT . Choosing π0 < (1−ε1)−1/(KT )−1
c1

implies (1 + π0c1)−KT > (1− ε1) and hence that:

π(θ|Ω,Z) > L2π(θ)R
L2π(θ) dθ

· (1− ε1) .

Choosing π0 < (1+ε1)1/(KT )−1
c1

implies (1 + π0c1)KT < (1 + ε1) and hence that:

π(θ|Ω,Z) < L2π(θ)R
L2π(θ) dθ

· (1 + ε1) .

It follows that
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L2π(θ)∫
L2π(θ) d θ

· (1− ε1) < π(θ|Ω,Z) <
L2π(θ)∫
L2π(θ) d θ

· (1 + ε1) .

for any:

π0 < min

(
(1− ε1)−1/(KT ) − 1

c1
,
(1 + ε1)1/(KT ) − 1

c1

)
.

The result of Claim 1 is that for π0 small enough, the marginal posterior of θ depends

only on the second component of the likelihood, L2, and the prior distribution for this set

of parameters. Inference for the capture probabilities, the survival probabilities and the

parameters modelling the distribution of individuals among the K groups depends only

on the data from the individuals after each has been first captured, marked and released.

How many unmarked individuals were captured in each group on each occasion does not

contribute any information about these parameters.

My second claim is that inference concerning the number of unmarked individuals alive

on occasion t depends only on the groups in which ukt > 0. Note that Ukt appears only

in L1kt which depends on the data only through the summary statistic ukt and on the

parameter pkt. This implies that U depends only on p = {pkt; k = 1, . . . ,K, t = 1, . . . , T}
and u = {ukt; k = 1, . . . ,K, t = 1, . . . , T} so that:

π(U |θ,Ω,Z) = π(U |p,u).

Claim 2. For any ε2 > 0 and ε3 > 0 ∃ π0 > 0 dependent only on pmin and K such that:

1) ∑
{k:ukt>0}

ukt

pkt
< E(Ut|p,u) <

∑
{k:ukt>0}

ukt

pkt
+ ε2

2) ∑
{k:ukt>0}

ukt(1− pkt)
p2

kt

< Var(Ut|p,u) <
∑

{k:ukt>0}

ukt(1− pkt)
p2

kt

+ ε3.

for all t = 1, . . . , T simultaneously.

Lemma 2.1. If ukt > 0 then Ukt|ukt, pkt ∼ Neg. Bin.(ukt, pkt).
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Proof. Note that Ukt must be greater than ukt so that the posterior probability for any

Ukt < ukt is zero. For Ukt ≥ ukt the posterior probability is defined by:

π(Ukt|ukt, pkt) ∝ L1kt · π(Ukt)

=
(
Ukt
ukt

)
pukt

kt (1− pkt)Ukt−ukt · 1
Ukt

= 1
ukt

(
Ukt−1
ukt−1

)
pukt

kt (1− pkt)Ukt−ukt

∝
(
Ukt−1
ukt−1

)
pukt

kt (1− pkt)Ukt−ukt

which is the pmf of a negative binomial random variable with parameters ukt and pkt.

It follows from this lemma that E(Ukt|ukt, pkt) = ukt/pkt and V ar(Ukt|ukt, pkt) = ukt(1 −
pkt)/p2

kt.

Lemma 2.2. If ukt = 0 then ∃π0 > 0 dependent only on pmin and K such that E(Ukt|ukt =

0, pkt) < ε2/K.

Proof. By definition:

E(Ukt|ukt = 0, pkt) =
∑∞

Ukt=0 Uktπ(Ukt|ukt = 0, pkt)

=
P∞

Ukt=0 Ukt(Ukt
0 )(1−pkt)

Uktπ(Ukt)P∞
Ukt=0 (Ukt

0 )(1−pkt)
Uktπ(Ukt)

=
0+

P∞
Ukt=1 Ukt(1−pkt)

Ukt ·U−1
kt

1
π0

+
P∞

Ukt=1
(1−pkt)

Ukt

Ukt

<

“
1

pkt
−1

”
1

π0
+c1

< π0

(
1

pkt
− 1
)

< π0

(
1

pmin
− 1
)

.

Thus, E(Ukt|ukt = 0, pkt) < ε2/K for any π0 < ε2pmin

K(1−pmin) .

Lemma 2.3. The sequence:
∞∑

U=1

U(1− p)U

converges for any p ∈ (0, 1).

Proof. The ratio of the U + 1st and U th terms of the sequence is:

(U + 1)(1− p)U+1

U(1− p)U
= (1− p)

U + 1
U
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which again tends to (1− p) < 1 as U →∞ for any p ∈ (0, 1). Hence, by the ratio test, the

sequence is absolutely convergent. Since all terms are positive, it is convergent.

Let c2 =
∑∞

U=1 U(1− pmin)U .

Lemma 2.4. If ukt = 0 then ∃π0 > 0 dependent only on pmin and K such that

V ar(Ukt|pkt, ukt) < ε3/K.

Proof. By definition:

V ar(Ukt|ukt = 0, pkt) =
∑∞

Ukt=0 U2
ktπ(Ukt|ukt = 0, pkt)− E(Ukt|ukt = 0, pkt)2

<

P∞
Ukt=0 U2

kt(Ukt
0 )(1−pkt)

Uktπ(Ukt)P∞
Ukt=0 (Ukt

0 )(1−pkt)
Uktπ(Ukt)

=
0+

P∞
Ukt=1 Ukt(1−pkt)

Ukt

1
π0

+
P∞

Ukt=1
(1−pkt)

Ukt

Ukt

<
P∞

U=1 U(1−pmin)U

1
π0

= π0c2.

It follows that V ar(Ukt|pkt, ukt) < ε3/K for any π0 < ε3
c2K .

Proof of Claim 2. By independence of U1t, . . . , UKt it follows that:

E(Ut|p,u) >
∑

{k:ukt>0}

ukt

pkt

and

Var(Ut|p,u) >
∑

{k:ukt>0}

ukt(1− pkt)
p2

kt

Suppose now that π0 is chosen so that π0 < min
(

ε2pmin

K(1−pmin) ,
ε3

c2K

)
. Combining the results

of Lemmas 2.1 and 2.2 yields:

E(Ut|p,u) =
∑K

k=1 E(Ukt|ukt, pkt)

<
∑

{k,t:ukt>0}
ukt
pkt

+
∑

{k,t:ukt=0}
ε2
K

<
∑

{k,t:ukt>0}
ukt
pkt

+ ε2.
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Combining the results of Lemmas 2.1 and 2.3 yields:

V ar(Ut|p,u) =
∑K

k=1 V ar(Ukt|ukt, pkt)

<
∑

{k:ukt>0}
ukt(1−pkt)

p2
kt

+
∑

{k:ukt=0}
ε2
K

<
∑

{k:ukt>0}
ukt(1−pkt)

p2
kt

+ ε2.

The consequence of this result is that groups for which ukt = 0 on occasion t can be

ignored in inference concerning Ut =
∑K

k=1 Ukt. To compute the posterior expected value

or variance of Ut one need only sum the posterior expected values or variances of Ukt for k

such that ukt > 0. Lemma 2.1 further indicates that a sample from the conditional posterior

distribution of Ut|θ,Ω,Z can be generated by simulating values Ũkt ∼ Neg. Bin.(ukt, pkt) for

each k such that ukt > 0 and summing these values. Computing the HT estimator for each

t, Ût =
∑K

k=1 1/pkt, is equivalent to summing the conditional posterior expected value of Ukt

given θ for each k = 1, . . . ,K. These values would provide appropriate inference about the

posterior mean of Ut, but treating these values as a sample from the posterior distribution

of Ut would ignore the uncertainty in Ut given θ and underestimate the posterior variance,

as mentioned in the previous section.

Together, Claims 1 and 2 justify the two step procedure to generate a sample of size

D from the full posterior distribution of (U ,θ) when the capture and survival probabilities

vary across K distinct groups in the population. To extend this result to the case where the

capture and survival probabilities are functions of a continuous covariate, I simply partition

the range of the covariate into a sequence of small, disjoint intervals and then apply the

above results. Although a covariate like body mass may be continuous in reality, in practice

any variable is measured on a discrete scale. A partition of intervals may then be defined

so that each interval covers at most one observable value of the covariate. Individuals

with the same value of the covariate are considered as a single group, and the capture and

survival probabilities for this group are computed at the observable value. If the covariate

is measured on a fine enough scale then it is highly improbable that any two individuals will

ever share the same value, as we would expect for a continuous covariate. In this case, each
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group will contain either 0 or 1 individuals and the posterior mean of Ut given θ will be:

E(Ut|θ,Ω,Z) =
N∑

i=1

1(ωit = 1)
pit

=
∑
i∈At

1
pit

which is in fact the HT estimator of Ut if the individual capture probabilities were known.

A sample from the posterior distribution is generated by simulating Ũit ∼ Neg. Bin.(1, pit)

for each i ∈ At (equivalently Ũit − 1 ∼ Geometric(pit)) and setting:

Ũt =
∑
it

Ũit.

The value Ũit − 1 can be considered a guess at the number of unmarked individuals similar

to individual i that were alive but not captured on occasion t. Simulation of the number of

marked individuals alive on each occasion extends directly from the probability model.

In practice, the value of π0 need never be specified. No matter the values of K, pmin

and T a value of π0 can be chosen so that Claims 1 and 2 are satisfied as closely as desired.

Moreover, the accuracy of the approximation only improves as π0 decreases to 0. Let Uzt

denote the number of individuals present on occasion t with covariate values in the interval

[z, z + ∆]. My interpretation is that the inference from the two stage procedure is the same

as inference given a prior distribution for each Uzt that is negligibly different from 1/Uzt

but still yields a proper posterior distribution.

3.4 Application

In this section, I apply my method to study the dynamics of a population of Soay sheep (Ovis

aries) living on the Scottish Island of Hirta. Hirta is a small island of only 6.3 km2 located

200 km off the west coast of mainland Scotland in the St. Kilda Archipelago. The sheep

were originally introduced by early settlers of the archipelago to an even smaller island,

Soay, though exactly when and by whom is not clear. In the early twentieth century, the

population of the islands was reduced by disease and emigration, and in 1930 the remaining

inhabitants were evacuated. At this time, the sheep were removed from the islands except

for a small population that was transferred from Soay to Hirta (Catchpole et al., 2000). The

population is ideal for study because it is geographically closed, has no natural predators

or competitors, and the sheep are easily located so that capture probabilities are very high.
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The sheep on Hirta have been studied a great deal and much is known about the pop-

ulation’s dynamics. Because there is no predation and no competition for food with other

species, the population goes through cycles in which it grows quickly when conditions are

favourable and then experiences sudden crashes when conditions worsen (Coulson et al.,

2001). Further studies have examined the effects of sex, body mass, horn type, coat type

and environmental variables (including winter severity and spring precipitation levels) on

the survival of the sheep (Catchpole et al., 2000; King et al., 2006). The objective of my

analysis is to incorporate the effects of body mass on the capture and survival probabilities

when estimating the population size.

