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Abstract

Various estimation methods are employed to provide seat projections during Canadian fed-
eral elections. This project explores discrepancies between the real outcomes of recent
Canadian federal elections and the predictions by the existing approaches such as the ones
proposed by Grenier (www.threehundredeight.com) and Rosenthal (2011). It appears that
each seat projection procedure requires a set of assumptions, but the assumptions are not
explicitly listed in the accessible references. We formulate the required assumptions used
in the two prediction procedures proposed by Rosenthal (2011), and present variance esti-
mation procedures. Departures from the assumptions are explored with real data from the
2006, 2008, 2011, and 2015 federal election. An extensive simulation study is conducted
to examine potential impacts of various deviations from the assumptions. The simulation
indicates that, compared to other assumption violations, misleading polling results may
cause the most damage to the prediction. In addition, we find by the simulation that the
prediction is least affected by a change in number of voters and the heterogeneity of riding
patterns within a region may not affect the the prediction at the national level.

Keywords: assumption violation; descriptive analysis; seat prediction; simulation study;
variance estimation
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Chapter 1

Introduction

1.1 Background

Canada is a democracy which chooses governments by electing representatives to Parlia-
ment. Under certain restrictions, anyone is allowed to run for seats in the House of Com-
mons. The only requirements of becoming a candidate in the Canadian federal elections are
to be a Canadian citizen, to be at least 18 years old on the election day, and to file official
documents1. Under these restrictions, almost anyone could become a candidate.

The House of Commons currently consists of 338 seats which correspond to 338 electoral
districts (also known as “ridings”) in Canada. There are 335 ridings spread across the 10
provinces and 1 riding in each of the 3 territories in Canada. The candidate who wins in a
riding will be awarded with the corresponding seat in the House of Commons. The winner
in a riding is also known as the “Member of Parliament” for that specific riding.

Canada uses an electoral system called “single member plurality”2. To put it simply, under
this system, the candidate who receives the most votes in a riding wins the corresponding
seat in the House of Commons. Most candidates are affiliated with one of the five major
political parties in Canada (Conservative Party of Canada, Liberal Party of Canada, New
Democratic Party, Green Party of Canada, and Bloc Québécois). If the members of a party
win more than half of the total number of seats, that party will form what is known as a
“majority government”. The advantage of a majority government is that the party can pass
legislation much more easily by maintaining the confidence of the House of Commons3.

1http://www.elections.ca/content.aspx?section=pol&dir=can/bck&document=index&lang=e
2https://en.wikipedia.org/wiki/First-past-the-post_voting
3canadaonline.about.com/od/elections/g/majority.htm
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With this in mind, accurately predicting election outcomes in the lead up to election day
is useful to many people. For voters, they may change their voting behaviour based on
the likelihood of each candidate of winning the election. Some voters may choose to vote
for other candidates to prevent a certain party from forming a majority government. For
candidates, it is important for them to know how likely it is for them to win in the election.
Based on the prediction, they may choose to change their strategy of obtaining votes from
the voters. For political parties, it may be important for them to know how many seats
they can expect in the election. Based on the prediction, they would be able to determine
whether they should continue with the same strategy or change to a new strategy.

1.2 Motivation

Many methods have been used to predict the outcome of an election. The most naive way
of obtaining a prediction is simply to assume that the proportion of seats obtained in the
election is going to be equal to the estimated proportion of votes. However, Rosenthal points
out that “a party’s percentage of seats of often very different from its overall percentage
of votes” (Rosenthal, 2011). In the same paper, Rosenthal proposes two similar, but dif-
ferent, estimators to improve the accuracy of the prediction of an election outcome. What
Rosenthal proposes are what he calls a “uniform voter-shift adjustment” and a “ratio voter
adjustment”. Éric Grenier, the owner of the seat prediction website, threehundredeight.com,
also proposes an estimator for predicting the riding and election outcomes[5]. Both esti-
mators require several assumptions, which may or may not be true in a real election. Due
to a lack of information on Grenier’s estimator and inaccessibility of the related litera-
ture, this project focuses on examining the performance of Rosenthal’s estimators [6] if the
assumptions are violated.

Comparisons between the actual election outcome and the estimates obtained based on
the estimators proposed by Rosenthal and Grenier for the 2011 and 2015 Canadian federal
election are shown below.

Table 1.1: The actual outcome of the 2011 Canadian federal election against predicted ones.
Absolute difference between actual and predicted outcomes shown in parentheses.

Election
Outcome Grenier Rosenthal

(Uniform)
Rosenthal
(Ratio)

Conservative 166 143 (23) 157 (9) 160 (6)
Liberals 34 60 (26) 40 (6) 33 (1)
NDP 103 78 (25) 104 (1) 103 (0)
Green 1 0 (1) 0 (1) 0 (1)
Bloc 4 27 (23) 7 (3) 12 (8)
Others 0 0 (0) 0 (0) 0 (0)
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Table 1.2: The actual outcome of the 2015 Canadian federal election against predicted ones.
Absolute difference between actual and predicted outcomes shown in parentheses.

Election
Outcome Grenier Rosenthal

(Uniform)
Rosenthal
(Ratio)

Conservative 99 118 (19) 140 (41) 144 (45)
Liberals 184 146 (38) 121 (63) 131 (53)
NDP 44 66 (22) 74 (30) 56 (12)
Green 1 1 (0) 1 (0) 1 (0)
Bloc 10 7 (3) 1 (9) 1 (9)
Others 0 0 (0) 1 (1) 5 (5)

As seen in table 1.1, Rosenthal provides a very good prediction for the 2011 election. Both
estimators proposed by Rosenthal were fairly close to the real outcome of the 2011 elec-
tion. However, the two Rosenthal’s estimates were very different than the real outcome
for the 2015 election (see table 1.2). Grenier’s estimator provided an estimate better than
Rosenthal’s estimators, but it is still very different than the real election outcome. This
has motivated us to explore how to improve the existing predictive estimation procedures
in the federal election.

We aim to understand what can lead to poor performance of the existing approaches in the
prediction of Canadian federal elections. Why does an estimator that worked so well in one
election fail to provide a good estimator in the following election?

1.3 Organization of Project

The project is organized as follows. Chapter 1 provides background information. Chapter
2 introduces notations and introduces Grenier’s and Rosenthal’s estimators, and an ap-
proximate variance of each of Rosenthal’s estimator is presented. Chapter 3 includes an
exploratory data analysis, design, and results of the simulation study. Chapter 4 includes
the conclusion and thoughts about future research.

3



Chapter 2

Existing Approaches

2.1 Notation

This section introduces the notation used throughout the rest of this project.

Indices

t Index for the tth Canadian federal election; t = 39,. . .,42

t =



39 for the 2006 Canadian federal election

40 for the 2008 Canadian federal election

41 for the 2011 Canadian federal election

42 for the 2015 Canadian federal election

i Index for ridings; i=1,. . .,I(t), where

I(t) =

308 if t = 39,40,41

338 if t = 42

4



j Index for party; j=1,. . .,6, where

j =



1 if Conservative Party of Canada

2 if Liberal Party of Canada

3 if New Democratic Party

4 if Green Party of Canada

5 if Bloc Québécois

6 if Others

l Index for region: l = 1,. . .,5, where

l =



1 if riding i is in the Atlantic Provinces

2 if riding i is in Quebec

3 if riding i is in Ontario

4 if riding i is in the Prairies or the Territories

5 if riding i is in British Columbia

k Index for poll in reverse chronological order; k = 1,. . .,K(t), where K(t) is the total
number of polls conducted for election t

Election Results

Yjt The number of seats obtained by party j in the tth election

vijt The number of votes obtained by party j in riding i in election t

v∗
jlt The number of votes obtained by party j in region l in election t

vjt The number of votes obtained by party j in election t

nit The number of voters who voted in riding i in election t

n∗
lt The number of voters who voted in region l in election t

pijt The probability of an individual voting for party j in riding i in election t

p∗
jlt The probability of an individual voting for party j in region l in election t

pjt The probability of an individual voting for party j in election t

rijt The proportion of votes obtained by party j in riding i in election t

5



r∗
jlt The proportion of votes obtained by party j in region l in election t

rjt The proportion of votes obtained by party j in election t

Poll Information

q∗
jklt The proportion of people in region l who indicated they will vote for party j in poll

k for election t

qjkt The proportion of people who indicated they will vote for party j in poll k for
election t

skt The sample size of poll k for election t

s∗
klt The sample size of poll k from region l for election t

M∗
jklt The number of people from region l who indicate that they will vote for party j in

election t in poll k

Mjkt The number of people who indicate that they will vote for party j in election t in
poll k

Others

τt The total number of seats in the House of Commons in the tth Canadian federal
election

cijt Indicator for whether party j won in riding i in the tth election or not

cijt =

1 if cijt = maxj{cijt}

0 Otherwise

νit The number of eligible voters in riding i in election t

As with conventional statistics practice, the “hat” symbol (ˆ) is used to denote an estimated
quantity. For example, p̂jt represents the estimated probability of an individual voting for
party j in election t. The dot symbol (·) is used to denote a sum over the specific index.
For example, n·t represents the total number of voters across all ridings.

6



2.1.1 Relationships Between Variables

There are a few relationships between the variables explained above that are crucial to keep
in mind.

nit =
6∑

j=1
vijt = vi·t (2.1)

Since vijt denotes the number of votes obtained by party j in riding i in election t, the total
number of voters in riding i who voted in election t can be represented as the sum of the
number of votes obtained by each party in riding i

nit ≤ νit (2.2)

To practice the right to vote of voluntary rather than mandatory. Some voters may choose
to not vote for one reason or another. Therefore, the total number of voters who voted in
riding i in election t can only be less than or equal to the number of eligible voters in riding
i in election t.

Yjt = c·jt =
I(t)∑
i=1

cijt (2.3)

If the winning party is known for each riding, then the total number of seats for each
party can be obtained by finding the total number of ridings in which the respective parties
won.

τt = Y·t =
6∑

j=1
Yjt = c··t (2.4)

The total number of seats in the house of commons can be obtained by finding the sum of
the number of seats that each party received.

rijt = vijt

nit
(2.5)

The proportion of votes that each party obtained in riding i in election t can be obtained
by finding the ratio between the number of votes that party received in riding i and the
number of people who voted in riding i.

7



2.2 Grenier’s Approach

Éric Grenier is the owner of the seat projection website www.threehundredeight.com. He
uses his estimator to predict the outcome of an election. Not every detail of the estimator
used by Grenier is explicitly stated, but there are several things to note about the estimator1.
First, it estimates the probability of a voter voting for party j in region l, p∗

jlt, by using
all available polls and weighs the polls by their age, margin of error, and the track record
of the polling firm. The weight of the poll is decreased by 35% for each day since the last
day it has been in the field. The polls are also weighed based on the margin of error. If the
lowest margin of error in the polls is MOEL, and MOEk denotes the margin of error for
poll k, then the weight for poll k is MOEL/MOEk. The polls are also weighed based on
the track record of the polling firm. The calculation of the track record of the polling firm
is not explicitly stated, but it measures how accurate the polling firm was in the past 10
years.

After obtaining an estimate for the probability that an individual would vote for party j
in region l, Grenier combines the estimated probability with several other factors such as
incumbency, leaders, star candidates, and the presence of independents and estimates the
number of votes each party would obtain based on the estimated regional probability of
voting for party k and the results of the three previous elections.

p̂∗
jlt =

K(t)∑
k=1

wktq
∗
jklt (2.6)

where K(t) represents the number of available polls at time t.

p̂ijt =
[

1
2

(
p̂∗

jlt

r∗
jl,t−1

rij,t−1

)
+ 1

3

(
p̂∗

jlt

r∗
jl,t−2

rij,t−2

)
+ 1

6

(
p̂∗

jlt

r∗
jl,t−3

rij,t−3

)]
· fijt (2.7)

wkt in equation (2.6) depends on three different factors. It is calculated based on the age,
margin of error, and track record of the polling firm for the kth poll in election t. q∗

jklt is
the sample proportion of voters in region l in the kth poll for election t who indicated they
will vote for party j. fijt in equation (2.7) calculated based on the incumbency, leaders,
star candidates, presence of independent candidates, as well as other variables for party j
in riding i in election t. Only the calculation of the incumbent effect is explicitly stated. If
the candidate is not an incumbent for election t, then p̂ijt is penalized by 10% of what it
should have been if the candidate is an incumbent.

Since p̂ijt is an estimate of the probability of an individual voting for party j in riding i,
it must add up to 1 in each riding. In other words,

∑
j p̂ijt = 1 for all i=1,. . .,I(t). If

1http://www.threehundredeight.com/2015/01/introducing-2015-federal-election.html
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∑
j p̂ijt is not 1, then p̂ijt will increase or decrease proportionally until

∑
j p̂ijt is equal to

1. The estimator proposed by Grenier includes many variables and would require extensive
research to be of use. The track record of different polling firms would require a lot of
poll results from past elections and the polls may not be readily available anymore. Even
if the polls are still available, it would be very difficult for anyone other than Grenier to
calculate.

Also, Grenier’s estimator can be expressed in the following way.

p̂ijt =
[

1
2

(
p̂∗

jlt

r∗
jl,t−1

rij,t−1

)
+ 1

3

(
p̂∗

jlt

r∗
jl,t−2

rij,t−2

)
+ 1

6

(
p̂∗

jlt

r∗
jl,t−3

rij,t−3

)]
· fijt (2.8)

= p̂∗
jlt

(
rij,t−1
2r∗

jl,t−1
+ rij,t−2

3r∗
jl,t−2

+ rij,t−3
6r∗

jl,t−3

)
· fijt (2.9)

The estimated probability of a voter voting for party j in the current election in region l is
multiplied by a ratio that is based on the previous three election riding and regional results
as well as a function which includes the incumbency status of the individual candidates for
party j.

It is worth noting that the estimates based on Grenier’s estimator cannot be replicated due
to a lack of details on his website, www.threehundredeight.com, and references and supports
is inaccessible in the literature.

2.3 Rosenthal’s Approaches (Rosenthal, 2011)

Shortly after the Canadian federal election in 2011, Rosenthal proposed the following two
estimators to show that the “surprising” result of the election should have, in fact, been
predictable. In the 2011 federal election, the Conservatives won a majority government. The
Conservatives majority was not considered possible by the media (Rosenthal, 2011).

wkt = skt∑9
k=1 skt

(2.10)

Equation (2.10) shows that Rosenthal’s weighting is based only on the sample size of the
individual polls. Rosenthal did not use the age of the poll and the track record of the polling
firm when calculating the weights.

p̂∗
jl(i)t =

9∑
k=1

wktq
∗
jkl(i)t (2.11)
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The biggest difference between the estimators used by Rosenthal and Grenier is that Rosen-
thal used the 9 most recent polls when he is estimating, p∗

jl(i)t, the probability of a voter
voting for party j in each region l. This is different than Grenier, who uses every poll
available. Also, Rosenthal weighs the polls based on the sample size and disregards the age
of the poll and the track record of the polling firm.

v̂ijt,U = vij,t−1 +
(
p̂∗

jl(i)t − r
∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

)
· ni,t−1 (2.12)

Equation (2.12) is what Rosenthal calls a “uniform voter-shift adjustment”. The term
(rj,t−1− p̂j,t−1) is what Rosenthal calls the “overperforming effect”, which measures the dif-
ference between the proportion of votes that a party received and the estimated proportion
of votes that a party was expected to obtain in election t − 1. Equation (2.12) may look
complicated, but it is very simple intuitively. This estimator begins with the number of
votes party j received in the last election and add or subtracts from that number based on
the current estimated proportion of votes party j would receive. If party j is estimated to
receive a higher proportion of votes in the upcoming election, intuitively, they should be
expected to receive more votes than the last election. Conversely, if party j is estimated
to receive a lower proportion of votes in the upcoming election, they should be expected to
receive less votes than they did in the last election.

By including the “overperforming effect”, Rosenthal is implying that even the best polling
firm will capture a systematically different population in their polls compared to the pop-
ulation who actually votes on election day. Rosenthal includes the “overperforming effect”
and adds it to the estimated probability, p̂∗

jlt, to obtain an estimate for the proportion of
votes that each party will receive in the election.

For example, assume that in the last election, the proportion of votes received by party
j is exactly the same as the proportion of votes it is estimated to receive, such that the
“overperforming effect” is 0. Further suppose 10,000 people voted in that riding in the last
election, of which 2500 voted for party j, and party j received 30% of the votes in region
l(i). Lastly, suppose that party j is estimated to receive 40% of the votes in region l(i) in
the upcoming election. Based on this estimator, party j would be expected to receive

v̂ijt,U = 2500 + (0.40− 0.30 + 0) · 10000 = 3500

Therefore, based on the uniform estimator, party j would be estimated to obtain 3500 votes
in riding i in the upcoming election.

10



Rosenthal also proposed what he calls a “ratio voter adjustment”, which is shown in equation
(2.13).

v̂ijt,R = vij,t−1
p̂∗

jl(i)t + (rj,t−1 − p̂j,t−1)
r∗

jl(i),t−1
(2.13)

Similar to the “uniform voter-shift adjustment”, the “ratio voter adjustment” contains “over-
performing effect”. Equation (2.13) provides very intuitive estimates. It starts with the
votes obtained by party j in riding i in the last election and then finds the ratio between
the proportion of votes party j is estimated to obtain in region l(i) and the proportion of
votes party j actually obtained in region l(i) in the last election. If party j is estimated
to obtain a higher proportion of votes than the last election, then this ratio will be greater
than 1, which leads to a higher estimated number of votes compared to last election. If the
opposite is true, that party j is estimated to obtain a lower proportion of votes than the
last election, then this ratio will be less than 1, which will lead to a lower estimated number
of votes compared to last election. Using the same numbers as the previous example, we
obtain the following estimate:

v̂ijt,R = 2500(0.40 + 0)
0.30 = 3333.33

Based on the ratio estimator, party j would be estimated to obtain 3333 votes in riding i
in the upcoming election.

The biggest difference between the estimators proposed by Rosenthal compared to Grenier’s
estimator is that Rosenthal’s estimators include the “overperforming effect” term. To the
best of the author’s knowledge, Rosenthal’s estimators are the first estimators to try to
adjust for the systematic difference between the population captured by the polls and the
population who actually votes. The “overperforming effect” Rosenthal uses implies that the
voting pattern of the non-voters is different than the voting pattern of the voters.

After obtaining an estimate of the number of votes for all ridings and for all parties, the
winner of each riding is predicted to be the candidate with the highest estimated number
of votes in his or her respective riding. After the list of winners is estimated, the number
of seats that each party can expect to obtain can be estimated using the list of predicted
winners. The method used by Rosenthal is able to provide very good prediction for the
2011 Canadian federal election; however, it is not able to provide a good prediction for the
2015 Canadian federal election.
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2.4 Variance of Rosenthal’s Estimators

The variance of Rosenthal’s estimators are derived using multiparameter delta method[7]
and are shown below. In this section, Xijta denotes the ath component of Xijt, and A

represents the total number of components in Xijt. Also, the number of voters, nit, and the
number of individuals sampled in region l, sl, are assumed to be constants. The derivations
can be found in Appendix A.

Rosenthal’s Uniform Estimator

V ar(v̂ijt,U ) ≈
A∑

a=1


(
∂v̂ijt,U

∂Xijta

)2

V ar(Xijta) +
∑
m<a

2Cov(Xijtm, Xijta)

 (2.14)

where,

Xijt =



M∗
j·1,t−1

M∗
j·2,t−1

M∗
j·3,t−1

M∗
j·l(i)t

v1j,t−1
...

vIj,t−1



∂v̂ijt,U

∂Xijta
=



− ni,t−1∑
l

∑
k

s∗
kl,t−1

− ni,t−1∑
l

∑
k

s∗
kl,t−1

− ni,t−1∑
l

∑
k

s∗
kl,t−1

ni,t−1∑
k

s∗
kl(i)t

∂v̂ijt,U

∂v̂1j,t−1
...

∂v̂ijt,U

∂v̂Ij,t−1



∂v̂ijt,U

∂v̂xj,t−1
=


1− ni,t−1∑

l(i)=l
ni,t−1

+ ni,t−1∑
i

ni,t−1
if x = i

− ni,t−1∑
l(i)=l

ni,t−1
+ ni,t−1∑

i
ni,t−1

if l(x) = l(i) and x 6= i

ni,t−1∑
i

ni,t−1
if l(x) 6= l(i)

V ar(Xijta) =



∑9
k=1 s

∗
k1,t−1q

∗
jk1,t−1(1− q∗

jk1,t−1) if a = 1∑9
k=1 s

∗
k2,t−1q

∗
jk2,t−1(1− q∗

jk2,t−1) if a = 2∑9
k=1 s

∗
k3,t−1q

∗
jk3,t−1(1− q∗

jk3,t−1) if a = 3∑9
k=1 s

∗
kl(i)tq

∗
jkl(i)t(1− q

∗
jkl(i)t) if a = 4

na−4,t−1pa−4,j,t−1(1− pa−4,j,t−1) if a ≥ 5
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Cov(Xijtm, Xijta) is assumed to be 0 when m 6= a because each riding is considered to be
independent of all other ridings.

Rosenthal’s Ratio Estimator

V ar(v̂ijt,R) ≈
A∑

a=1


(
∂v̂ijt,R

∂Xijta

)2

V ar(Xijta) +
∑
m<a

2Cov(Xijtm, Xijta)

 (2.15)

where,

Xijt =



M∗
j·1,t−1

M∗
j·2,t−1

M∗
j·3,t−1

M∗
j·l(i)t

v1j,t−1
...

vIj,t−1



∂v̂ijt,R

∂Xijta
=



−
vij,t−1

∑
l(x)=l(i) nx,t−1∑

l(x)=l(i) vxj,t−1
∑

l
s∗

·l,t−1

−
vij,t−1

∑
l(x)=l(i) nx,t−1∑

l(x)=l(i) vxj,t−1
∑

l
s∗

·l,t−1

−
vij,t−1

∑
l(x)=l(i) nx,t−1∑

l(x)=l(i) vxj,t−1
∑

l
s∗

·l,t−1
vij,t−1

∑
l(x)=l(i) nx,t−1

s∗
·l(i)t

∑
l(x)=l(i) vxj,t−1
∂v̂ijt,R

∂v̂1j,t−1
...