Sheep in one area of the island, Village Bay, have been captured during three censuses

conducted in April, August and October of each year since 1986. Newly captured sheep are

tagged with uniquely numbered ear tags and several variables are recorded including coat

and horn type and body mass. Most of the sheep are captured as lambs (during their first

year of life) and so their year of birth and age in every following year is known. Searches for

dead sheep are also conducted during each census which provides exact information on the

time of death for some individuals. However, the current analysis considers only the summer

(August) captures of sheep ignoring the captures in the other seasons and the recovery of

dead individuals. Previous studies have shown that the survival of males and females differ

considerably and are affected by different factors, and the analysis is further restricted to

the sub-population of female sheep.

The original data contained records of 2393 sheep captured in at least one summer of

the 15 years between 1986 and 2000, of which 1208 (50%) were female. The majority of the

female sheep, 612 (51%), were captured only one time, largely because of the high mortality

for lambs. One complication in the analysis was that sheep were weighed on only slightly

more than half of the times they were captured. My method requires that the covariate be

observed each time an individual was captured and so captures without body mass being

recorded were removed from the data. The result is that the estimated capture probabilities

should be interpreted as the probability that a sheep was captured and weighed. This will

not bias the estimates of the capture or survival probabilities or population size, but the

precision of all estimates will be reduced simply because there are less data. The data set in

my analysis comprised records for 833 sheep of which 488 (59%) were captured and weighed

on only one occasion, 150 (17%) on two occasions and 205 (25%) on 3 or more occasions.

An average of 56 individuals were captured and weighed for the first time in each of the 15
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years, with counts ranging from 21 in 1986 to 96 in 1987.

Previous analysis of the Soay sheep at Village Bay has shown a strong link between age

and survival. Catchpole et al. (2000) and Catchpole et al. (2008) categorised the female

sheep into 4 age classes: lambs (year of birth), yearlings (second year of life), adults (ages

3-7), seniors (8 years or older). In my analysis, I fit four different models considering the

possible effects of age and body mass:

Model 1: no effect of age or body mass (original Jolly-Seber model) (p(t), φ(t))

Model 2: effect of age only (p(t× a), φ(t× a))

Model 3: effect of body mass only (p(t× w), φ(t× w))

Model 4: effect of both age and body mass (p(t× w × a), φ(t× w × a)).

The structure of Model 4 included age and time dependent intercepts and age dependent

slopes in the linear predictors of both the capture and survival probabilities. The hierarchical

prior was applied separately to the time dependent intercept terms within each age class

and no associations were included among the age classes. Estimates of β0 and β1 could not

be produced separately for the lambs because it was impossible for lambs to be previously

captured and marked. To estimate the capture probabilities for lambs, required for the

estimation of the total population size, it was assumed that the parameters β0 and β1

were equal for the lambs and the yearlings. The remaining three models are obtained by

placing restrictions on the parameters in Model 4. Model 3 is derived by assuming that the

intercepts and slopes are the same for all age classes, Model 2 by assuming that the slopes

are uniformly equal to 0 and Model 1 by assuming both that the intercepts are equal across

age classes and the slopes are uniformly 0.

Samples from the posterior distributions of all four models were generated through

MCMC sampling implemented in OpenBUGS. Markov chains were run for 500,000 iter-

ations total for each model; realizations from the first 100,000 iterations were discarded as

burn-in and the remaining realizations were thinned every 40 iterations to yield a sample of

size 10,000 from the posterior.

Table 3.1 presents the DIC for each of the four models. The DIC decreased monotonically

as the complexity of the models increases. The smallest DIC value was produced by Model

4 including the effects of both age and body mass. DIC values for the Models 2 and 3
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Model DIC pD

1) p(t), φ(t) 3937.9 21.4
2) p(t× w), φ(t× w) 3744.2 29.3
3) p(t× a), φ(t× a) 3697.0 59.7
4) p(t× w × a), φ(t× w × a) 3612.1 66.1

Table 3.1: DIC selection criterion for the four models fit to the female Soay sheep data.

including only age and body mass were greater by 85 and 132 respectively providing very

strong evidence that both are important predictors of capture and/or survival.

The estimated survival and capture probabilities for the best fitting model are plotted

as functions of time for fixed values of the covariate in Figure 3.1 and as functions of the

covariate for fixed time in Figure 3.2. Posterior summaries for the model parameters are

given in Table 3.2. Capture probabilities decreased with the age of the sheep but are fairly

consistent over time. The main exception was in 1989 when the capture probability was

lower for all ages of sheep. Capture probabilities for the seniors varied more than for the

other age classes. There was some suggestion that the capture probability of the lambs and

yearlings decreased with increasing body mass, but the 95% CIs of β1 covered 0 for all age

classes.

Survival probabilities for the seniors and adults were also fairly close to constant over

time. However, the survival probabilities for the lambs varied considerably. In particular,

the survival probabilities were very low in the periods 1988-1989, 1991-1992, 1994-1995 and

1998-1999. Survival probabilities for the yearlings were very low in 1988-1989 and lower in

1998-1999 than in the other years. Higher body mass had a positive effect on the survival

probabilities of all ages of sheep. This effect was strongest for the lambs and yearlings, and

weakest for the adults and seniors.

Posterior summary statistics for the number of female sheep alive and the number re-

cruited in each year are plotted in Figure 3.3. The estimated population size was very low

in 1986, but I believe that this resulted from a data anomaly. The data contains no direct

information about the capture probabilities in this year and all inference was derived from

the relationship to the other terms in the hierarchical model. However, a much smaller

proportion of the sheep captured in 1986 were weighed than in other years. Removing the

captures when sheep weren’t weighed and imposing the hierarchical model has overesti-

mated the capture probability in this year which has lead to a severe underestimate of the

population size. This also caused the number of births in 1987 to be overestimated. Beyond
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this, the population of female sheep seems to have had an overall increase during the 15

year period with cycles of decline followed by rebound in 1989, 1992 and perhaps in 1999,

though data from more recent years would be needed to confirm a rebound. The number

of female lambs born each year was fairly steady from 1989 onward with the exception of

decreases in 1989, 1992 and possibly 2000. The posterior mean super-population size was

954 with 95% CI (876,1105).

The results of Catchpole et al. (2000) show very similar patterns of survival by age and

time. Estimated survival probabilities were highest for the adults and yearlings and lowest

for lambs. Estimates for all ages were lower than usual in the periods 1988-1989, 1991-1992

and 1994-1995, with the lambs being affected most and the adults least. Estimates of the

size of the female population also showed similar trends with low numbers and few births

in 1986, 1989 and 1992.

Values of the discrepancies computed to assess the fit of the LVB growth model are

plotted in Figure 3.4 for 1000 equally spaced samples from the posterior of the selected

model. The Bayesian p-value, .75, was close enough to .5 that it does not provide substantial

evidence against the LVB growth model, but I was concerned again by the fact that the

discrepancy was most often larger for the simulated data than for the observed data. Further

examination showed that this was because the distribution of the errors in body mass for

the sheep was not exactly Gaussian. Instead, the distribution of the errors was slightly

more peaked and there were a few large values far in the tails of the distribution. These

observations increase the value of σ so that the errors were, on average, slightly larger in

most of the simulated data sets. It is possible that a distribution with heavier tails, like

a t-distribution, would provide a better fit, but I am confident that this would have little

effect on the estimated capture probabilities or population size.

I had hoped to further demonstrate the utility of the Bayesian p-value by repeating the

analysis with the distribution of the covariate given by the diffusion model of equation (3.1)

in place of the LVB growth model in equation (3.3). However, the fit of this model was

so poor that it was not even possible to generate a sample from the posterior distribution.

The MCMC sampler had clearly not converged after 50,000 iterations, and trace plots for

some parameters showed an almost linear increasing or decreasing trend over this period. In

particular, the value of µβ for the yearlings decreased almost monotonically and was below

-15.0 by the final iteration, an impossibly small value on the logistic scale. The reason for

this was that the model did not allow for the differential growth of young and old sheep.
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The estimated mean change in body mass was close to 0 kg (between -3.0 and 1.5) for all

years. If this were true then we’d expect to have captured yearlings whose body mass was

the same as when they were captured as lambs, but no such individuals were observed. The

only explanation is that the capture probability for yearlings and lambs of this size is 0,

forcing down the value of β0t in all years. The further result was an impossibly high estimate

of the population size; the mean of the super-population size over the 50,000 iterations was

more than 19,000. This clearly demonstrates the importance of choosing an adequate model

of the covariate and checking its fit.
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Figure 3.1: Effect of time on the capture and survival probabilities of the female sheep. The
plotted values summarize the posterior distribution of the of the capture probability (top)
and survival probability (bottom) of sheep with the average observed body mass for each
age class, as indicated in the legend. For each age × year the point represents the posterior
mean and the error bars indicate the extents of the 95% CIs.
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Figure 3.4: Observed and simulated discrepancies for computing the Bayesian p-value assess-
ing the model of the covariate. The Bayesian p-value is the proportion of times the simulated
discrepancy is greater than the observed discrepancy (i.e., above the plotted line).
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3.5 Simulation

The performance of the new method was assessed through a simulation study based on

the results of the Soay sheep analysis. To simplify the models in the simulation, the age

structure was ignored. Instead, data was generated under two scenarios, the first based

on the parameter estimates for the yearling sheep and the second based on the estimates

for the adults. All simulated data sets were analysed with both the standard JS model

and my extended model incorporating the covariate. When the capture probabilities were

affected by the covariate, the standard JS model overestimated the population size. When

the capture probabilities did not depend on the covariate, the standard model produced

estimates that were both slightly more accurate and precise than my extended model.

For each of the two scenarios, I generated 100 data sets comprising capture histories

for a population of 1000 individuals over 15 capture occasions. Data for each individual

were generated by first simulating the time of recruitment and the values of the covariate,

and then simulating the survival and capture events. Time of recruitment was randomly

selected from a period of twenty time units, starting 5 units before the first capture occasion

to establish a population of adults. The value of the covariate at the time of recruitment

was simulated from a normal distribution with mean 11.6 and standard deviation 2.5, the

observed mean and standard deviation of body mass of the Soay sheep lambs. Values of the

remaining parameters in each of the two scenarios are provided in Tables 3.3 and 3.4. In the

first simulation, based on the yearling sheep, the covariate had a weak, negative effect on

the capture probability and a stronger, positive effect on the survival probability. Survival

probabilities also varied widely over time for the same value of the covariate. In the second

scenario, based on the adults, the covariate had no effect on the capture probability and a

much smaller effect on the survival probability, and there was less variation in the capture

probabilities over time.

Each data set was analysed with both a Bayesian implementation of the standard JS

model assuming identical capture and survival probabilities for all individuals alive on each

occasion and my model allowing for the effect of the covariate on both sets of parameters.