∂v̂ijt,R

∂v̂Ij,t−1



G = g1
g2

=
vij,t−1

∑
l(x)=l(i) nx,t−1∑

l(x)=l(i) vxj,t−1

H =
M∗

j·l(i)t
s∗

·l(i)
+
∑

i vij,t−1∑
i ni,t−1

−
∑

l M
∗
j·l,t−1∑

l s
∗
·l,t−1

∂v̂ijt,R

∂v̂xj,t−1
=



(
(g2
∑

l(i)=l
ni,t−1)−g1

g2
2

)
·H + G∑

i
ni,t−1

if x = i(
−g1
g2

2

)
·H + G∑

i
ni,t−1

if l(x) = l(i) and x 6= i

G∑
i

ni,t−1
if l(x) 6= l(i)
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V ar(Xijta) =



∑9
k=1 s

∗
k1,t−1q

∗
jk1,t−1(1− q∗

jk1,t−1) if a = 1∑9
k=1 s

∗
k2,t−1q

∗
jk2,t−1(1− q∗

jk2,t−1) if a = 2∑9
k=1 s

∗
k3,t−1q

∗
jk3,t−1(1− q∗

jk3,t−1) if a = 3∑9
k=1 s

∗
kl(i)tq

∗
jkl(i)t(1− q

∗
jkl(i)t) if a = 4

na−4,t−1pa−4,j,t−1(1− pa−4,j,t−1) if a ≥ 5

Cov(Xijtm, Xijta) is assumed to be 0 when m 6= a because each riding is considered to be
independent of all other ridings.

2.4.1 Estimation of Variance

A plug-in estimator is used to estimate the above variances.

Rosenthal’s Uniform Estimator

V̂ ar(v̂ijt,U ) =
A∑

a=1

{(
∂v̂ijt,U

∂Xa

)2
V̂ ar(Xa) +

∑
m<a

2Ĉov(Xm, Xa)
}

V̂ ar(Xijta) =



∑9
k=1 s

∗
k1,t−1q̂

∗
jk1,t−1(1− q̂∗

jk1,t−1) if a = 1∑9
k=1 s

∗
k2,t−1q̂

∗
jk2,t−1(1− q̂∗

jk2,t−1) if a = 2∑9
k=1 s

∗
k3,t−1q̂

∗
jk3,t−1(1− q̂∗

jk3,t−1) if a = 3∑9
k=1 s

∗
kl(i)tq̂

∗
jkl(i)t(1− q̂

∗
jkl(i)t) if a = 4

na−4,t−1p̂a−4,j,t−1(1− p̂a−4,j,t−1) if a ≥ 5

Ĉov(Xijtm, Xijta) = 0

Rosenthal’s Ratio Estimator

V̂ ar(v̂ijt,R) =
A∑

a=1

{(
∂v̂ijt,R

∂Xa

)2
V̂ ar(Xa) +

∑
m<a

2Ĉov(Xm, Xa)
}

14



V̂ ar(Xijta) =



∑9
k=1 s

∗
k1,t−1q̂

∗
jk1,t−1(1− q̂∗

jk1,t−1) if a = 1∑9
k=1 s

∗
k2,t−1q̂

∗
jk2,t−1(1− q̂∗

jk2,t−1) if a = 2∑9
k=1 s

∗
k3,t−1q̂

∗
jk3,t−1(1− q̂∗

jk3,t−1) if a = 3∑9
k=1 s

∗
kl(i)tq̂

∗
jkl(i)t(1− q̂

∗
jkl(i)t) if a = 4

na−4,t−1p̂a−4,j,t−1(1− p̂a−4,j,t−1) if a ≥ 5

Ĉov(Xijtm, Xijta) = 0

2.5 Comparison of Rosenthal’s Uniform and Ratio Estima-
tors

Rosenthal proposed two different estimators to estimate the number of votes each party
would receive; however, it can be shown that the “ratio voter adjustment”, v̂ijt,R, is a
variant of the “uniform voter-shift adjustment”, v̂ijt,U . More specifically, the “ratio voter
adjustment” assumes that the voting patterns in the ridings are the same for all ridings in
region l(i) in the last election. “Uniform voter-shift adjustment” does not make such an
assumption.

v̂ijt,U = vij,t−1 +
(
p̂∗

jl(i)t − r
∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

)
· ni,t−1

= vij,t−1 + vij,t−1

(
p̂∗

jl(i)t − r
∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)
vij,t−1/ni,t−1

)

= vij,t−1

(
1 +

p̂∗
jl(i)t − r

∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

rij,t−1

)

Assume that the voting patterns in the ridings are the same for all ridings in region l(i) in
the last election, eg. rij,t−1 = r∗

jl(i),t−1.

= vij,t−1

(
1 +

p̂∗
jl(i)t − r

∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

r∗
jl(i),t−1

)

= vij,t−1 ·
r∗

jl(i),t−1 − r
∗
jl(i),t−1 + p̂∗

jl(i)t + (rj,t−1 − p̂j,t−1)
r∗

jl(i),t−1

= vij,t−1 ·
p̂∗

jl(i)t + (rj,t−1 − p̂j,t−1)
r∗

jl(i),t−1

= v̂ijt,R

15



The difference between v̂ijt,R and v̂ijt,U is that v̂ijt,U takes into account the voting pattern
of riding i from the last election when estimating the number of votes party j will receive in
riding i in the current election. v̂ijt,R makes the assumption that the voting pattern is the
same for all ridings in region l in the last election. The “uniform voter-shift adjustment” is
expected to perform better than the “ratio voter adjustment” if the riding voting patterns
are drastically different than the regional voting pattern in the previous election. Conversely,
if the riding voting patterns are similar to the regional voting pattern, the “ratio voter
adjustment” may produce similar results as the “uniform voter-shift adjustment” since it is
a special case of the “uniform voter-shift adjustment”.

2.6 Rationale Behind Rosenthal’s Estimators

Since both of the estimators Rosenthal proposed are related, it is sufficient to explain the
rationale behind one of them since the same reasoning could be used to explain the other
estimator. For simplicity, the rationale behind the “uniform voter-shift adjustment” will be
explained.

In the uniform voter-shift adjustment, Rosenthal propose to use the number of votes ob-
tained by party j in riding i in the previous election and modify that by adding or sub-
tracting some number of votes to it.

v̂ijt,U = vij,t−1 +
(
p̂∗

jl(i)t − r
∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

)
· ni,t−1

= vij,t−1 + p̂∗
jl(i)t · ni,t−1 − r∗

jl(i),t−1 · ni,t−1 + (rj,t−1 − p̂j,t−1) · ni,t−1

The first term in the equation above, vij,t−1, is the number of votes obtained by party j in
riding i in the previous election.

The second term, p̂∗
jl(i)t · ni,t−1, is an estimate of the number of votes that party j would

receive in riding i in the current election under the assumptions that the estimated prob-
ability of a voter voting for party j is the same in riding i and in region l, and that the
number of voters in riding i is the same as in the previous election.

The third term, r∗
jl(i),t−1 ·ni,t−1, is an estimate of the number of votes that party j received in

riding i in the previous election under the assumption that the proportion of votes obtained
by party j is the same in riding i and in region l.
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If the third term, r∗
jl(i),t−1 ·ni,t−1, is a good estimate for vij,t−1 and the first three terms are

substituted into the equation above, the following can be obtained.

v̂ijt,U = vij,t−1 + v̂ijt − v̂ij,t−1 + (rj,t−1 − p̂j,t−1) · ni,t−1

= v̂ijt + (rj,t−1 − p̂j,t−1) · ni,t−1

In other words, the uniform voter-shift adjustment estimator reduces to the sum of an
estimate of the number of votes that party j would obtain in riding i in the current election
based on the polls and some number of votes based on the overperforming effect.

The overperforming effect could be seen as the difference between an estimate of the number
of votes obtained by party j in riding i in the previous election under the assumption that
the proportion of votes obtained by party j in riding i is the same as the proportion of
votes obtained by party j in Canada, and an estimate of the number of votes obtained by
party j in riding i in the previous election under the assumption that the probability of
an individual voting for party j in riding i is the same as the probability of an individual
voting for party j in Canada.

v̂ijt,U = v̂ijt + (rj,t−1 − p̂j,t−1) · ni,t−1

= v̂ijt + v̂ij,t−1 − v̂ij,t−1

= v̂ijt

Therefore, if the assumptions discussed in the next section are reasonable, Rosenthal’s
estimators will provide a reasonable estimate for the number of votes that party j would
receive in riding i in the current election.

2.7 List of Assumptions Required in Rosenthal’s Estima-
tors

In this section, I list the assumptions that are required by both estimators used by Rosen-
thal.

1. The systematic difference between the population captured by the polls and the pop-
ulation of voters who votes is constant across Canada and is the same as the previous
election.

2. The number of voters who votes in each riding is the same as the previous election.
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3. The probability of a voter voting for a certain party in a certain riding is the same as
the probability of a voter voting for the same party in the region that includes that
riding.

2.8 Strength and Weaknesses of Each Estimator

The strengths of Grenier’s estimator is that it uses historical information from three previous
elections instead of only one previous election. Grenier also incorporates candidate level
variables in his estimator. Most importantly, it only requires one of the three assumptions
listed in section 2.7. More specifically, Grenier’s estimator only requires the voting pattern
to be the same for all ridings in a region. The weakness of Grenier’s estimator is that
it does not take into account the possibility that there may be a systematic difference
between the population who participated in the polls and the population that votes on
election day.

The strength of Rosenthal’s estimators is that they account for the possibility of a system-
atic difference between the population who participated in the polls and the population
that votes on election day. The weaknesses of Rosenthal’s estimators are that they only use
polling data and election results from the previous election. Also, Rosenthal did not incor-
porate candidate-level information in both of his estimators. Lastly, Rosenthal’s estimators
require assumptions that are likely to be violated in real elections.
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Chapter 3

Numerical Study

3.1 Motivation

The assumptions required by Rosenthal’s estimators as listed in Section 2.7 may not be ap-
propriate in real elections. In this section, data from past Canadian federal elections[1][2][3][4]
and their corresponding polling results[8][9][10][11] are used to show that these assumptions
are likely to be violated in a real election setting.

3.1.1 Assumption 1: Uniform Overperforming Effect and the Same as
the Previous Election

Rosenthal suspects that the sample of individuals who were polled is not representative
of the individuals who will vote on election day. In order to estimate the difference in
the probabilities of choosing party j in these two groups of people, Rosenthal assumed
that this difference is constant in every region in Canada and is the same as the previous
election.

Table 3.1: National Overperforming Effect Observed in 2008, 2011, and 2015 Election.
Overperforming effects for 2008 Election was obtained from Rosenthal, J.S. (2011). Was
the conservative majority predictable? The Canadian Journal of Statistics, 39(4):721-733.