All models were fit using MCMC simulation in OpenBUGS to generate samples from the

posterior distribution. Markov chains were run for 50,000 iterations in total with the first

10,000 discarded as burn-in. The remaining 40,000 samples were thinned every 8 iterations to

yield 5000 samples from the posterior distribution. Accuracy of the models was compared by
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the bias of the posterior mean as a point estimate of selected parameters and the proportion

of times the 95% posterior CIs for these parameters covered the true values. Precision was

compared by the width of the 95% CIs.

Results for the first simulation scenario are presented in Table 3.3. Posterior means for

my model including the covariate’s effect provided approximately unbiased estimates of all

parameters, except for the variance of the survival probability intercept terms, τφ. The

posterior mean did overestimate the super-population size slightly, but the bias, less than

1%, is small enough to be ignored in practice. The 95% CIs for most parameters were very

narrow and covered the true parameter values for at least 95% of the data sets. The model

ignoring the covariate overestimated the super-population size by more than 7% and the

95% CI covered the true population size for only 15 of 100 data sets.

In the second scenario, the estimate of the super-population size from the model ignoring

the covariate was approximately unbiased (see Table 3.4). This occurred despite the facts

that the model did not account for the effect of the covariate on the survival probability

and the posterior mean of β0 was biased by more than 20%. In contrast, the estimate of the

super-population size from the model incorporating the covariate had a positive bias greater

than 1.5%. The 95% credible interval for the super-population size was also marginally wider

for the modelling including the covariate effect. Estimates for the remaining parameters were

approximately unbiased, though the coverage of the 95% CIs was less than 95% for 6 of the

10 selected parameters.

The first simulation shows the potential for biased estimates when the effect of the

covariate on the capture probability is ignored. Further simulations with even stronger

effects of the covariate on the capture probabilities produced even larger biases (results not

shown). When the capture probabilities are the same for all individuals, the standard JS

model produced estimates that were both more accurate and more precise, even though the

model ignored the effect on the survival probabilities. However, the loss of accuracy and

precision from including the covariate when it did not affect the capture probability was

much less than the loss from ignoring the significant effect.
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3.6 Discussion

The objective of this project was to incorporate the effects of continuous covariates on

individual capture and survival probabilities when estimating the size of an open population

from capture-recapture data. My solution extends the Bayesian implementation of the CJS

model that by Bonner and Schwarz (2006). Inference about the population size is conducted

in two stages. First, the Bayesian CJS model is fit via MCMC to obtain a sample from the

posterior distribution of the parameters governing the capture and survival probabilities. A

modification of the HT estimator is then applied to each of the sampled parameter sets to

obtain a sample from the posterior distribution of the number of unmarked individuals, and

hence the total population size, alive on each occasion.

There are two concerns I have with the new method, both relating to the prior distri-

bution for the number of unmarked individuals. The first is that the number of unmarked

individuals alive on occasion t, Ut, is not a quantity of direct importance, its value being

dependent on the effort put into capture. The true parameter of interest is the total popu-

lation size, Nt, and this is the parameter to which the prior should be assigned. However,

Nt is not a parameter in the likelihood function and so it cannot be assigned a prior distri-

bution directly. My second concern is that the analyst cannot assign a prior distribution to

Ut other than that defined in section 3.3. In most (if not all) capture-recapture studies the

researchers will have at least some, and possibly considerable, prior information about the

population size. Unfortunately, Claim 1 is only true for the specified non-informative prior

distribution in equation (3.6), and so the two stage approach cannot work with any other

prior.

I believe that both of these problems can be solved by the method of Bayesian melding

(Poole and Raftery, 2000). Bayesian melding was developed for the analysis of complex

deterministic models in which data provides estimates for a set input parameters which are

fed into the model to produce a set of output parameters. In some situations, the researchers

may have prior beliefs about both the inputs and outputs of the model. Incorporating the

prior on the inputs is straightforward, but the standard Bayesian formula does not allow for

specification of a prior for the outputs. Bayesian melding provides a means to define prior

distributions for the two sets of parameters simultaneously. A sample from the posterior is

generated by first sampling values from the prior distribution of the inputs, computing the

corresponding outputs from the deterministic model, and then re-weighting each realization
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based on the prior distribution for the outputs and the value of the likelihood function. This

could be applied to my method by considering Nt = Ut + Mt as a deterministic function of

Ut and Mt, and would allow for the specification of a prior for each Nt directly as well as

for the input parameters U , β0, β1, γ0 and γ1.

Although I developed this method specifically to allow the inclusion of continuous co-

variates in the JS model, it can easily be extended to many other capture-recapture models.

The two claims in section 3.3 depend only on the first component of the likelihood, L1 and

the exact form of L2, the component modelling the events in each individuals capture his-

tory subsequent to their first capture, is irrelevant. This means that the two-stage procedure

can be directly applied to any model which considers the number of unmarked individuals

captured on each occasion in the same way – as a random sample from a population of un-

marked individuals of fixed but unknown size. For example, the method could be extended

to models including recoveries of dead individuals as well as the capture of live individuals

or to the robust design (Pollock, 1982).

An important model to which the method does not extend is the Schwarz-Arnason

super-population model (Schwarz and Arnason, 1996). There are several disadvantages to

conditioning on the number of unmarked individuals alive on each occasion as fixed values

including that the estimate of recruitment on each occasion need not be positive and that

constraints cannot be imposed on the numbers of recruits. Schwarz and Arnason (1996)

extended the original JS model by explicitly modelling the number of individuals recruited

on each occasion as a sample from the super-population, the hypothetical collection of

individuals available to be captured at least one time during the experiment, and modelling

the events in each capture history prior to the individuals first capture. This ensures that the

number of births is non-negative on all occasions and allows the probabilities of recruitment

to be constrained or modelled as functions of covariates, including environmental variables

or even the population size itself. The difficulty in incorporating continuous covariates into

the super-population model is in modelling the events in an individuals capture history

before it is first captured. This would require more assumptions to model the unconditional

distribution of the covariate and also more intensive computing to generate a sample from

the posterior distribution. Incorporating continuous covariates into the Schwarz-Arnason

model is an important topic for future research.

There is one important caveat with the application of my method to the Soay sheep.

Although the trends in the estimated population size match well with Catchpole et al.
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(2000), my estimates are in fact smaller in every year. This is due to the assumption that

β0 and β1 are the same for both the lambs and yearlings. The capture probabilities decline

with body mass for the yearlings (β1 < 0) and extrapolating to the lower body masses

observed for the lambs results in significantly higher capture probabilities (.80 for the lambs

versus .65, approximately, for the yearlings). From the original data including the captures

when body mass was not recorded, I know that this overestimates the capture probabilities

of the lambs, which leads to underestimation of the population size. Unfortunately, the

capture probabilities for the lambs, and hence the total population size, cannot be estimated

without some assumption relating the lambs to the other sheep. Alternatives would be to

exclude the lambs from the estimate of population size or to model the intercept of the

capture probability as a linear function of age. However, the analysis seems sufficient as an

illustration of the method.



Chapter 4

Continuous Covariates in the

Cormack-Jolly-Seber Model: A

Bayesian Adaptive Spline

Approach

4.1 Introduction

This chapter presents a second project concerning the use of continuous predictors of the

capture and survival probabilities in capture-recapture models of open populations. As

discussed in Chapter 3, predictors of the capture probabilities are often included to account

for variations in individual catchability that might otherwise bias estimates of the population

size. However, the effect of the explanatory variables on survival may also be of direct

interest. For example, capture-recapture experiments have studied the effect of body mass

on the survival of meadow voles (Microtus pennsylvanicus)(Nichols et al., 1992; Bonner and

Schwarz, 2006), winter temperatures on the survival of grey herons (Ardea cinerea) (North

and Morgan, 1979) and sex, horn type and birth weight on the survival probabilities for the

population of Soay sheep (Ovis aries) considered in the last chapter (Catchpole et al., 2000;

King et al., 2006). A common assumption in most models is that the effect of a continuous

covariate is linear on some scale (usually logistic) so that the estimated survival probabilities

either increase or decrease monotonically with the covariate. The objective of this project

115
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was to develop a flexible method that would make as few assumptions as possible about the

nature of these relationships.

In some biological systems the effect of a continuous covariate on survival may be very

complex. Suppose that it had not been possible to categorize the Soay sheep by age class

in the application of the previous chapter. Instead of modelling the effect of body mass on

the survival probability of each class separately, it would have been necessary to define a

single function modelling this relationship. The resulting function would have several peaks

with high probabilities of survival at the optimum body mass for each age class and low

values in between. Some covariates may also be influenced by stabilizing selection so that

the survival probability peaks at one specific value and decreases at both higher and lower

values. Fitting models assuming a monotone relationship would not capture either of these

behaviours and would lead to incorrect conclusions about the covariate’s effect.

One solution to this problem is to partition the values of the covariate into a number of

discrete categories and allow the survival probability to vary independently in each category.

In Nichols et al. (1992), for example, the body mass of the meadow voles is divided into 4

distinct classes. The disadvantages of this approach is that it introduces discontinuities into

the function relating the covariate to body mass, many categories may be required to de-

scribe complex relationships and the definition of the categories is usually subjective, rather

than biologically based. Another method is to introduce higher order polynomial terms to

allow for non-linearities. While this may be adequate for simpler relationships, many higher

order terms would be required if the relationship has local behaviours, as in modelling the

effect of body mass on the survival probability of all ages of sheep simultaneously.

My solution is to model the linear predictor of the survival probabilities as a spline

function. As discussed in Chapter 1, there are two general approaches to fitting splines and

ensuring a proper balance between smoothness and complexity. In Chapter 2, penalized

splines were applied to model the daily run size of migrating salmon populations as a smooth

function of time. In this chapter, I have chose an adaptive spline approach. In particular, I

have implemented the adaptive Bayesian B-spline method of Biller (2000).

The challenge of fitting an adaptive spline can be viewed as a large variable selection

problem. Each function in the spline basis contributes a new variable to the model, and the

goal is to select the set (or sets) of basis functions that produce the best balance between

fit and complexity. Bayesian inference using the reversible jump Markov chain Monte Carlo

(RJMCMC) algorithm of Green (1995) provides an ideal method for exploring the space of
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spline models and selecting the best sets of basis functions. The method of Biller (2000)

provides an particular implementation of the RJMCMC algorithm for sampling from a

specific set of candidate models formed by a finite set of knots over the range of the covariate.

Inference is then obtained from the summary statistics of the sampled models.

The basic approach of my method is very similar to that of Gimenez et al. (2006).

In this work, splines were used to flexibly model the effect of body mass on the survival

probability of a population of sociable weavers (Philetairus socius) in South Africa captured

over a 15 year period. There are two key differences between this project and my work.

First, Gimenez et al. (2006) implemented a penalized spline approach similar to that used

in Chapter 2. Their model also assumes that body mass is a constant, averaging all values

observed for an individual to obtain a single covariate, whereas my method allows the value

of the covariate to change over time as in Bonner and Schwarz (2006) and the model of the

previous chapter.