2015 2011 2008
Conservative 0.5 4.1 3.0
Liberals 1.2 -0.8 -0.2
NDP -1.2 -1.2 -1.2
Bloc 0.6 0.3 0.1
Green -1.2 -2.0 -2.4
Others 0.2 -0.4 0.6
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Table 3.2: Regional Overperforming Effect Observed in the 2015 Canadian Federal Election

Canada Atlantic Quebec Ontario Prairies and
Territories

British
Columbia

Conservative 0.7 -0.9 -2.8 2.5 3.5 -1.8
Liberals 2.3 5.1 6.2 0.4 -0.3 2.6
NDP -1.7 -3.9 -1.2 -2.1 -3.2 -1
Bloc -0.3 0 -1.5 0 0 0
Green -0.9 -0.7 -0.6 -1.1 -0.9 -0.4
Others -0.1 0.3 -0.1 0.3 1.0 0.5

Table 3.1 shows that overperforming effect is not constant between consecutive elections. In
fact, the overperforming effect changes a lot for the Conservatives and Liberals in these three
elections. Table 3.2 shows that overperforming effect is not the same in different regions
in Canada. The overperforming effect varies drastically from one region to the next. The
overperforming effect changes a lot even if two regions are next to one another. For example,
the overperforming effect for the Conservatives in Quebec is -2.8, while the overperforming
effect for the Conservatives in Ontario is 2.5. The difference in overperforming effect is
more than 5 percentage points even though these two regions are neighbours. Therefore,
tables 3.1 and 3.2 show that Rosenthal’s assumption about the overperforming effects are
inappropriate for Canadian federal elections.

3.1.2 Assumption 2: Number of Voters

The estimators proposed by Rosenthal require the assumption that the number of voters
voting in a certain riding is the same as the previous election. Based on figure 3.1, it can be
seen that this assumption is inappropriate. Each point in this figure represents one riding.
The diagonal line is the y = x line. If a point falls on this line, it means that the number
of voters is equal in two consecutive elections in that riding. However, it can be seen that
there are fewer voters in the 2008 election compared to the 2006 election. Also, it can be
seen that there are more voters in the 2011 election compared to the 2008 election. Lastly,
there is a significant increase in the number of voters in the 2015 election compared to the
2011 election. Based on figure 3.1, we can conclude that Rosenthal’s assumption about
the number of voters being the same as that of the previous election is inappropriate for
Canadian federal elections.

3.1.3 Assumption 3: Uniform Probability of Voting for a Certain Party

Both of the estimators proposed by Rosenthal and Grenier require the assumption that
the probability of an individual voting for party j is the same for all ridings within the
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Figure 3.1: Number of Voters Between Consecutive Elections by Riding

same region. Based on figures 3.2a and 3.2b, it can be seen that this assumption is clearly
inappropriate for the 2011 and 2015 elections. In all regions in each of the elections, it is
clear that the proportion of votes obtained by any party is not constant. For example, the
proportion of votes received by the Liberals in British Columbia ranges from about 10%
to about 60% in the 2015 Canadian federal election. Therefore, the regional mean of the
probability of an individual voting for party j is a bad estimate of the probability of an
individual voting for party j in all ridings belonging to that region. Based on figures 3.2a
and 3.2b, it is clear that the regional proportion is different from the proportions at a riding
level. In other words, pijt 6= p∗

jl(i)t for all i = 1, . . . , I(t) and j = 1, . . . , J .

3.2 Assumptions

In this numerical study, all combinations of the three assumptions listed in section 2.7 are
violated to various degrees. To quantify the levels of departure from each assumption, the
parameters δ, γ, and φ represent the departure from a specific assumption, which will be
explained below. If a parameter is set to 0, it represents the corresponding assumption is
not violated and that it is true in that simulation setting. Below is a list of the assumptions
and the parameter that corresponds to each assumption.
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Figure 3.2a: Proportion of Votes Received by Each Party in Different Regions in the 2011
Election

1. The systematic difference between the population captured by the polls and the popu-
lation of voters who votes is constant across Canada and is constant between elections.
The parameter δ is used to represent the level of departure from assumption 1. In this
simulation study, δ takes the value of 0, 0.5, 1, 2, or 5. If δ is equal to 5, that means
the difference in probability of voting for a certain party between the population who
participate in the polls and the population who votes will deviate by up to 12.5%.

2. The number of voters who votes in each riding is constant between consecutive elec-
tions. The parameter φ is used to represent the level of departure from assumption 2.
In this simulation study, δ takes the value of -0.3, -0.05, 0, 0.05, or 0.3. The number
of voters will change by φ·100% in the second election compared to the first election.

3. The probability of a voter voting for a certain party in a certain riding is the same as
the probability of a voter voting for the same party in the region that includes that
riding. The parameter γ is used to represent the level of departure from assumption
3. In this simulation study, γ takes the value of -10, -1, 0, 1, or 10. If γ is equal to
10, that means the difference in probability of voting for a certain party in a region
will deviate by up to 25%.
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Figure 3.2b: Proportion of Votes Received by Each Party in Different Regions in the 2015
Election

3.3 Design

3.3.1 Description of Simulation Settings

In this simulation study, I used a hypothetical country as the setting. In this country, there
are three different regions. In region 1, there are 10 ridings. In region 2, there are 40
ridings. In region 3, there are 20 ridings. In this country, there are a total of three parties
in each election; however, party 3 only competes in region 3. A diagram representation of
this hypothetical country can be found in figure 3.3.

Parameters Used in the Simulation

• The probability of an individual voting for party j in region l for election s is

p∗
jls ∀s = t, t− 1

The list of p∗
jls used in the simulation study can be found in Table 3.3.

• The probability of an individual voting for party j in riding i in election s is

pijs = p∗
jl(i)s + βijsγ ∀s = t, t− 1
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Figure 3.3: Diagram representation of the hypothetical country

Table 3.3: List of p∗
jls used in the simulation study

p∗
jlt p∗

jl,t−1
j j

1 2 3 1 2 3
1 0.40 0.60 0 1 0.50 0.50 0

l 2 0.65 0.35 0 l 2 0.70 0.30 0
3 0.25 0.40 0.35 3 0.30 0.50 0.20

where,

βi1s ∼ N(0, 0.012) ∀i = 1, . . . , 70; s = t, t− 1

βi2s ∼ N(0, 0.012) ∀i = 51, . . . , 70; s = t, t− 1

βi3s ≡ 0 ∀i = 1, . . . , 50; s = t, t− 1

subject to,

βi1s 6= 0 ∀i = 1, . . . , 70; s = t, t− 1

βi2s 6= 0 ∀i = 1, . . . , 70; s = t, t− 1

βi3s 6= 0 ∀i = 51, . . . , 70; s = t, t− 1∑
j

βijs = 0 ∀i = 1, . . . , 70; s = t, t− 1

∑
l(i)=l

βijs = 0 ∀l = 1, 2, 3; s = t, t− 1

Refer to Appendix B and C for the list of pijs used in this simulation study.
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• The difference between the probabilities of an individual voting for party j in region
l in the election and in the polls is

∆∗
jls ∀s = t, t− 1

The list of ∆∗
jls used in the simulation study can be found in Table 3.4.

Table 3.4: List of ∆∗
jls used in the simulation study

∆∗
jlt ∆∗

jl,t−1
j j

1 2 3 1 2 3
1 -0.015 0.015 0 1 -0.025 0.025 0

l 2 -0.020 0.020 0 l 2 -0.025 0.025 0
3 -0.025 0.010 0.015 3 -0.015 0.010 0.005

• The probability of an individual from region l voting for party j in the poll for election
s is

q∗
jls = p∗

jls + ∆∗
jls ∀j = 1, . . . , J ; l = 1, . . . , L; s = t, t− 1

• The total number of voters in riding i in election s is

nis ∀s = t, t− 1

ni,t−1 = 10000(1 + φ) ∀i = 1, . . . , 70

nit = 10000(1 + φ)2 ∀i = 1, . . . , 70

3.3.2 Choosing Parameters

The following settings are chosen to examine all possible combinations of the effect of
departure from the various assumptions. In setting 1, the ideal case, that is the case that
all three assumptions hold, is considered to provide a baseline comparison to all other
settings. In settings 2 to 4, only one of the three assumption is violated. The effect of the
departure from each of the three assumptions on the estimators can be examined from the
results of these settings. Settings 5 to 7 allow the examination of the departure from two
of the three assumptions on the estimators. The interaction between the assumptions can
be examined based on settings 5 to 7. Lastly, the effect of the departure from all three
assumptions on the estimators is considered in setting 8.
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Setting 1: All of assumptions 1, 2, and 3 hold

1. γ is set to 0.

2. δ is set to 0.

3. φ is set to 0.

Setting 2: Assumption 1 violated, assumptions 2 and 3 hold

1. γ is set to 0.

2. δ is set to four different levels to reflect the level of departure from assumption 1. More
specifically, δ is set to 0.5, 1, 2, and 5 to generate different overperforming effects.

3. φ is set to 0.

Setting 3: Assumption 2 violated, assumptions 1 and 3 hold

1. γ is set to 0.

2. δ is set to 0.

3. φ is set to four different levels to reflect the degree of departure from assumption 2.
More specifically, φ is set to -0.3, -0.05, 0.05, and 0.3.

Setting 4: Assumption 3 violated, assumptions 1 and 2 hold

1. γ is set to four different levels to reflect the departure from assumption 3. More
specifically, γ is set to -10, -1, 1, and 10.

2. δ is set to 0.

3. φ is set to 0.

Setting 5: Assumptions 2 and 3 violated, assumption 1 holds

1. γ is set to four different levels to reflect the departure from assumption 3. More
specifically, γ is set to -10, -1, 1, and 10.

2. δ is set to 0.
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3. φ is set to four different levels to reflect the degree of departure from assumption 2.
More specifically, φ is set to -0.3, -0.05, 0.05, and 0.3.

Setting 6: Assumptions 1 and 3 violated, assumption 2 holds

1. γ is set to four different levels to reflect the departure from assumption 3. More
specifically, γ is set to -10, -1, 1, and 10.

2. δ is set to four different levels to reflect the level of departure from assumption 1. More
specifically, δ is set to 0.5, 1, 2, and 5 to generate different overperforming effects.

3. φ is set to 0.

Setting 7: Assumptions 1 and 2 violated, assumption 3 holds

1. γ is set to 0.

2. δ is set to four different levels to reflect the level of departure from assumption 1. More
specifically, δ is set to 0.5, 1, 2, and 5 to generate different overperforming effects.

3. φ is set to four different levels to reflect the degree of departure from assumption 2.
More specifically, φ is set to -0.3, -0.05, 0.05, and 0.3.

Setting 8: All of assumptions 1, 2, and 3 violated

1. γ is set to four different levels to reflect the departure from assumption 3. More
specifically, γ is set to -10, -1, 1, and 10.

2. δ is set to four different levels to reflect the level of departure from assumption 1. More
specifically, δ is set to 0.5, 1, 2, and 5 to generate different overperforming effects.

3. φ is set to four different levels to reflect the degree of departure from assumption 2.
More specifically, φ is set to -0.3, -0.05, 0.05, and 0.3.

3.3.3 Simulation Procedures

Voting Results

1. Generate (vi1s, vi2s, vi3s) which follows a multinomial distribution with nis trials and
probabilities (pi1s, pi2s, pi3s) for all i = 1, . . . , 70 and s = t, t− 1.

27



2. Calculate rijs

rijs = vijs

nis
∀s = t, t− 1

3. Calculate r∗
jls

r∗
jls =

∑
l(i)=l vijt

n∗
lt

∀s = t, t− 1

4. Calculate rj,t−1

rj,t−1 =
∑

i vij,t−1
nt−1

∀j = 1, 2, 3

Polling Results

1. Set m1 = 500, m2 = 2000, and m3 = 1000.

2. Generate (M∗
1ls,M

∗
2ls,M

∗
3ls) which follows a multinomial distribution with ml trials

and probabilities (q∗
1ls, q

∗
2ls, q

∗
3ls) for all l = 1, 2, 3 and s = t, t− 1.