Section 2 of this chapter provides further details of adaptive splines and the method

for fitting the survival probabilities as a function of a continuous covariate. Here I adapt

the method of Biller (2000) to allow for the unobserved values of the covariate when in-

dividuals are not captured and the estimation of the remaining parameters in the model.

Section 3 examines a simulation study where the survival probability is known to have local

dependence on the covariate. Fit of the spline model is compared with the fit of a simpler

cubic polynomial model. In section 4, I apply the method to study the relationship between

the survival and condition of reed warblers (Acrocephalus scirpaceus ) captured as part of

the Dutch Constant Effort Sites (CES) ringing program. The final section discusses advan-

tages and disadvantages of the method and provides some suggestions for its use in future

capture-recapture studies.

4.2 Methods

4.2.1 Notation

Observed Data & Latent Variables:
T =number of capture occasions (indexed by t).

zit=value of time-varying covariate for individual i at time t (partially observed).

Parameters:
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φit =probability that individual i is available for capture at occasion t + 1 given

that it was available for capture at occasion t

pt =probability that any individual available for capture at occasion t is captured

s(z) =spline function modelling dependence of φit on zit

κ =number of potential knot locations

K =number of knots in a single realization of the adaptive spline

ξk =location of the kth knot

ξl, ξu=lower and upper boundary knots

β =vector of coefficients of s(z)

µt =population mean change in covariate between t and t + 1

σ2 =population variance of change in covariate between adjacent capture occa-

sions

4.2.2 Cormack-Jolly-Seber Model with Individual Covariates

The basis for the new method I have developed is the extended CJS model of Bonner

and Schwarz (2006). As discussed in Chapter 3, this model allows for the CJS capture

and survival probabilities to be modelled as functions of a continuous covariate that can

only be observed when an individual is captured. To account for the missing values of

the covariate, their distribution is modelled conditional on the observed values for each

individual. Bayesian methods are then applied to make inference about the covariate’s

effect.

In both Bonner and Schwarz (2006) and Chapter 3 it was assumed that the capture and

survival probabilities were linear functions of the covariate on the logistic scale. That is:

logit(pit) = β0t + β1zit

and:

logit(φit) = γ0t + γ1zit

where and zit, pit and φit are the value of the covariate, the capture probability and the

survival probability for individual i on capture occasion t. The new model allows logit(φit) to

be a non-linear function of the covariate. In particular, the model specifies that logit(φit) =

s(zit) where s(z) is a spline function fit through the adaptive Bayesian B-spline approach.

For simplicity, I will focus only on the effect of the covariate on survival and assume that
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the capture probabilities are dependent only on time (i.e., pit = pt for all i). Otherwise, the

likelihood contribution for each individual is exactly as given in equation (3.4).

4.2.3 Adaptive Bayesian B-Spline Model

The adaptive spline fitting paradigm considers the number of knots, K, and their locations,

ξ1, . . . , ξK as unknown values that must be estimated along with the coefficients of the spline.

Suppose that we wished to model the mean of some response as a function of the covariate,

z, which ranges between ξl and ξu, called the boundary knots in spline terminology. The

idea of Biller (2000) is to select a large number,κ, of potential knot locations between the

boundary knots and then select from models with knots at these points. The model space is

then taken to be the restricted set of cubic spline functions with between 1 and κ knots at

these locations. There are
(

κ
K

)
possible splines with K knots and hence

∑κ
K=0

(
κ
K

)
candidate

models in total.

In essence, standard Bayesian methods are applied to make inference about the models

in this space. A prior distribution is defined for the entire set of models and then combined

with information from the data, in the form of the likelihood, to generate the posterior

distribution from which inference can be obtained. The main challenge is that even though

there is a finite set of candidate models, the number of possible configurations for the knots

is too great to compute posterior probabilities for each model separately, either numerically

or analytically. Moreover, the standard sampling techniques of Bayesian inference, like the

Metropolis-Hastings algorithm, cannot be used to sample from the posterior distribution

because the space contains models of varying dimension (i.e., varying numbers of basis

functions). Instead, Biller (2000) provides a reversible jump MCMC (RJMCMC) algorithm

to explore the model set and generate a sample of realizations from which point and interval

estimates can be computed.

Let {B(q)
1 (z), ..., B(q)

q+K(z)} denote the set of B-spline basis functions for a spline of order

q with K knots and b = (b1, . . . , bq+K) the corresponding vector of coefficients so that:

s(z) =
q+K∑
j=1

bjB
(q)
j (z).

To define a prior distribution over the entire model space, it is necessary to assign a density

to each of the possible sets of knots and the coefficients of the resulting spline functions.
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Following Biller (2000) I construct the joint prior density, π(b, ξ,K), as the product of three

densities: the prior probability on the number of knots, π(K), the probability of the knot

locations given their number, π(ξ|K), and the density of the coefficients given both the

number of knots and their locations, π(b|ξ,K). First, the number of knots is assigned a

truncated Poisson(λ) distribution so that:

π(K) ∝ e−λλK(K!)−1

for each K = 1, . . . , κ. Next, each of the
(

κ
K

)
possible configurations of K knots are assigned

equal probability conditional on K so that:

π(ξ|K) =
(

κ

K

)−1

.

Finally, independent, diffuse normal priors with mean 0 and large variance τ2 are specified

for the coefficients of the spline, b.

Each iteration of the RJMCMC algorithm developed in Biller (2000) includes three

separate steps involving the proposal and then acceptance or rejection of a new spline

function. The first step in each iteration allows a change in the dimension of s(z) by adding

or deleting one knot (equivalently, adding or deleting one B-spline basis function from the

set of predictor variables). Starting from a spline with K knots the number of knots in the

proposal, K ′, is increased to K + 1 with probability:

P (K + 1|K) =


0 K = κ

.5 0 < K < κ

1 K = 0

and decreased to K − 1 with probability P (K − 1|K) = 1 − P (K + 1|K). If K ′ = K + 1,

the location of the new knot is chosen from the κ−K currently unoccupied locations with

uniform probability. The coefficient for the new basis function is then set equal to the

weighted average ubj− + (1− u)bj+ in which bj− and bj+ represent the coefficients from the

neighbouring basis functions and u ∼ U(0, 1). Minor, deterministic adjustments are also

required for the coefficients bj− and bj+ as their associated basis functions are changed by

the addition of the new knot. Let ξ′ and b′ denote the proposed vectors of knot locations

and coefficients. Because of the change in dimension, the probability of accepting the
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proposed spline must be computed from the RJMCMC acceptance ratio in equation (1.2)

with the proposal density Q(θ′) = P (K+1|K)/(κ−K), the density of the current parameter

values Q(θ) = P (K|K + 1)/(K + 1) and the Jacobian J ((θ, u), (θ′, u′)) = |bj− − bj+ |. If

K ′ = K − 1, then one knot is deleted in a similar way. The knot to be deleted is randomly

selected with uniform probability, the coefficients of the proposal are computed and the new

spline is accepted according to the RJMCMC acceptance ratio with Q(θ′) = P (K−1|K)/K,

Q(θ) = P (K|K − 1)/(κ−K − 1) and J ((θ, u), (θ′, u′)) = 1/(|bj− − bj+ |).
The second step of each iteration proposes a limited adjustment to the location of one

knot. For the jth knot in the spline, a neighbourhood is defined which contains all of the

empty knot locations between the previous knot, ξj−1, and the subsequent knot, ξj+1. The

knot is moveable if this neighbourhood contains at least one unoccupied location. To update

the spline, one knot is selected from the set of moveable knots with uniform probability and

moved to one of the empty knot locations in its own neighbourhood, again with uniform

probability. The B-spline basis functions are recomputed given the new vector of knots, ξ′,

but the vector of coefficients is not changed. The dimension of the proposal is the same

as that of the current model and so acceptance or rejection is performed in a simple MH

step with acceptance probability given in equation (1.1). The purpose of this step is to

allow the sampler to move through different models with the same number of knots without

having to move first through models of differing dimension. Keeping the new location for

the selected, moveable knot within its neighbourhood limits the amount of change possible

on one iteration, but ensure that the proposal is accepted with high probability.

The third step in updating the spline model is to propose new values for the vector of

coefficients, b. The most common method for updating the coefficients of linear models

is to perturb the current values by the addition of random, Gaussian noise. When this is

done, the variance of the added noise needs to be tuned so that the deviations are not to

large, which would cause the proposal to be accepted very rarely, or too small, which would

cause the chain to mix very slowly. Biller (2000) notes that this method for proposing new

coefficients cannot be used in the adaptive algorithm because the optimal variance would

depend on the exact number of knots and their locations. Instead, the method of Gamerman

(1997) is recommended. One step of the iteratively reweighted least squares algorithm is

performed and the resulting estimates of the coefficients and their variance matrix are taken

as the mean and variance of a multivariate normal distribution from which the proposal is

generated. This step also does not alter the dimension of the model, and so the acceptance
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probability is again computed from the standard MH ratio in equation (1.1).

Implementation of this algorithm for modelling the CJS survival probabilities as a func-

tion of a continuous covariate poses some difficulties because of the missing covariate values.

First, the RJMCMC algorithm for sampling from the posterior distribution requires extra

steps to impute the unobserved covariate values on each iteration. Further steps are also

needed to update the remaining parameters in the model including the capture probabilities

and the parameters specifying the distribution of the covariate. The second complication is

in the choice of the boundary knots, ξl and ξU . Biller (2000) suggests setting these equal

to the minimum and maximum values of the covariate and spacing the κ potential knot

locations evenly between. This is not possible in my application because the minimum and

maximum values may not have been observed. If ξl and ξu are set equal to the observed

minimum and maximum, say zobs
min and zobs

max , it is possible for some of the covariate val-

ues imputed on each MCMC iteration to lie outside of the boundary knots. Although the

value of each B-spline basis function is constrained to [0, 1] within [ξl, ξu], the values are

not constrained outside of this interval and this can lead to the same numerical problems

that arise with the truncated polynomial basis. Instead, I recommend choosing ξl and ξu

to enclose a wide range about the observed data (e.g. ξl = zobs
min − (zobs

max − zobs
min ) and

ξu = zobs
max + (zobs

max − zobs
min )) but still spacing the potential knots equally between zobs

min and

zobs
max . This arrangement allows the imputed covariate values to lie outside of [zobs

min , zobs
max ]

without concern for numerical instability, but constrains the spline to be equal to a cubic

polynomial on the intervals [ξl, z
obs
min ] and [zobs

max , ξu] where there is, in fact, no observed data.

The final algorithm for generating a sample from the posterior distribution of all ran-

dom variables has the following structure. First the algorithm is initialized by defining the

boundary knots and selecting κ potential knot locations between zobs
min and zobs

max . Initial

values are then chosen for all parameters including the parameters of the spline, the param-

eters of the covariate distribution and the capture probabilities. Once the algorithm has

been initialized, MCMC iterations are conducted in the following steps:

1) Simulating the missing covariate values.

2) Updating the parameters of the covariate distribution.

3) Updating logit(φ(z)) = s(z) by:

a adding or deleting one knot at a randomly selected location,
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b moving one randomly selected knot to an empty location in its neighbourhood, and

c updating the coefficients.

4) Updating the capture probabilities.

These iterations are repeated until the chain converges and a large sample of realizations

from the posterior is generated. Because there is no single set of knots, an estimate of

logit(φit) cannot be obtained simply by plugging estimates of the coefficients into equation

the B-spline formula. Instead, the value of s(z) at a specific point is approximated by

averaging the value of the function across the sampled realizations. Precision of s(z) is

assessed with pointwise 95% highest posterior density (HPD) credible intervals. That is, for

each value of z in [ξl, ξu] I compute the shortest interval which covers 95% of the sampled

values of s(z). The RJMCMC algorithm was implemented in the R programming language

(R Development Core Team, 2008).

4.3 Simulation Study

In my simulation study, capture histories for 500 individuals were generated from a CJS

model with 3 capture occasions – the minimum required to estimate a survival probability.

Covariate values for each individual were simulated from the diffusion based model:

zi,t+1|zit ∼ N(zit + µt, σ
2)

with the initial distribution zai ∼ N(0, 1) and parameters µ1 = µ2 = 0.00 and σ2 =

1.00. Survival probabilities for each interval were computed from a bimodal function of

the covariate with modes at z = −1 and z = 1. This function is plotted in Figure 4.1.

Capture probabilities were p2 = p3 = .85. Recruitment times were assigned so that half of

the individuals were first captured and marked on occasion 1 and half on occasion 2.

Three different models of the survival probability were fit to the simulated data to study

the new method’s performance. The first model fit a cubic polynomial to the logit of the

survival probability. The second and third fit the adaptive spline model described above

using two different prior distributions for the number of active knots: truncated Poisson with

rate parameter λ = 25 and truncated Poisson with rate parameter λ = 75. Markov chains

for all three analyses were run for 100,000 iterations. The initial 10,000 were discarded as

burn-in, and every 10th of the remaining 90,000 iterations was retained for inference.
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Estimates of the survival probability as a function of the covariate for all 3 models are

plotted along with their pointwise 95% HPD credible intervals in Figure 4.1. The cubic

function clearly was too rigid to adjust to the local changes in the survival probability.

Instead, the fitted curve decreased throughout the range of the covariate, and the 95%

credible intervals failed to cover the true survival probability for much of the range.

In comparison, the spline fit using the Poisson(25) prior easily captured the bimodality

of the survival probability. The pointwise 95% credible intervals covered the true function

completely, though they were between 2 and 3 times as wide as the credible intervals for

the cubic fit. A trace plot and histogram of the number of knots in the spline for each

MCMC iteration and a plot indicating the proportion of times each potential knot location

was occupied are shown in Figure 4.2. The number of knots appeared to converge very

quickly to a stable distribution which placed 95% of the posterior probability on models

with between 5 and 14 knots. The posterior median was 10 knots. Knot locations that

were occupied most often occupied were centred near the largest mode, although most knot

locations throughout the range of the covariate were occupied on approximately 1% of the

iterations.

The posterior distribution of the spline fit using the Poisson(75) prior assigned proba-

bility to more complex models with many more knots. Ninety-five percent of the posterior

probability was assigned to models with between 14 and 35 knots, and the posterior median

was 23 knots. Most knot locations throughout the range of the covariate were occupied on

approximately 2% of the iterations.

The result of using the Poisson(75) prior was that more knots were included in the

realization of the spline on each MCMC iteration and so the estimated survival probability as

a function of the covariate was less smooth. In fact, the new estimate contained considerable

noise and the most frequently occupied knot locations were associated with an anomalous

local change in the survival probability at z=1.8. This spike in the survival probability was

caused by a chance grouping of individuals all of which were captured on one occasion with

covariate values near 1.8 and failed to survive until the next capture occasion. Examination

of the true survival status (available from the simulated data) versus the covariate showed

exactly the same result. Note that even though the estimated survival probability was far

from the truth at some points, the 95% credible intervals still covered the truth at all points.

Posterior summary statistics for the remaining parameters are provided in Table 4.1.

Changing the model of the survival probabilities had negligible affect on these parameters,
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Figure 4.1: Estimated survival probability as a function of the covariate for the simulated
data. The left plot illustrates the estimated function assuming a cubic fit, the centre plot
using the adaptive spline method with a Poisson(25) prior on the number of knots, and
the right plot using the adaptive spline method with a Poisson(75) prior on the number
of knots. In each plot the solid grey line indicates the true function, solid black line the
pointwise posterior mean fit, and dotted black lines the bounds of the pointwise posterior
95% credible interval. The vertical dotted grey lines indicate the 2.5 and 97.5 percentiles of
the simulated covariate values.

and the posterior means and 95% credible intervals produced by all three models were

remarkably similar. The reason for this was that many individuals were captured on at

least 2 of the 3 capture occasions. Of the 500 individuals, 300 were captured on at least 2

occasions. With this many recaptures, good estimates of the capture probabilities could be

obtained from direct comparison of the capture histories and the observed covariate values

allowed accurate estimation of µ1, µ2, and σ2, without any adjustment for the covariate’s

effect on the survival probability.

4.4 Example

Data for the study of reed warblers (Acrocephalus scirpaceus ) was obtained from the Dutch

Constant Effort Sites (CES) banding project (Speek, 2006). In the CES project, volunteer

ringers capture birds on 12 day-long visits between April and August to each of 38 sites
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Figure 4.2: Number and locations of knots in the splines fit to the survival probability
for the simulated data set. The upper row shows the results using the Poisson(25) prior
distribution on the number of knots and the lower row using the Poisson(75) prior. The plots
illustrate, from left to right, the number of knots in the spline on each MCMC iteration,
the proportion of times different numbers of knots occurred and the proportion times each
potential knot location was occupied.

Parameter True Value Cubic Poisson(25) Poisson(75)
Polynomial Prior Prior

p1 0.85 0.85( 0.77,0.91) 0.84( 0.76,0.90) 0.84( 0.76,0.90)
p2 0.85 0.84( 0.73,0.96) 0.82( 0.72,0.93) 0.80( 0.70,0.90)

µ1 0.00 -0.06(-0.23,0.10) -0.06(-0.23,0.10) -0.06(-0.23,0.10)
µ2 0.00 0.04(-0.09,0.17) 0.04(-0.09,0.17) 0.04(-0.09,0.17)
σ 1.00 1.03( 0.96,1.10) 1.03( 0.96,1.10) 1.03( 0.96,1.10)

Table 4.1: Estimates of capture probabilities and parameters of the covariate distribution
for the simulated data. Results on the left are from the model assuming a cubic relationship
between survival and the covariate and on the right are from the spline models. Values
given are the posterior means with 95% HPD credible interval in parentheses.
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in Holland. Ringers optionally record demographic and biometric characteristics of the

captured birds including age, sex, body mass, wing length and tarsus length. The program

was initiated in 1994 and data was available for 10 years up to 2003.

This analysis applies my extension of the CJS model to the final 5 years of data using

a measure of the birds’ condition as a predictor of survival. Each year of the study was

considered as a single capture occasion. Multiple captures of the same bird in one year were

combined by collapsing records into a single capture indicator and averaging the biometrics

measurements. The condition measure for a single bird in a single year was defined as the

ratio of its average observed body mass to its average observed wing length. After removing

outliers, the measurements of body mass ranged from 9.9 g to 17.5 g and wing length from

62 mm to 71 mm. The range of the condition measure was .15 g/mm to .24 g/mm.

The CES database contains records of approximately 300,000 captures of 25,000 reed

warblers captured between 1999 and 2003. The majority of these birds were observed only

once, which was taken as evidence of large numbers of transients in the population, birds

that pass through the study sites as they migrate to other breeding grounds. To avoid

heterogeneity in the survival probability resulting from the immigration of these transient

birds, I used an ad hoc method restricting the data set to birds captured 2 or more times

– even if the 2 captures occurred in the same year – and conditioning the each capture

history on the bird’s second release. Observations of juvenile birds were removed from the

data because it was believed that the probability of survival, and its relation to condition,

was likely to differ between juveniles and adults. It was also necessary to remove many

individuals for whom the condition measure could not be computed in any year of the study

because of missing data on body mass or wing length. The final data set for this analysis

contained capture histories of 592 birds, with 111 captured in 2 or more years.

As in the simulation study, three different models of the relationship between the survival

probability and body condition were tested: a cubic model on the logit scale, and two

adaptive spline models with different priors on the number of knots. For the spline models,

κ = 100 potential knot locations were equally spaced between the minimum and maximum

observed condition values and the boundary knots were located at .05 and .34 g/mm. The

prior distributions on the number of knots, K, were truncated Poisson with λ = 25 in the

first run and truncated Poisson with λ = 75 in the second. In all three models, I introduced

a time dependent intercept term in the linear predictor of logit(φ(z)) to allow for some

change in the survival probabilities over time. The resulting models allowed logit(φ(z))
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to move up or down on each occasion but assumed that the relative effects of any two

values of the covariate were constant. In the standard CJS model, the final capture and

survival probabilities are completely confounded and only their product is estimable. I

found that although φ4(z) and p5 were not completely confounded in my model because

of the dependence on z, separate estimates had very low precision. Thus, I only estimated

their product φ4(z)p5. Body condition was modelled according to diffusion based density

in equation (3.1) because the data set was restricted to adult warblers and no systematic

growth was expected.

Figure 4.3 compares the survival probabilities estimated from the three different models.

Here the fit of the curves was very similar for all three models. Some local effects did

appear in the spline estimates, but these occurred at extreme values of body condition

where few birds were observed and come at the cost of much lower precision. Indeed,

the peak in the posterior mean survival probability at .22 g/mm arose from two birds

captured with covariate values near this point. The credible intervals at this point range

from approximately .10 to .90 indicating extreme uncertainty and the peak disappeared when

the capture histories for these two birds were ignored (results not shown). Figure 4.4 plots

the number of knots on each iteration of the MCMC algorithm for the two spline models.

As in the simulation, the posterior distribution arising from the truncated Poisson(75) prior

placed higher probability on models with more knots, which decreased the smoothness and

precision of the estimated survival probabilities as a function of body condition. The 95%

credible intervals for all three models overlapped at all points.