3. Calculate p̂∗
jlt

p̂∗
jlt =

M∗
jlt

ml
∀j = 1, 2, 3; l = 1, 2, 3

4. Calculate p̂j,t−1

p̂j,t−1 =
∑

l Mjl,t−1∑
l ml

∀j = 1, 2, 3

Obtaining Estimates

1. Predict pijt by using Rosenthal’s Uniform and Ratio Estimator

• Rosenthal’s Uniform Estimator

v̂ijt,U = vij,t−1 +
(
p̂∗

jl(i)t − r
∗
jl(i),t−1 + (rj,t−1 − p̂j,t−1)

)
· ni,t−1

• Rosenthal’s Ratio Estimator

v̂ijt,R = vij,t−1
p̂∗

jl(i)t + (rj,t−1 − p̂j,t−1)
r∗

jl(i),t−1

• Rosenthal’s estimators predicts vijt, obtain p̂ijt = v̂ijt

nit
.

• Estimate the variances for the two estimators using the equations found in section
2.4.1.
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• Obtain the percent of correct calls from each iteration by comparing the actual
winner from each riding against the predicted winner from each riding.

ψi =

1 if cijt = ĉijt ∀j

0 Otherwise

The percent of correct calls can be obtained by summing ψi over all i and dividing
by the number of ridings, I.

• Obtain the estimated number of seats from the list of predicted winners. The
estimated seats for party j can be obtained by summing ĉijt over all i.

2. Repeat the simulation procedures 1,000 times, saving the results each time

3.4 Results

In this section, each figure contains four sets of plots. In each plot, the red line represents
the true value and the blue line represents the average of the estimates from the simulation.
The blue shaded regions represent the 2.5 to 97.5 percentile of the estimated value based
on the simulation results.

In each set of plots, the results are plotted separately for the pijt or vijt and the standard
error and separated by parties. In each set of plots, the 2.5 to 97.5 percentile of the estimated
pijt or vijt is plotted against the true value for each riding in the top 3 plots, and the 2.5
to 97.5 percentile of the estimated standard error for pijt or vijt is plotted against the “true
standard error" in the bottom 3 plots. The “true standard error" is obtained by substituting
the true parameters into equations 14 and 15 in section 2.4 and taking the square root of
the result divided by 1000.

The two sets of plots on the left show the results in terms of the estimated probability of
a voter voting for the specific party for both Rosenthal’s uniform and ratio estimator. The
two sets of plots on the right show the results in terms of the estimated number of votes for
both Rosenthal’s uniform and ratio estimator. In both instances, results from Rosenthal’s
uniform estimator will be displayed on the top set of plots, and the results from Rosenthal’s
ratio estimator will be displayed on the bottom set of plots.
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Figure 3.4: Simulation results of Setting 1 (γ = 0, δ = 0, φ = 0)

Setting 1: All of Assumptions 1, 2, and 3 hold

Estimating probability of votes

Under the ideal situation (see figure 3.4), it can be observed that both estimators perform
reasonably well. Both the uniform and ratio estimators produce decent estimates for pijt.
The true standard errors from the uniform estimator for pijt are contained in the 2.5 to
97.5 percentile except for party 3. The estimated standard error is not good for the ratio
estimator. Although the results are similar, the uniform estimator (MSE: 0.0429) performs
slightly better than the ratio estimator (MSE: 0.0434).

Estimating number of votes

Under the ideal situation (see figure 3.4), it can be observed that both the uniform and ratio
estimators produce decent estimates for vijt. The true standard errors from the uniform
estimator for vijt are contained in the 2.5 to 97.5 percentile except for party 3. The estimated
standard error is not good for the ratio estimator. Although the results are similar, the
uniform estimator (MSE: 4314747) performs slightly better than the ratio estimator (MSE:
4369298).
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Setting 2: Assumption 1 violated, Assumptions 2 and 3 hold

Figure 3.5a: Simulation results of Setting 2 (γ = 0, δ = 0.5, φ = 0)

Figure 3.5b: Simulation results of Setting 2 (γ = 0, δ = 5, φ = 0)

31



Estimating probability of votes

Under the situation where there is a slight difference between the population who partici-
pates in the polls and the population who votes on election day (see figure 3.5a), it can be
observed that both estimators produce similar results. Both estimators produce a decent
estimate for pijt. The estimated standard error for pijt are better for the uniform estimator
than the ratio estimator, but the 2.5 to 97.5 percentile of the estimated standard error does
not contain the true standard error most of the time. The uniform estimator (MSE: 0.0472)
performs slightly better than the ratio estimator (MSE: 0.0476).

If there is a large difference between the population who participates in the polls and
the population who votes on election day (see figure 3.5b), it can be observed that both
estimators produce similar estimates for pijt. Neither the estimated pijt nor the estimated
standard error are good. The uniform estimator (MSE: 0.2219) performs slightly better
than the ratio estimator (MSE: 0.2223).

Estimating number of votes

Under the situation where there is a slight difference between the population who partici-
pates in the polls and the population who votes on election day (see figure 3.5a), it can be
observed that both estimators produce a decent estimate for vijt. The estimated standard
error for vijt are better for the uniform estimator than the ratio estimator, but the 2.5 to
97.5 percentile of the estimated standard error does not contain the true standard error
most of the time. The uniform estimator (MSE: 4755183) performs slightly better than the
ratio estimator (MSE: 4812267).

If there is a large difference between the population who participates in the polls and
the population who votes on election day (see figure 3.5b), it can be observed that both
estimators produce similar estimates for vijt. Neither the estimated vijt nor the estimated
standard error are good. The uniform estimator (MSE: 22435602) performs better than the
ratio estimator (MSE: 22518411).

Setting 3: Assumption 2 violated, Assumptions 1 and 3 hold

Estimating probability of votes

If there is a small difference in the number of voters between the two elections (see figure
3.6a), the estimated pijt from both estimators is good. The estimated standard error is
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Figure 3.6a: Simulation results of Setting 3 (γ = 0, δ = 0, φ = 0.05)

Figure 3.6b: Simulation results of Setting 3 (γ = 0, δ = 0, φ = −0.3)
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better for the uniform estimator than the ratio estimator. The uniform estimator (MSE:
0.0441) performs slightly better than the ratio estimator (MSE: 0.0445).

If there is a large difference in the number of voters between the two elections (see figure
3.6b), the estimated pijt is bad for both estimators. Also, the estimated standard error is
bad for both estimators. The uniform estimator (MSE: 0.0453) performs better than the
ratio estimator (MSE: 0.0460).

Estimating number of votes

If there is a small difference in the number of voters between the two elections (see figure
3.6a), the true vijt is barely contained in the 2.5 to 97.5 percentile. The estimated standard
error is better for the uniform estimator than the ratio estimator. The uniform estimator
(MSE: 14164935) performs slightly better than the ratio estimator (MSE: 14220814).

If there is a large difference in the number of voters between the two elections (see figure
3.6b), the estimated vijt is bad for both estimators. Also, the estimated standard error is
bad for both estimators. The uniform estimator (MSE: 151502127) performs better than
the ratio estimator (MSE: 151540365).

Setting 4: Assumption 3 violated, Assumptions 1 and 2 hold

Figure 3.7a: Simulation results of Setting 4 (γ = 1, δ = 0, φ = 0)
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Figure 3.7b: Simulation results of Setting 4 (γ = −10, δ = 0, φ = 0)

Estimating probability of votes

If the probability of a voter voting for a certain party in a certain riding deviates slightly
from the probability of a voter voting for the same party in the region (see figure 3.7a), it
can be observed that the estimator for pijt is reasonable for both estimators. The estimated
standard error of pijt for the uniform estimator are good except in region 3, but they are
not reliable for the ratio estimator. In this scenario, the uniform estimator (MSE: 0.0665)
performs better than the ratio estimator (MSE: 0.0690).

If the probability of a voter voting for a certain party in a certain riding deviates significantly
from the probability of a voter voting for the same party in the region (see figure 3.7b), it
can be observed that neither of the estimators provide a reasonable estimate for pijt. The
estimated standard error for pijt are not good for both the uniform and ratio estimators.
The uniform estimator (MSE: 2.6048) performs better than the ratio estimator (MSE:
2.8610).

Estimating number of votes

If the probability of a voter voting for a certain party in a certain riding deviates slightly
from the probability of a voter voting for the same party in the region (see figure 3.7a), it
can be observed that the estimator for vijt is reasonable for both estimators. The estimated
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standard error of vijt for the uniform estimator are good except in region 3, but they are
not reliable for the ratio estimator. In this scenario, the uniform estimator (MSE: 6668882)
performs better than the ratio estimator (MSE: 6975210).

If the probability of a voter voting for a certain party in a certain riding deviates significantly
from the probability of a voter voting for the same party in the region (see figure 3.7b), it
can be observed that neither of the estimators provide a reasonable estimate for vijt. The
estimated standard error for vijt are not good for both the uniform and ratio estimators.
The uniform estimator (MSE: 260494151) performs better than the ratio estimator (MSE:
271985421).

Setting 5: Assumptions 2 and 3 violated, Assumption 1 holds

Figure 3.8a: Simulation results of Setting 5 (γ = 1, δ = 0, φ = 0.05)

Estimating probability of votes

If the number of voters between the two elections are slightly different and the riding prob-
ability is slightly different than the regional probability (see figure 3.8a), both estimators
provide decent estimates for pijt. The estimated standard error is better for the uniform
estimator than the ratio estimator. The uniform estimator (MSE: 0.0675) performs slightly
better than the ratio estimator (MSE: 0.0700).
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Figure 3.8b: Simulation results of Setting 5 (γ = −10, δ = 0, φ = −0.3)

If the number of voters between the two elections are significantly different and the riding
probability is significantly different than the regional probability (see figure 3.8b), neither
estimators provide good estimates for pijt. The estimated standard error for the uniform
estimator is better than the estimated standard error for the ratio estimator, but neither
captures the real variance. The uniform estimator (MSE: 2.6067) performs better than the
ratio estimator (MSE: 2.8640).

Estimating number of votes

If the number of voters between the two elections are slightly different and the riding prob-
ability is slightly different than the regional probability (see figure 3.8a), neither estimators
provide a good estimate for vijt. The estimated standard error is better for the uniform esti-
mator than the ratio estimator. The uniform estimator (MSE: 16981437) performs slightly
better than the ratio estimator (MSE: 17316510).

If the number of voters between the two elections are significantly different and the riding
probability is significantly different than the regional probability (see figure 3.8b), neither
estimators provide good estimates for vijt. The estimated standard error for the uniform
estimator is better than the estimated standard error for the ratio estimator, but neither
captures the real variance. The uniform estimator (MSE: 241625887) performs better than
the ratio estimator (MSE: 248802151).