Posterior summary statistics for the remaining parameters and a point estimate of sur-

vival at the median value of body condition, .17 g/mm, are provided in Table 4.2. Also

included are the results of fitting a Bayesian implementation of the CJS model with no

effect of the covariate. The results were very similar for all four models. The estimates

suggest no significant change in the capture probability over time, though there was a slight

decrease in the survival probability at the median condition. Credible intervals of φt(z) were

wider for the spline models than for the cubic model, but this does not affect the remaining

parameters. The estimates of µt are all close to 0 indicating that there was no distinct

increase or decrease in the birds’ condition over any period. The posterior mean of σ was

.012 g/mm for all models. If a birds wing length were fixed at 62(71) , this would translate

to a standard deviation in mass between of .74(.85) g between capture occasions.
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Figure 4.3: Estimated survival probabilities as a function of condition for the reed warbler
data. Estimates from the cubic model are shown in the top row, from the spline model with
truncated Poisson(25) prior on the number of knots in the middle, and from the spline model
with truncated Poisson(75) prior on the bottom. Solid black lines indicate the pointwise
posterior mean and dashed lines the bounds of the posterior pointwise 95% credible intervals.
In each plot, the vertical grey dashed line indicate the 2.5-th and 97.5-th percentiles of the
observed condition values. The plots for 2002-2003 actually estimate the product φ4(z)p5

because of the weak identifiability of these parameters separately.
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Figure 4.4: Number and locations of knots in the splines fit to the survival probabilities for
the reed warbler data. The upper row shows results using the Poisson(25) prior distribution
on the number of knots and the lower using the Poisson(75) prior. The plots illustrate, from
left to right, the number of knots in the spline on each MCMC iteration, the proportion
of times different numbers of knots occurred and the proportion times each potential knot
location was occupied.
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Quantity CJS Cubic Poisson(25) Poisson(75)
Model Polynomial Prior Prior

φ1(0.17) 0.48(0.33,0.67) 0.47( 0.32, 0.64) 0.48( 0.32, 0.68) 0.52( 0.32, 0.78)
φ2(0.17) 0.41(0.27,0.63) 0.42( 0.25, 0.60) 0.43( 0.26, 0.65) 0.45( 0.23, 0.71)
φ3(0.17) 0.33(0.19,0.55) 0.32( 0.17, 0.49) 0.32( 0.17, 0.50) 0.34( 0.14, 0.58)

φ4(0.17)p5 0.13(0.09,0.19) 0.13( 0.08, 0.19) 0.14( 0.08, 0.19) 0.13( 0.06, 0.20)

p2 0.45(0.29,0.62) 0.46( 0.29, 0.64) 0.45( 0.29, 0.63) 0.42( 0.26, 0.60)
p3 0.46(0.28,0.66) 0.46( 0.28, 0.67) 0.45( 0.27, 0.66) 0.43( 0.24, 0.65)
p4 0.46(0.25,0.71) 0.48( 0.26, 0.73) 0.48( 0.26, 0.72) 0.44( 0.23, 0.70)

µ1 NA 0.000(-0.004,0.004) 0.000(-0.004,0.004) 0.000(-0.004,0.004)
µ2 NA 0.000(-0.005,0.004) -0.001(-0.006,0.004) -0.001(-0.006,0.004)
µ3 NA -0.002(-0.007,0.004) -0.002(-0.007,0.003) -0.002(-0.007,0.002)
µ4 NA -0.002(-0.010,0.007) -0.001(-0.010,0.007) -0.003(-0.011,0.005)
σ NA 0.012( 0.010,0.014) 0.012( 0.010,0.014) 0.012( 0.010,0.014)

Table 4.2: Estimates of capture probabilities and parameters of the covariate distribution
for the reed warbler data. Results on the left are from the CJS model assuming no effect of
the covariate on survival, then from a model assuming a cubic relationship between survival
and the covariate on the logistic scale, from the spline model with Poisson(25) prior on
the number of knots, and on the right are from the spline model with Poisson(75) prior
on the number of knots. Posterior means with 95% credible intervals are provided for each
parameter. Estimated survival probabilities are computed at the median observed value of
condition, .17 g/mm. Note that p5 is almost indistinguishable from φ4(z) and their product
was estimated as a single parameter.
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4.5 Discussion

To my knowledge, only one other lead author has suggested the use of splines to allow

more flexibility in modelling a covariate’s effect in capture recapture methods. Gimenez,

Covas, Brown and Anderson (2006) incorporated splines to model the effect of the southern

oscillation index (SOI) on the survival of snow petrels (Pagodroma nivea) living in Terre

Adèlie, and Gimenez, Crainiceanu, Barbraud, Jenouvrier and Morgan (2006) to model the

effect of body mass on the survival of sociable weavers in South Africa. Both applications

employ Bayesian inference but differ from my method in two respects. First, there are

no missing data in the covariate: SOI is an environmental variable that can be observed

regardless of the capture of individual birds, and the body mass for the sociable weavers is

defined by a single, static covariate computed by averaging the observations for each bird.

The second difference is that both applications make use of penalized splines with fixed

number of knots and fixed knot locations, rather than adaptive (free-knot) splines.

Another application of spline methods in analysing capture-recapture data is given by

Fewster and Patenaude (2008). The objective was to estimate the distribution of times

that southern right whales (Eubalaena australis) spend on their breeding grounds in the

Auckland Islands by analysing data from multiple sightings of individual whales. Penalized

cubic splines were fit to the density function of the residence times to ensure a smooth result

without make strong assumptions about the shape of the distribution. In contrast to my

method, and the work of Gimenez et al, Fewster applies classical likelihood methods to fit

the spline function.

The advantage of adaptive spline methods over penalized spline methods is that by

considering the number and location of knots as unknowns, knots can be located only where

required to improve fit. One consequence is that the degree of smoothing can vary across

the spline by clustering knots where the curve changes most rapidly and placing no knots

where the curve is most smooth. The posterior distribution computed from the simulated

data set with the Poisson(25) prior assigns low probability of being occupied to most knot

locations, except for those in the area of the largest mode which are 2 to 3 times more likely

to be occupied. Denison et al. (1998) provides some examples of adaptive spline fits to even

more rapidly changing functions with jump discontinuities. In contrast, a penalized spline

fit has an upper limit to the flexibility which is determined by the spacing of the fixed knot

points. Of course, the added flexibility also increases the potential for overfitting as seen
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with the Poisson(75) prior in both the simulation study and the analysis of the reed warbler

data.

The Bayesian approach to adaptive spline fitting also provide a natural way to incorpo-

rate uncertainty concerning the location of the knots. Classical adaptive splines methods

seek a single, best fitting set of knots which are then taken to be fixed. This is akin to

selecting a single set of predictor variables in a multiple regression problem and poses two

problems. First, different fitting criteria may lead to different models. Second, treating

the selected set of knots (predictor variables) as fixed ignores one component of variation

when computing the estimates of uncertainty. Bayesian posterior model probabilities natu-

rally rank the different knot configurations, and model averaging using these probabilities

to weight the different splines provides a clear way to aggregate inference from the different

models. The posterior mean over all configurations of knots will favour the features of the

most probable models, but also include some features of the less probable configurations

down-weighted accordingly. Credible intervals computed from the entire set of models also

accounts for uncertainty in the locations of the knots and will generally be wider than those

computed from a single set of knots (Hoeting et al., 1999).

The primary difficulty with the Bayesian adaptive spline method of Biller (2000) lies in

selecting the joint prior distribution on the set of models indexed by b, ξ, and K. As is

evident from the examples in this paper, the choice of prior is a very important determinant

of the smoothness of the fitted spline. A prior distribution that places too much mass

on simple models risks ignoring important aspects of the data, while a prior that favours

complex models risks overfitting. Apart from the prior distribution there is no penalty

for the model complexity, and overfitting is a serious concern. In simple smoothing of a

scatterplot it is possible to choose the priors subjectively and then plot the fitted curve

over-top of the raw data to assess the fit. The difficulty in this application is that neither

the covariate nor the response are completely observed, so the fit of the spline cannot be

visualized directly.

My recommendation is that several prior distributions be selected and the resulting

curves compared to see how the fit changes and whether the changes are biologically plau-

sible. For the reed warbler data, the obvious difference between the cubic fit to the sur-

vival probability and the spline fits with Poisson(25) and Poisson(75) priors is the peak at

.22 g/mm. The size of the peak in the last set of curves in Figure 4.3 is striking, but the

point where this occurs is well beyond the 97.5%-ile of the observed covariate values, where
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there are little data, and the 95% credible intervals at this point are very wide. Further

analysis revealed that the peak was due to 2 birds and disappeared when these individuals

were ignored. Moreover, there is no biological reason to believe in an increase in the sur-

vival probability at this point. Despite the size of the peak, it seems clear that there is no

evidence of a jump in the survival probability at .22 g/mm.

A second subjective decision that must be made in applying my method is the choice of

boundary knots, ξl and ξu. In theory, this choice should have little effect on the fitted curve

as long as [ξl, ξu] encloses the observed data. The challenge is that if [ξl, ξu] is very wide then

the distance from the lower boundary to the first internal knot or from the last knot to the

upper boundary will be large. This will lead to small values in the design matrix and the

numerical algorithms may become unstable. Conversely, if [ξl, ξu] is too narrow then it is

possible for imputed values of the covariate to lie far outside this range and similar problems

can occur. To assess the impact of this choice, I repeated the analysis of the simulated data

with several values for of ξl and ξu and found no effect on the fitted survival probability. I

also encountered no numerical problems using my default choices for the boundary knots.

One source of confusion with the adaptive-spline method might be the apparent dis-

crepancy between the prior and posterior distribution on the number of knots. In both the

simulation and example, the posterior distribution concentrates its mass on much simpler

models than the prior distribution. This might seem contradictory, but exactly the same

behaviour appears in the original examples of Biller (2000). In his discussion of another

paper on Bayesian adaptive splines, Holmes (2002) explains that the apparent discrepancy

is a result of the Bartlett-Lindley paradox. Ignoring the prior distribution on ξ and K, the

vague multivariate-normal prior on the spline coefficients, π(b|ξ,K), induces a prior predic-

tive distribution for the data whose variance increases with the dimension of b. As a result,

any observed data has lower prior probability under more complex models and the prior

distribution actually places less and less mass on models of higher and higher complexity.

The key in the adaptive spline model is that the prior on b|ξ,K which favours simple

models is partially offset by the Poisson prior on K which assigns very little mass to these

models – when λ is large enough. The resulting prior distribution is a balance that assigns

its mass to models simpler than those favoured by π(K) alone. In essence, there is no

discrepancy; rather, the prior on the set of models has to be interpreted through the full

joint distribution, π(b, ξ,K), and not simply the marginal prior π(K).
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Another caution with my approach, and with methods incorporating time-varying covari-

ates in general, is the amount of data needed to provide adequate estimates of the survival

probabilities. The final data set for the reed warblers contained 592 animals, but only 111

were captured on two or more occasions. Further, the condition measure was recorded two

or more times for only 77 birds. This provides very little information regarding how the

covariate changes over time and how differences in condition might affect the birds’ sur-

vival. Fitting a Bayesian implementation of the standard CJS model to the data (assuming

time-dependent survival and capture probabilities and ignoring any effect of the covariate)

yields credible intervals for the survival probabilities with widths between .34 and .36. In

light of this uncertainty when ignoring the covariate, it seems unlikely that any model will

be able to detect an effect of condition on survival.