37



Setting 6: Assumptions 1 and 3 violated, Assumption 2 holds

Figure 3.9a: Simulation results of Setting 6 (γ = 1, δ = 0.5, φ = 0)

Figure 3.9b: Simulation results of Setting 6 (γ = 10, δ = 5, φ = 0)
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Estimating probability of votes

If the polling population and the voting population are slightly different and the riding
probability deviates slightly from the regional probability (see figure 3.9a), both estimators
are decent estimators for pijt, but the estimated standard error for the uniform estimator
is better than the estimated standard error for the ratio estimator. The uniform estimator
(MSE: 0.0691) performs slightly better than the ratio estimator (MSE: 0.0717).

If the polling population and the voting population are significantly different and the riding
probability deviates significantly from the regional probability (see figure 3.9b), the esti-
mated pijt for both estimators are unreliable. The estimated standard error for the uniform
estimator is more reliable than that for the ratio estimator. The uniform estimator (MSE:
2.5273) performs better than the ratio estimator (MSE: 2.7660).

Estimating number of votes

If the polling population and the voting population are slightly different and the riding
probability deviates slightly from the regional probability (see figure 3.9a), both estimators
are decent estimators for vijt, but the estimated standard error for the uniform estimator
is better than the estimated standard error for the ratio estimator. The uniform estimator
(MSE: 6937826) performs slightly better than the ratio estimator (MSE: 7255206).

If the polling population and the voting population are significantly different and the riding
probability deviates significantly from the regional probability (see figure 3.9b), the esti-
mated vijt for both estimators are unreliable. The estimated standard error for the uniform
estimator is more reliable than that for the ratio estimator. The uniform estimator (MSE:
253990617) performs better than the ratio estimator (MSE: 288694086).

Setting 7: Assumptions 1 and 2 violated, Assumption 3 holds

Estimating probability of votes

If the riding probability and the regional probability are slightly different and the number
of voters between the two elections are slightly different (see figure 3.10a), both estimators
provide reliable estimates for pijt. The estimated standard error for the uniform estimator
are reliable except in region 3. The estimated standard error for the ratio estimator are
not reliable. The uniform estimator (MSE: 0.0473) performs slightly better than the ratio
estimator (MSE: 0.0477).
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Figure 3.10a: Simulation results of Setting 7 (γ = 0, δ = 0.5, φ = 0.05)

Figure 3.10b: Simulation results of Setting 7 (γ = 0, δ = 5, φ = −0.3)
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If the riding probability and the regional probability are significantly different and the
number of voters between the two elections are significant different (see Figure 3.10b),
both estimators provide decent estimates for pijt. The estimated standard error for both
estimators are not good. The uniform estimator (MSE: 0.2236) performs slightly better
than the ratio estimator (MSE: 0.2242).

Estimating probability of votes

If the riding probability and the regional probability are slightly different and the number
of voters between the two elections are slightly different (see figure 3.10a), the true vijt are
contained in the 2.5 to 97.5 percentiles. The estimated standard error for the uniform esti-
mator are reliable except in region 3. The estimated standard error for the ratio estimator
are not reliable. The uniform estimator (MSE: 14251188) performs slightly better than the
ratio estimator (MSE: 14309813).

If the riding probability and the regional probability are significantly different and the
number of voters between the two elections are significant different (see Figure 3.10b),
neither estimators are good for vijt. The estimated standard error for both estimators are
not good. The uniform estimator (MSE: 165687785) performs slightly better than the ratio
estimator (MSE: 165745644).

Setting 8: All of Assumptions 1, 2, and 3 violated

Estimating probability of votes

If all the assumptions were slightly violated (see figure 3.11a), both estimators are good
estimators for pijt. The estimated standard error for the uniform estimator is better than
the estimated standard error for the ratio estimator but it is still not good. The uniform
estimator (MSE: 0.0719) performs better than the ratio estimator (MSE: 0.0747).

If all the assumptions were significantly violated (see figure 3.11b), neither estimators are
good estimators for pijt, but the estimated standard error for the uniform estimator is better
than the estimated standard error for the ratio estimator. The uniform estimator (MSE:
2.5208) performs better than the ratio estimator (MSE: 2.7609).

Estimating number of votes

If all the assumptions were slightly violated (see figure 3.11a), neither estimator is good for
vijt. The estimated standard error for the uniform estimator is better than the estimated
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Figure 3.11a: Simulation results of Setting 8 (γ = −1, δ = 0.5, φ = 0.05)

Figure 3.11b: Simulation results of Setting 8 (γ = 10, δ = 5, φ = 0.3)

42



standard error for the ratio estimator but it is still not good. The uniform estimator (MSE:
14227502) performs better than the ratio estimator (MSE: 14397981).

If all the assumptions were significantly violated (see figure 3.11b), neither estimators are
good estimators for vijt, but the estimated standard error for the uniform estimator is better
than the estimated standard error for the ratio estimator. The uniform estimator (MSE:
1081022150) performs better than the ratio estimator (MSE: 1140945250).

3.5 Summary

In each figure, there are four sets of plots. The plots to the left show the mean and histogram
of the percent of correct calls for each iteration. If the estimator is a good estimator, the
mean should be near 100% and the majority of the iterations should be able to achieve
100% correct calls.

The plots to the right show the mean and histogram of the estimated number of seats each
party would obtain for each iteration. If the estimator is a good estimator, the mean should
be close to the real number of seats.

Setting 1: All of Assumptions 1, 2, and 3 hold

Figure 3.12: Simulation results of Setting 1 (γ = 0, δ = 0, φ = 0)
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In the ideal case, both estimators are able to make the correct call around 99% of the time.
The average number of estimated seats is within 1 seat of the real outcome (see figure
3.12).

Setting 2: Assumption 1 violated, Assumptions 2 and 3 hold

Figure 3.13a: Simulation results of Setting 2 (γ = 0, δ = 0.5, φ = 0)

If there is a slight difference in the polling population and the voting population, the esti-
mators are able to make the correct call around 97% of the time, which is about 2% lower
than in the ideal case. Also, the average number of estimated seats is within 3 seats of the
real outcome (see figure 3.13a).

If there is a significant difference in the polling population and the voting population, the
estimators make the correct calls around 72% of the time, which is 27% lower than in the
ideal case. The average number of estimated seats is within 20 seats of the real outcome
(see figure 3.13b).

Setting 3: Assumption 2 violated, Assumptions 1 and 3 hold

If there is a small difference in the number of voters between the two elections, the estimators
make the correct calls around 99% of the time, which is about the same as the ideal case.
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Figure 3.13b: Simulation results of Setting 2 (γ = 0, δ = 5, φ = 0)

Figure 3.14a: Simulation results of Setting 3 (γ = 0, δ = 0, φ = 0.05)
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Figure 3.14b: Simulation results of Setting 3 (γ = 0, δ = 0, φ = −0.3)

The average number of estimated seats is within 1 seat of the real outcome (see figure
3.14a).

If there is a large difference in the number of voters between the two elections, the estimators
make the correct calls around 98% of the time, which is about 1% less than the ideal case.
The average number of estimated seats is around 1 seat of the real outcome (see figure
3.14b).

Setting 4: Assumption 3 violated, Assumptions 1 and 2 hold

If there is a slight difference in the riding probability and the regional probability, the
estimators make the correct calls about 98% of the time, which is 1% less than the ideal
case. Also, the average number of estimated seats is within 2 seats of the real outcome (see
figure 3.15a).

If there is a significant difference in the riding probability and the regional probability, the
estimators make the correct calls about 75% of the time, which is 24% less than the ideal
case. The average number of estimated seats is within 1 seat of the real outcome (see figure
3.15b).
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Figure 3.15a: Simulation results of Setting 4 (γ = 1, δ = 0, φ = 0)

Figure 3.15b: Simulation results of Setting 4 (γ = −10, δ = 0, φ = 0)
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Setting 5: Assumptions 2 and 3 violated, Assumption 1 holds

Figure 3.16a: Simulation results of Setting 5 (γ = 1, δ = 0, φ = 0.05)

Figure 3.16b: Simulation results of Setting 5 (γ = −10, δ = 0, φ = −0.3)
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If the number of voters between the two elections are slightly different and the riding
probability is slightly different than the regional probability, the estimators make the correct
calls about 98% of the time, which is 1% lower than the ideal case. Also, the average number
of estimated seats is within 2 seats of the real outcome (see figure 3.16a).

If the number of voters between the two elections are significantly different and the riding
probability is significantly different than the regional probability, the estimators make the
correct calls about 75% of the time, which is 24% lower than the ideal case. Also, the
average number of estimated seats is within 1 seat of the real value (see figure 3.16b).

Setting 6: Assumptions 1 and 3 violated, Assumption 2 holds

Figure 3.17a: Simulation results of Setting 6 (γ = 1, δ = 0.5, φ = 0)

If the polling population and the voting population are slightly different and the riding
probability deviates slightly from the regional probability, the estimators make the correct
call about 96% of the time, which is 3% lower than the ideal case. Also, the average number
of estimated seats is within 3 seats of the real outcome (see figure 3.17a).

If the polling population and the voting population are significantly different and the riding
probability deviates significantly from the regional probability, the uniform estimator makes
the correct calls about 75% of the time, which is 24% lower than the ideal case. The ratio
estimator makes the correct calls around 72% of the time, which is 27% lower than the ideal
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Figure 3.17b: Simulation results of Setting 6 (γ = 10, δ = 5, φ = 0)

case. The average number of estimated seats is within 4 seats of the real outcome for both
estimators (see figure 3.17b).

Setting 7: Assumptions 1 and 2 violated, Assumption 3 holds

If the riding probability and the regional probability are slightly different and the number of
voters between the two elections are slightly different, the estimators make the correct calls
about 97% of the time, which is 2% lower than the ideal case. Also, the average number of
estimated seats is within 2 seats of the real outcome (see figure 3.18a).

If the riding probability and the regional probability are significantly different and the
number of voters between the two elections are significantly different, both estimators make
the correct calls about 72% of the time, which is 27% lower than the ideal case. Also,
the average number of estimated seats is within 20 seats of the real outcome (see figure
3.18b).
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Figure 3.18a: Simulation results of Setting 7 (γ = 0, δ = 0.5, φ = 0.05)

Figure 3.18b: Simulation results of Setting 7 (γ = 0, δ = 5, φ = −0.3)
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Figure 3.19a: Simulation results of Setting 8 (γ = −1, δ = 0.5, φ = 0.05)

Figure 3.19b: Simulation results of Setting 8 (γ = 10, δ = 5, φ = 0.3)
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Setting 8: All of Assumptions 1, 2, and 3 violated

If all the assumptions were slightly violated, both estimators make the correct calls about
96% of the time, which is 3% lower than the ideal case. The average number of estimated
seats is within 3 seats of the real outcome (see figure 3.19a).

If all the assumptions were significantly violated, the uniform estimator makes the correct
calls around 75% of the time, which is 24% lower than the ideal case. The ratio estimator
makes the correct calls around 72% of the time, which is 27% lower than the ideal case. The
average number of estimated seats is within 4 seats of the real value for both estimators
(see figure 3.19b).

Summary

Table 3.5: Summary of all 8 simulation settings.

Simulation Setting
1 2 3 4 5 6 7 8

pijt 3 3

vijt 3

Percentage of Ridings
Where the Estimators
Correctly Predicts the
Winner

99 72 98 75 75 75 (U)
72 (R) 72 75 (U)

72 (R)

Real Number
of Seats

Party 1 40 40 40 41 41 42 40 42
Party 2 30 30 30 23 23 19 30 19
Party 3 0 0 0 6 6 9 0 9

Average Estimated
Number of Seats

Party 1 40 40 40 41 (U)
40 (R) 41 42 (U)

41 (R) 40 42 (U)
41 (R)

Party 2 29 10 29 22 22 15 (U)
16 (R) 10 15 (U)

16 (R)

Party 3 1 20 1 6 (U)
7 (R) 7 13 20 13

Difference Between
Estimated and Real
Number of Seats

Party 1 0 0 0 0 (U)
1 (R) 0 0 (U)

1 (R) 0 0 (U)
1 (R)

Party 2 1 20 1 1 1 4 (U)
3 (R) 20 4 (U)

3 (R)

Party 3 1 20 1 0 (U)
1 (R) 1 4 20 4

Table 3.5 shows the summary of all 8 simulation settings. pijt indicates whether the Rosen-
thal estimators are able to predict the probability of a voter voting for party j in riding
i well. vijt indicates whether the estimators can predict the number of votes well. The
percentage of ridings where the estimator correctly predicts the winner is shown in the
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third row. The real and average estimated number of seats are shown as well. The average
estimated number of seats is obtained by calculating the average of the simulated results.
The absolute difference between the real and average estimated number of seats is shown
in the last three rows.

If the the voting pattern of the people who participate in polls and the voters who vote on
election day are significantly different than the previous election (simulation setting 2), the
probability and number of votes cannot be well estimated, the percent of correct calls drops
to 72%, and the estimated number of seats is very different than the real election outcome.
Rosenthal’s estimators rely heavily on the validity of this assumption.

If the number of voters is drastically different than the previous election (simulation setting
3), the number of votes cannot be well estimated, but the estimated probability of votes
is still reliable, the percent of correct calls is almost as high as the ideal case, and the
estimated number of seats is very accurate. Rosenthal’s estimators are least dependent on
this assumption.

If the riding probabilities are significantly different than the regional probability (simulation
setting 4), neither the probability nor the number of votes can be well estimated, the percent
of correct call drops to 75%, but the estimated number of seats is still very accurate.
Rosenthal’s estimators can still provide reasonable estimate at a national level (number of
seats), but the results could be very misleading at a riding level, as seen in the low percent
of ridings in which the estimator correctly predicts the winner.

Table 3.6: Comparison for selected cases in all 8 simulation settings. Please see Appendix
E for the complete list of simulation outcomes in all settings.

MSEUniform/MSERatio

Setting γ δ φ pijt vijt Recommend
1 0 0 0 0.988 0.988 Uniform
2 0 0.5 0 0.992 0.988 Uniform
2 0 5 0 0.998 0.996 Uniform
3 0 0 0.05 0.991 0.996 Uniform
3 0 0 -0.3 0.985 1.000 Uniform
4 1 0 0 0.964 0.956 Uniform
4 -10 0 0 0.910 0.958 Uniform
5 1 0 0.05 0.964 0.981 Uniform
5 -10 0 -0.3 0.910 0.971 Uniform
6 1 0.5 0 0.964 0.956 Uniform
6 10 5 0 0.914 0.880 Uniform
7 0 0.5 0.05 0.992 0.996 Uniform
7 0 5 -0.3 0.997 1.000 Uniform
8 -1 0.5 -0.05 0.963 0.988 Uniform
8 10 5 0.3 0.913 0.947 Uniform
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Based on table 3.6, The performance of Rosenthal’s two estimators are very similar. They
tend to do well together, or they will perform poorly together.

3.6 Significance of the Simulation Results

3.6.1 Performance of Estimators Under Violated Assumptions

Estimating the probability of votes

If there is a large difference between the voting pattern of the polls and the voters, the
estimated pijt will not be reliable, but the estimated standard deviation will still be reliable
to a certain extent. If there is a large difference between the riding probability and the re-
gional probability, neither estimator will be able to estimate the pijt well, but the estimated
variances are still valid for the uniform estimator. The estimated pijt and the estimated
standard deviation of pijt for both estimators do not seem to be affected by a change in the
number of voters.

If it is known that there is a large difference between the riding probabilities and the
regional probability, a large difference between the voting pattern of the polls and voters
does not seem to make the estimated pijt any worse. If it is known that the number of
voters are different between the elections, a large difference in the voting pattern of the
polls and voters makes the estimated pijt unreliable. A large difference in the number of
voters between the elections does not seem to make the estimated pijt worse if it is known
that any one of the other assumptions are violated. If it is known that the number of voters
are different between the elections, pijt will not be well estimated if there is also a large
difference between the riding probabilities and the regional probability. If it is known that
there is a large difference in the voting pattern of the polls and voters, a large difference
between the riding probabilities and the regional probability will not make the estimated
pijt any worse. If it is known that any two assumptions are violated, the violation of the
third assumption will not make the estimated pijt any worse.

Estimating the number of votes

If there is a large difference between the polls and the voters, the estimated vijt will not
be reliable, but the estimated standard deviation will still be reliable to a certain extent.
If there is a large difference between the riding probability and the regional probability,
neither estimator will be able to estimate the vijt well, but the estimated variances are still
valid for the uniform estimator. The estimated vijt is really sensitive to a change in the
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number of voters. Even slight deviation will cause the 2.5 to 97.5 percentile of the estimated
vijt to not cover the true value.

If it is known that any one of the three assumptions are violated, the estimated vijt does
not seem to be affected if one or two more assumptions are also violated.

Percentage of Correct Calls

If there is a large difference between the voting pattern of the polls and the voters, both
the uniform and ratio estimators make the correct calls about 72% of the time. If there is a
large difference between the riding probability and the regional probability, both estimators
make the correct calls about 75% of the time. If there is a large difference in the number of
voters between the two elections, both estimators make the correct calls about 98% of the
time.

If it is known that there is a large difference between the riding probabilities and the regional
probability, a large difference between the voting pattern of the pollers and voters decreases
the percent of correct calls by 1% for the uniform estimator and 3% for the ratio estimator.
If it is known that the number of voters are different between the elections, a large difference
in the voting pattern of the pollers and voters does not change the percent of correct calls.
A large difference in the number of voters between the elections does not seem to have an
effect on the percent of correct calls if it is known that any one of the other assumptions
are violated. If it is known that the number of voters are different between the elections,
the percent of correct calls will decrease by 27% for both estimators if there is also a large
difference between the riding probabilities and the regional probability. If it is known that
there is a large difference in the voting pattern of the polls and voters, a large difference
between the riding probabilities and the regional probability increases the percent of correct
calls by 3% for the uniform estimator and has no effect on the percent of correct calls for
the ratio estimator.

A large difference in the riding probabilities and the regional probability will increase the
percent of correct calls for the uniform estimator by 3% and has no effect on the ratio
estimator if it is known that the other two assumptions are violated. A difference in the
voting patterns between the polls and voters decreases the percent of correct calls by 1%
for the uniform estimator and 3% for the ratio estimator if it is known that the other two
assumptions are also violated. A large difference in the number of voters between the two
elections has no effect on the percent of correct calls for both estimators if it is known that
the other two assumptions are also violated.
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Estimating the Number of Seats

If there is a large difference between the polls and the voters, the average estimated number
of seats is within 20 of the real value. If there is a large difference between the riding
probability and the regional probability, the average estimated number of seats is within 1
seat from the real value for the uniform estimator and within 2 seats for the ratio estimator.
Even though the average estimated number of seats is very close to the real value, the
estimated number of seats spreads over a large range of number. If there is a large difference
in the number of voters between the two elections, the average estimated number of seats
is within 1 seat for both the uniform and ratio estimator.

If it is known that there is a large difference between the riding probabilities and the regional
probability, a large difference between the voting pattern of the polls and voters will result
in the average estimated number of seats to be within 4 seats for both estimators, instead
of within 1 seat for the uniform estimator and within 2 seats for the ratio estimator. If it
is known that the number of voters are different between the elections, a large difference
in the voting pattern of the polls and voters will result in the average estimated number of
seats to be within 20 seats for both estimators, instead of within 1 seat for both estimators.
A large difference in the number of voters between the elections does not seem to have an
effect on the average estimated number of seats if it is known that any one of the other
assumptions are violated. If it is known that the number of voters are different between the
elections, if there is also a large difference between the riding probabilities and the regional
probability, the average estimated number of seats will be within 1 seat for the uniform
estimator and 2 seats for the ratio estimator, instead of 1 seat for both estimators. If it
is known that there is a large difference in the voting pattern of the polls and voters, a
large difference between the riding probabilities and the regional probability will result in
the average estimated number of seats to be within 4 seats for both estimator, instead of
within 20 seats.

A large difference in the riding probabilities and the regional probability will result in the
average estimated number of seats to be within 4 seats for both estimators instead of within
20 seats for both estimators if it is known that the other two assumptions are violated. A
difference in the voting patterns between the polls and voters will result in the average
estimated number of seats to be within 4 seats of both estimators instead of within 1 seat
for the uniform estimator and 2 seats for the ratio estimator if it is known that the other
two assumptions are also violated. A large difference in the number of voters between the
two elections has no effect on the average estimated number of seats if it is known that the
other two assumptions are also violated.
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Summary

The predicted outcome of an election using the estimators proposed by Rosenthal is most
adversely affected by the difference in voting pattern between the people who participate
in polls and the people who votes on election day. The violation of this assumption will
affect the estimated probability of votes, the estimated number of votes, the percentage of
correct calls, and the estimated number of seats.

The predicted outcome of an election using Rosenthal’s estimators is least adversely affected
by the difference in the number of voters between the two consecutive elections. The
violation of this assumption will affect the estimated number of votes, but it will only
slightly affect the estimated probability of votes. The percentage of correct calls is around
98%, which is nearly all correct. The estimated number of seats is within around 1 seat of
the real value.

3.6.2 Application to Real Elections

In a real election, all three assumptions will be violated to various degrees. The uniform
estimator performs better than the ratio estimator under all situations. If there is a signifi-
cant difference in the results from the two estimators, the results from the uniform estimator
should be trusted rather than the results from the ratio estimator.
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Chapter 4

Discussion

4.1 Conclusion

In conclusion, Rosenthal’s estimators work very well under specific situations. The estima-
tors depend on three key assumptions. First, the difference in the population of people who
participated in the polls and the population of people who will actually vote on election day
is constant across Canada and is the same as the previous election. Second, the number of
voters are the same as the previous election. Third, the probability of an individual voting
for a certain party in a certain riding is the same as the probability of an individual voting
for the party in the region.

As the results from the simulation study show, the violation of each of these assumptions
affect the percentage of correct calls and the estimated seat counts to various degrees.
These two measures are of special importance because these two measures are what the
voters, candidates, and party truly want to predict in an election. If there is a difference in
population of people who participate in the polls and the people who votes on election day,
the percent of correct calls will be affected greatly, and the estimated number of seats will
not be reliable. If there is a difference between the number of voters in the two elections,
the percent of correct calls will not be affected much, and the estimated number of seats
will be reliable. If there is a large difference between the riding probability and the regional
probability, the percent of correct calls will be affected greatly, but the estimated number
of seats will still be reliable.