Based on my experience, including time-dependent covariates in the CJS model requires

more data (i.e. capture of more individuals at given capture and survival rates) than models

assuming homogeneity of individuals, or including environmental and fixed individual pre-

dictors. Using splines to model the survival probability as a function of the covariate will

require even more data. Whereas a parametric curve borrows information from all values

of the covariate to estimate the survival probability at any single point, the spline only uses

information from a local neighbourhood of covariate values. The result is that if few birds

are observed with values in a given range of the covariate then the survival probabilities

estimated from the spline model will be highly variable in that range, though the estimates

from a parametric model may still be very precise.

I did not examine the goodness-of-fit of the extended CJS model, but this could again be

done by computing Bayesian p-values. Given that the method specifically addresses the issue

of allowing the survival probabilities to vary as a function of the continuous covriate, the

most important component to check is the model of the survival probabilities. However, it is

difficult to define a measure of discrepancy that assesses the fit of the survival probabilities

alone. For example, the discrepancy:

D1(X,Θ) =
∑

i,t:ωit=1

(
1(ωi,t+1 = 1)−

√
φitpt+1

)2

is the Tukey-Freedman statistic comparing each ωi,t+1 with its expected value, given that

the individual was alive and captured on the previous occasion (ωit = 1). This measure

depends on the adequacy of both the survival probabilities and the capture probabilities.
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A discrepancy measure that depends on the capture probabilities alone can be defined

by considering only the capture occasions when each individual is known to be alive. Let

At denote the set of individuals known to be alive on occasion t because ωit1 = 1 for some

t1 < t and ωit2 = 1 for some t2 > t. The discrepancy:

D2(X,Θ) =
T−1∑
t=2

√∑
i∈At

1(ωit = 1)−
√∑

i∈At

pt

2

compares the observed and expected numbers of individuals from this set captured on oc-

casion t, and depends only on the parameter pt. One approach to assessing the adequacy

of the model of the survival probabilities would be to compute a Bayesian p-value based on

D2(X,Θ) to assess the adequacy of the modelled capture probabilities, and then compute

a second Bayesian p-value based on D1(X,Θ). If the p-value computed from D1(X,Θ)

indicated poor fit but the p-value computed from D2(X,Θ) did not, then this would suggest

that the model of the survival probabilities needs to be more complicated possibly including

further covariates or group effects.

As a final note, I address the removal of transient birds from the CES reed warbler data.

The majority of individuals captured were never recaptured and it is likely that many of

these individuals were passing through the capture sites while migrating to other locations.

The apparent survival probability of these individuals would be 0. Pradel et al. (1997)

developed a model to account for transient individuals in the standard CJS model and

compared it to the ad hoc method of conditioning on second release that I employed. They

found that the ad hoc method produced unbiased estimates of the survival probabilities and

was almost as efficient as the more complicated model when capture probabilities are high.

With capture probabilities of .4 they found relative efficiency greater than .8.

A side-effect of conditioning on the second release in my application may be filtering

of the values of the covariate. Resident individuals with values that equate to low survival

probabilities will have less chance of being recaptured and more chance to be mistaken for

transients and removed from the analysis. This should not bias the estimates of survival

probability, but will decrease the precision of the estimates where these individuals are

removed. The analysis is not intended to be an exhaustive examination of the reed warbler

data, and how to deal with transients properly remains an open question.



Chapter 5

Conclusion

The three projects in this thesis all consider problems in modelling capture-recapture data

from populations in which the parameters (like catchability and survival) vary among indi-

viduals. In Chapter 2, the variation arises because individuals captured on different days

may have different capture probabilities and may take different amounts of time to move

between the two trapping locations. The challenge was to allow for these differences with-

out introducing large numbers of extra parameters that would be difficult to estimate from

sparse data. In Chapters 3 and 4, the capture and/or survival probabilities vary as func-

tions of a continuous covariate that changes over time. The challenge in Chapter 3 was to

estimate the population size while accounting for this variability. In Chapter 4 my objective

was to develop a model that allowed for the variation but made minimal assumptions about

the relationship between the covariate and the individual survival rates. Table 5.1 provides

a brief summary of the experimental design, my contributions, and the related work for

each of these projects. I will conclude by comparing and contrasting some of the similar

methods used in the different projects, discussing some common problems and suggesting

some directions for future work.

Chapters 2 and 4 both made use of splines to smooth the effect of a predictor, but

did so in very different ways. In Chapter 2, I chose a penalized spline method which fixes

the number of knots and their locations before the analysis, and I implemented an adaptive

approach that includes placement of the knots as part of fitting the model in Chapter 4. One

advantage of the adaptive spline method over the penalized method is that the smoothness of

the curve could vary across the range of the predictor variable. In the simulation of Section

4.3, knots clustered at the highest mode where the true curve changed most quickly providing

137
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more flexibility at this point. Penalized splines can also display varying smoothness if the

penalty – the prior on the coefficients in the Bayesian framework – is allowed to change

over the range of the data. Lang and Brezger (2004) suggest an extension of their model

that weights the prior variance for each coefficient with random terms to allow different

penalties (one could even smooth these weights so the smoothness changed smoothly). The

clear disadvantages of the adaptive method are the difficulty in specifying the prior on the

model space (number of knots) and the computation needed to sample from the posterior

distribution. The shape of the fitted curve in both the simulation and application of Chapter

4 depended greatly on the prior distribution for the number of knots, and priors favouring

large numbers of knots generated anomalous results. The RJMCMC algorithm was also

more difficult to implement and required more computing time than the MCMC algorithms

for fitting the penalized spline model.

Although I prefer the penalized spline approach based on my experience in these two

projects, I think that there is a correspondence between the two methods. Suppose that

I fit a Bayesian P-spline with many knots but specify the prior on the differences in the

coefficients as a mixture of two distributions: a point mass at 0 with high probability

and otherwise a normal distribution as in Lang and Brezger (2004). This is equivalent to

specifying, a priori, that most knots have no effect on the shape of the spline but allowing

non-zero effects when needed to fit the data, which is exactly the philosophy of the adaptive

spline method. I believe that unifying the two approaches would provide insight into the

best method for fitting splines and choosing the prior distributions, and I intend to explore

this in future research.

In Chapters 2 and 3, I compared different models of the same data with the DIC whereas

in Chapter 4 model selection (choosing the set of knots) was performed by RJMCMC. The

biggest advantage of the DIC is the simplicity of the computation, requiring nothing further

than the output of the MCMC runs for each model. It selected the true model for the great

majority of data sets in the simulation of Chapter 1 and pD provided a useful summary for

comparing the complexity of the hierarchical models. DIC would be difficult to use if the

model space were very large, e.g. many different predictors with possible interactions, as

this would require MCMC sampling separately for each model. The method also provides

no basis for model averaging and this seems like a severe disadvantage.

On the other hand, RJMCMC combines sampling from the posterior distributions of the

possible models and model selection in one procedure so that only one chain need be run
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regardless of the number of models being considered. The algorithm also naturally produces

results averaged over the different models. My main concern with this method is that it

seems impossible to know whether the chain has adequately explored the model space when

many candidate models never occurred in the realizations of the chain. I did test several

chains starting from different initial values when modelling the reed warbler data in section

4.4, and all chains converged to the same area of the sample space. But, many configurations

of knots were never realized, and it is impossible to be certain that no better model existed.

Bayesian model selection, particularly for complex, hierarchical models, seems like an area

that requires more development.

One concern I have with the methods of both Chapters 2 and 3 is that the quantity of

interest, the total population size, does not occur in the likelihood and cannot be modelled

directly. Instead, my methods model the number of unmarked individuals alive in each

strata or on each occasion and treats estimates of the total population size as derived

parameters. The same problem occurs in any model that conditions on the number of

unmarked individuals as fixed but unknown values. One solution for both projects is to

model the number of unmarked individuals further, but this requires extra assumptions and

introduces more parameters to estimate. In Chapter 2, I could have applied the P-spline

to smooth the population size in each strata at the first location prior to marking rather

than modelling the number of unmarked fish at the second location. However, I would then

have had to model the capture and marking of fish at the first trapping location and also

make assumptions about the movements of the unmarked fish between the two locations.

In Chapter 3, I could have based my method on the model of Schwarz and Arnason (1996),

but this would have required modelling the value of the covariate prior to each individual’s

first capture instead of conditioning on the value when each individual was first captured.

As discussed in section 3.5, Bayesian melding may offer an alternative solution. In effect,

Bayesian melding provides a technique for resampling the realizations from the posterior

distribution of a Bayesian model to accommodate prior beliefs about quantities that don’t

occur in the model likelihood but are produced as derived output. This may provide a

way to incorporate prior information about the total population size in both models while

still conditioning on the number of unmarked individuals as fixed values in the likelihood.

For either model, a sample would be generated from the posterior distribution initially

assuming a non-informative prior on the number of unmarked individuals and imposing

no constraints on the total population size. The realizations in the sample would then be
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reweighted according to the beliefs about the total population size. In applying Bayesian

melding to smoothing data from the Stratified-Petersen experiment, realizations from the

posterior that produced a smooth fit to the total run size as a function of time would be

weighted more heavily than realizations that produced a very rough fit. In the JS model with

a continuous covariate, the realizations would be weighted according to the researchers own

prior beliefs about the population size on each capture occasion. The challenge I foresee is

that if the prior distribution on the numbers of unmarked individuals is not consistent with

the prior distribution on the total population size then the weights will be small for most

realizations sampled from the posterior the method will be very inefficient. However, this

method would have general implications in capture-recapture analysis beyond the models

presented in my projects and is certainly a topic for future research.

Another important question is how the inferences about the population size in Chapter

3 and survival probabilities in Chapter 4 might be affected if distribution of the covariate

for the uncaptured individuals is very different from the distribution for the individuals

captured at least one time. Two possible scenarios can occur: 1) there is a segment of the

population of interest that has very low, but positive, capture probabilties and 2) there

is a segment of the population of interest that is not catchable. In the first scenario, the

inference about the population size or survival probability will be unbiased, but will have

very low precision. Suppose in the method of Chapter 3, for example, that there is a single

individual in the population at time t that has a very, very small capture probability. If this

individual is captured then the inverse of its capture probability will be very large and the

estimated population size will be very large. If it is not captured, then it will not contribute

to the estimate of population size at all, and the estimate will be much lower. The posterior

mean will provide adequate inference about the population size on average, but will be

highly variable. The effect is similar to the problem of estimating the weight of a group

of elephants from the weight of a single elephant via the Horvitz-Thompson estimator as

described by Basu (1971).

Situations where some individuals have zero capture probability can arise in fisheries

experiments if the capture equipment is size selective. For example, trawl nets will only

capture individuals of a certain length or higher. Assuming that the capture probability

was constant, as in Chapter 4, or a linear function of the covariate on the logistic scale,

as in Chapter 3, would completely ignore this change in the capture probability. The

resulting estimates of the survival probability would not apply to the individuals with zero
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capture probability and estimates of the population size would not include these individuals.

However, if these individuals are truly not catchable then it is not possible to learn about

this segment of the population. My view is that this is not a problem with the methods, but

rather a problem in defining the population of interest. If one is truly interested in learning

about the entire population, then the capture mechanism has to sample from the entire

population. If this is not the case, then inference must be restricted to only the catchable

segment of the population.

How to account for individual variation has long been an important question in mod-

elling data from capture-recapture experiments. Successive models have allowed for more

complex types of variation but have also required more sophisticated methods to estimate

parameters. Early models of the stratified, two-sample, closed population experiment com-

pletely separated the estimation of capture probabilities and population size for each strata

(Darroch, 1961). The models produced closed form MLEs in some cases, but the number

of parameters was too high for estimates to be computed from sparse data sets. Schwarz

and Dempson (1994) reduced the number of parameters by modelling the transition prob-

abilities as functions of log-normal travel times and Mantyniemi and Romakkaniemi (2002)

further added a Bayesian hierarchical structure to share information about the parameters

in different strata. Fitting these models requires numerical optimization of the likelihood

or algorithms to sample from the posterior distribution that cannot be done by hand.

Lebreton et al. (1992) developed a general framework for modelling the capture and

survival probabilities of individuals in an open population as functions of known predictor

variables, and McDonald and Amstrup (2001) extended these methods to the estimation

of population size. The models of Schwarz et al. (1993) and Brownie et al. (1993) further

allowed for categorical predictors that changed over time, and Bonner and Schwarz (2006)

developed a Bayesian method for modelling the effects of continuous, time-dependent co-

variates. The three projects in this thesis build on these methods by explicitly modelling the

temporal structure of data from stratified-Petersen experiments, by adding estimation of the

population size to the model of Bonner and Schwarz (2006), and by allowing more flexibility

in the relationship between a continuous predictor and the survival probabilities. Bayesian

methods provide a convenient framework to make inference from the complex models that

result.
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Appendix A

BUGS Code for the Models of

Chapter 2

A.1 Diagonal Bayesian P-spline Model with Error

model diagonal{
##### Prior distributions ######
## Run size and capture probabilities
for(i in 1:s){

etaU[i] <- inprod(Z[i,],bU[]) + eU[i]
eU[i] ~ dnorm(0,taueU)
etaP[i] ~ dnorm(xiP,tauP)

}

##### Hyperpriors #####
## Run size
bU[1] ~ dflat()
bU[2] ~ dflat()

for(i in 3:K){
xiU[i-2] <- 2*bU[i-1] - bU[i-2]
bU[i] ~ dnorm(xiU[i-2],tauU)

}
tauU ~ dgamma(1,.0005)
sigmaU <- 1/sqrt(tauU)

taueU ~ dgamma(1,.0005)
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sigmaeU <- 1/sqrt(taueU)

## Capture probabilities
xiP ~ dnorm(-2,.666)
tauP ~ dgamma(.001,.001)
sigmaP <- 1/sqrt(tauP)

##### Prior Distributions #####
## Capture probabilities and run size
for(i in 1:s){

logit(p[i]) <- etaP[i]
U[i] <- round(exp(etaU[i]))

}

##### Likelihood contributions #####
for(i in 1:s){

## Marked fish
m[i] ~ dbin(p[i],n[i])

## Unmarked fish
u[i] ~ dbin(p[i],U[i])

}

##### Derived Parameters #####
## Total number of unmarked fish
Utot <- sum(U[1:s])

## Total population size
N <- sum(n[1:s]) + Utot

}

A.2 Non-diagonal Bayesian P-spline Model with Error

model non-diagonal{
##### Prior distributions ######
## Run size and capture probabilities
for(j in 1:t){

etaU[j] <- inprod(Z[j,],bU[]) + eU[j]
eU[j] ~ dnorm(0,taueU)
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etaP[j] ~ dnorm(xiP,tauP)
}

## Mean and sd of log travel-times
for(i in 1:s){

etaMu[i] ~ dnorm(xiMu,tauMu)
etaSd[i] ~ dnorm(xiSd,tauSd)

}

##### Hyperpriors #####
## Run size
bU[1] ~ dflat()
bU[2] ~ dflat()

for(i in 3:K){
xiU[i-2] <- 2*bU[i-1] - bU[i-2]
bU[i] ~ dnorm(xiU[i-2],tauU)

}
tauU ~ dgamma(1,.0005)
sigmaU <- 1/sqrt(tauU)

taueU ~ dgamma(1,.05)
sigmaeU <- 1/sqrt(taueU)

## Capture probabilities
xiP ~ dnorm(-2,.666)
tauP ~ dgamma(.001,.001)
sigmaP <- 1/sqrt(tauP)

## Mean and sd of log travel times
xiMu ~ dnorm(0,.0625)
tauMu ~ dgamma(.001,.001)
sigmaMu <- 1/sqrt(tauMu)

xiSd ~ dnorm(0,.0625)
tauSd ~ dgamma(.001,.001)
sigmaSd <- 1/sqrt(tauSd)

##### Compute derived parameters #####
## Mean and sd of log travel times
for(i in 1:s){

mu[i] <- etaMu[i]
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log(sd[i]) <- etaSd[i]
}

## Capture probabilities and run size
for(j in 1:t){

logit(p[j]) <- etaP[j]
U[j] <- round(exp(etaU[j]))

}

## Transition probabilities
for(i in 1:s){

# Probability of transition in 0 days (T<.5)
Theta[i,i] <- phi((log(1)-mu[i])/sd[i])

for(j in (i+1):t){
# Probability of transition in j days (j-1<T<j)

Theta[i,j] <- phi((log(j-i+1)-mu[i])/sd[i])
- phi((log(j-i)-mu[i])/sd[i])

}

Theta[i,t+1] <- 1-sum(Theta[i,i:t])
}

##### Likelihood contributions #####
## Marked fish
for(i in 1:s){

# Compute cell probabilities
for(j in i:t){

Pmarked[i,j] <- Theta[i,j] * p[j]
}

Pmarked[i,t+1] <- 1- sum(Pmarked[i,i:t])

# Likelihood contribution
m[i,i:(t+1)] ~ dmulti(Pmarked[i,i:(t+1)],n[i])

}

## Unmarked and total number of fish
for(j in 1:t){

# Likelihood contribution
u[j] ~ dbin(p[j],U[j])

}
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##### Derived Parameters #####
## Total number of unmarked fish
Utot <- sum(U[1:s])

## Total population size
N <- sum(n[1:s]) + Utot

}



Appendix B

BUGS Code for the Models of

Chapter 3

model JSCov{
#### Likelihood #####
for(i in 1:n){

## Conditional model of covariate.
for(t in (a[i]+1):ncap){

mu.z[i,t] <- z.inf*(1-exp(-z.rate)) + Z[i,t-1]*exp(-z.rate)
Z[i,t] ~ dnorm(mu.z[i,t],tau)

}

## Compute capture prob
for(t in a[i]:ncap){

logit(p[i,t]) <- bp0[t] + bp1 * Z[i,t]
q[i,t] <- 1-p[i,t]

}

## Compute survival prob
for(t in a[i]:ncap){

logit(phi[i,t]) <- bphi0[t] + bphi1 * Z[i,t]
}
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## Compute chi term.
chi[i,ncap] <- 1
for(t in 1:(ncap-b[i])){

chi[i,ncap-t] <- (1-phi[i,ncap-t]) +
phi[i,ncap-t] * (1-p[i,ncap-t+1]) * chi[i,ncap-t+1]

}

## Model captures between first and last observation.
for(t in (a[i]+1):b[i]){

W[i,t] ~ dbern(p[i,t])
}

## Model survival between first and last observations.
for(t in a[i]:(b[i]-1)){

dummy1[i,t] <- 1
dummy1[i,t] ~ dbern(phi[i,t])

}

## Model last capture.
dummy2[i] <- 1
dummy2[i] ~ dbern(chi[i,b[i]])

## Compute contributions to estimates of number of
## unmarked individuals.
Ui.tmp[i] ~ dnegbin(p[i,a[i]],1)
Ui[i,a[i]] <- Ui.tmp[i] + 1

## Compute contribution to number of unmarked individuals
## alive on both occasions t-1 and t.
## (Work around to avoid binomial of size 0)
Ui.tmp.tmp[i] <- max(1,Ui.tmp[i])
PhiUi.tmp[i] ~ dbin(phi[i,a[i]],Ui.tmp.tmp[i])
PhiUi[i,a[i]+1] <- PhiUi.tmp[i] * step(Ui.tmp[i]-1)

## Compute probability that an individual was alive and
## marked on each occasion after it was last captured and
## simulate survival indicator.
for(t in (b[i]+1):ncap){

PM[i,t] <- (equals(t,a[i]+1) + Mi[i,t-1]) *
(1-(1-phi[i,t-1])/chi[i,t-1])

Mi[i,t] ~ dbern(PM[i,t])



APPENDIX B. BUGS CODE FOR THE MODELS OF CHAPTER 3 156

}
}

##### Compute derived parameters #####
## 1) Population size

for(t in 1:ncap){
M[t] <- sum(Mi[,t])
U[t] <- sum(Ui[,t])
N[t] <- M[t] + U[t]

}

## 2) Births
B[1] <- N[1]

for(t in 2:ncap){
## Estimate number of individuals captured on occasion t
## or previously that are alive on both occasions t and t+1

for(i in 1:n){
PhiMi[i,t] <- (equals(a[i],t-1) + equals(Mi[i,t-1],1)) *

equals(Mi[i,t],1)
}
PhiM[t] <- sum(PhiMi[,t])

## Simulte the number of individuals not captured on
## occasion t-1 or previously that were alive on both
## occasions t-1 and t
PhiU[t] <- sum(PhiUi[,t])

B[t] <- N[t] - (PhiM[t] + PhiU[t])
}

## 3) Super-population size
Nsuper <- sum(B[])

##### Prior distributions #####

## Prior distributions for LVB parameters
z.inf ~ dunif(0,100)
z.rate ~ dunif(0,10)
tau ~ dgamma(.001,.001)
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sigma <- 1/sqrt(tau)

## Prior distributions for capture coefficients.
mu.bp ~ dnorm(0,.0001)
tau.bp ~ dgamma(.01,.01)
sigma.bp <- 1/sqrt(tau.bp)

for(t in 1:ncap){
bp0[t] ~ dnorm(mu.bp,tau.bp)

}
bp1 ~ dnorm(0,.0001)

## Prior distributions for survival coefficients.
mu.bphi ~ dnorm(0,.0001)
tau.bphi ~ dgamma(.01,.01)
sigma.bphi <- 1/sqrt(tau.bphi)

for(t in 1:ncap){
bphi0[t] ~ dnorm(mu.bphi,tau.bphi)

}
bphi1 ~ dnorm(0,.0001)

}