Grenier included individual characteristics of each candidates and used information from
more than one election in his estimation. Using the election data from 2006 to 2015, prelim-
inary analysis shows that male candidates have a significantly higher probability of being
elected (OR: 1.29 (1.12, 1.49)). It also shows that incumbents have a significantly higher
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probability of being elected (OR: 30.68 (26.01, 36.20)). These are important predictors
that would affect the outcome of an election. Unfortunately, the use of candidate level
information and more election data was not examined in this project.

4.2 Future Research

The variance estimators presented in this study do not perform well, even under the sce-
nario where all three assumptions are satisfied. The future research includes improving the
variance estimators of Rosenthal’s estimators and using them to provide predictive inter-
vals.

Grenier’s approach involves combining information from the previous three elections; how-
ever, no supporting literature can be found to justify the weights that he chose to use in his
estimator. Future research includes a more thorough examination of Grenier’s estimator
via simulation, and to study how to improve its means of combining the previous three
elections’ information.

Lastly, after a more thorough understanding of Grenier’s estimator, future research includes
developing an alternative estimator by combining the advantages of Grenier’s and Rosen-
thal’s estimators. More specifically, this estimator should include overperforming effect,
election data from multiple elections, and candidate level information.
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Appendix A

Derivation of the Variances

Xijt =


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∑
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
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v̂ijt,U = vij,t−1 +
(
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Rosenthal Uniform Estimator
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Rosenthal Ratio Estimator
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k=1 s
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∗
jkl(i)t(1− q

∗
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na−4,t−1pa−4,j,t−1(1− pa−4,j,t−1) if a ≥ 5

G = g1
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=
vij,t−1

∑
l(x)=l(i) nx,t−1∑

l(x)=l(i) vxj,t−1

H =
M∗

j·l(i)t
s∗

·l(i)
+
∑

i vij,t−1∑
i ni,t−1

−
∑

l M
∗
j·l,t−1∑

l s
∗
·l,t−1

∂v̂ijt,R

∂v̂xj,t−1
=



(
(g2
∑

l(i)=l
ni,t−1)−g1

g2
2

)
·H + G∑

i
ni,t−1

if x = i(
−g1
g2

2

)
·H + G∑

i
ni,t−1

if l(x) = l(i) and x 6= i

G∑
i

ni,t−1
if l(x) 6= l(i)
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Appendix B

List of βijt Used in the
Simulation

Riding Party 1 Party 2 Party 3
1 -0.008 0.008 0
2 0.006 -0.006 0
3 -0.005 0.005 0
4 0.009 -0.009 0
5 -0.013 0.013 0
6 -0.009 0.009 0
7 0.005 -0.005 0
8 -0.008 0.008 0
9 0.008 -0.008 0
10 0.015 -0.015 0
11 0.011 -0.011 0
12 0.005 -0.005 0
13 -0.014 0.014 0
14 -0.006 0.006 0
15 -0.004 0.004 0
16 -0.008 0.008 0
17 -0.002 0.002 0
18 -0.017 0.017 0
19 -0.003 0.003 0
20 -0.002 0.002 0
21 0.009 -0.009 0
22 0.003 -0.003 0
23 -0.01 0.01 0
24 -0.004 0.004 0
25 0.025 -0.025 0
26 0.01 -0.01 0
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Riding Party 1 Party 2 Party 3
27 0.008 -0.008 0
28 -0.006 0.006 0
29 -0.005 0.005 0
30 -0.005 0.005 0
31 0.011 -0.011 0
32 0.004 -0.004 0
33 0.008 -0.008 0
34 -0.013 0.013 0
35 0.01 -0.01 0
36 -0.011 0.011 0
37 -0.01 0.01 0
38 0.005 -0.005 0
39 -0.004 0.004 0
40 0.001 -0.001 0
41 -0.011 0.011 0
42 0.016 -0.016 0
43 -0.002 0.002 0
44 0.002 -0.002 0
45 -0.012 0.012 0
46 0.002 -0.002 0
47 0.005 -0.005 0
48 0.02 -0.02 0
49 -0.008 0.008 0
50 0.002 -0.002 0
51 -0.007 -0.006 0.013
52 -0.011 0.006 0.005
53 0.003 -0.009 0.006
54 -0.005 0.009 -0.004
55 -0.002 -0.003 0.005
56 0.019 -0.01 -0.009
57 0.003 -0.022 0.019
58 0.005 -0.007 0.002
59 0.003 -0.015 0.012
60 -0.006 0.023 -0.017
61 0.013 0.001 -0.014
62 0.009 -0.007 -0.002
63 -0.011 0.008 0.003
64 0.004 0.012 -0.016
65 -0.002 -0.005 0.007
66 0.005 0.009 -0.014
67 0.007 0.006 -0.013
68 -0.009 0.001 0.008
69 -0.014 0.015 -0.001
70 -0.004 -0.006 0.01

66



Appendix C

List of βij,t−1 Used in the
Simulation

Riding Party 1 Party 2 Party 3
1 -0.014 0.014 0
2 -0.009 0.009 0
3 -0.005 0.005 0
4 0.006 -0.006 0
5 -0.004 0.004 0
6 0.012 -0.012 0
7 0.01 -0.01 0
8 0.009 -0.009 0
9 -0.002 0.002 0
10 -0.003 0.003 0
11 -0.003 0.003 0
12 -0.005 0.005 0
13 -0.008 0.008 0
14 0.003 -0.003 0
15 0.004 -0.004 0
16 -0.009 0.009 0
17 -0.012 0.012 0
18 0.003 -0.003 0
19 -0.011 0.011 0
20 -0.011 0.011 0
21 0.004 -0.004 0
22 0.005 -0.005 0
23 0.008 -0.008 0
24 0.013 -0.013 0
25 0.008 -0.008 0
26 0.004 -0.004 0
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Riding Party 1 Party 2 Party 3
27 0.005 -0.005 0
28 -0.013 0.013 0
29 -0.016 0.016 0
30 0.009 -0.009 0
31 -0.003 0.003 0
32 0.006 -0.006 0
33 0.003 -0.003 0
34 -0.017 0.017 0
35 0.001 -0.001 0
36 -0.011 0.011 0
37 -0.002 0.002 0
38 -0.002 0.002 0
39 0.012 -0.012 0
40 0.001 -0.001 0
41 -0.017 0.017 0
42 0.004 -0.004 0
43 -0.006 0.006 0
44 0.014 -0.014 0
45 0.004 -0.004 0
46 -0.01 0.01 0
47 0.005 -0.005 0
48 0.005 -0.005 0
49 0.011 -0.011 0
50 0.024 -0.024 0
51 -0.005 0.006 -0.001
52 0.007 -0.005 -0.002
53 0.004 -0.002 -0.002
54 -0.002 -0.011 0.013
55 -0.012 0.005 0.007
56 -0.005 -0.001 0.006
57 -0.005 0.013 -0.008
58 -0.002 0.01 -0.008
59 0.003 -0.002 -0.001
60 0.023 -0.014 -0.009
61 0.008 0.004 -0.012
62 0.002 -0.011 0.009
63 0.002 0.009 -0.011
64 -0.003 -0.001 0.004
65 0.006 -0.001 -0.005
66 -0.006 0.007 -0.001
67 -0.003 -0.002 0.005
68 -0.005 0.002 0.003
69 -0.011 0.01 0.001
70 0.004 -0.016 0.012
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Appendix D

Estimation of MSE

In this section x(b) denotes the x value from the bth iteration.

ˆMSE(vijt) = tr(Σ̂) + ˆbias(vijt)T ˆbias(vijt)

=
∑
i,j

1
n− 1

∑
b

(
v

(b)
ijt −

1
n

∑
b

v
(b)
ijt

)2

+
∑
i,j

(
1
n

∑
b

v
(b)
ijt − nitpijt

)2

=
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1
n

∑
b

v
(b)
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)2

+
(

1
n

∑
b

v
(b)
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ˆMSE(pijt) = tr(Σ̂) + ˆbias(pijt)T ˆbias(pijt)

=
∑
i,j

1
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b
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1
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(b)
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+
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1
n

∑
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p
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∑
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p
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Appendix E

Summary of Simulation Outcomes
in All Settings

MSEUniform/MSERatio

Setting γ δ φ pijt vijt Recommend
1 0 0 0 0.988 0.988 Uniform
2 0 0.5 0 0.992 0.988 Uniform
2 0 1 0 0.990 0.989 Uniform
2 0 2 0 0.993 0.991 Uniform
2 0 5 0 0.998 0.996 Uniform
3 0 0 -0.3 0.985 1.000 Uniform
3 0 0 -0.05 0.989 0.996 Uniform
3 0 0 0.05 0.991 0.996 Uniform
3 0 0 0.3 0.991 1.000 Uniform
4 -10 0 0 0.910 0.958 Uniform
4 -1 0 0 0.962 0.976 Uniform
4 1 0 0 0.964 0.956 Uniform
4 10 0 0 0.911 0.903 Uniform
5 -10 0 -0.3 0.910 0.971 Uniform
5 -10 0 -0.05 0.910 0.955 Uniform
5 -10 0 0.05 0.911 0.963 Uniform
5 -10 0 0.3 0.910 0.988 Uniform
5 -1 0 -0.3 0.961 0.999 Uniform
5 -1 0 -0.05 0.963 0.989 Uniform
5 -1 0 0.05 0.963 0.990 Uniform
5 -1 0 0.3 0.964 1.000 Uniform
5 1 0 -0.3 0.961 0.999 Uniform
5 1 0 -0.05 0.964 0.980 Uniform
5 1 0 0.05 0.964 0.981 Uniform
5 1 0 0.3 0.964 0.999 Uniform

70



MSEUniform/MSERatio

Setting γ δ φ pijt vijt Recommend
5 10 0 -0.3 0.911 0.951 Uniform
5 10 0 -0.05 0.912 0.902 Uniform
5 10 0 0.05 0.912 0.910 Uniform
5 10 0 0.3 0.912 0.960 Uniform
6 -10 0.5 0 0.908 0.955 Uniform
6 -10 1 0 0.908 0.952 Uniform
6 -10 2 0 0.907 0.946 Uniform
6 -10 5 0 0.910 0.930 Uniform
6 -1 0.5 0 0.962 0.976 Uniform
6 -1 1 0 0.967 0.977 Uniform
6 -1 2 0 0.973 0.979 Uniform
6 -1 5 0 0.990 0.989 Uniform
6 1 0.5 0 0.964 0.956 Uniform
6 1 1 0 0.965 0.957 Uniform
6 1 2 0 0.974 0.965 Uniform
6 1 5 0 0.990 0.983 Uniform
6 10 0.5 0 0.910 0.900 Uniform
6 10 1 0 0.909 0.898 Uniform
6 10 2 0 0.909 0.893 Uniform
6 10 5 0 0.914 0.880 Uniform
7 0 0.5 -0.3 0.988 1.000 Uniform
7 0 0.5 -0.05 0.990 0.996 Uniform
7 0 0.5 0.05 0.992 0.996 Uniform
7 0 0.5 0.3 0.991 1.000 Uniform
7 0 1 -0.3 0.986 1.000 Uniform
7 0 1 -0.05 0.990 0.996 Uniform
7 0 1 0.05 0.990 0.996 Uniform
7 0 1 0.3 0.992 1.000 Uniform
7 0 2 -0.3 0.991 1.000 Uniform
7 0 2 -0.05 0.993 0.996 Uniform
7 0 2 0.05 0.993 0.996 Uniform
7 0 2 0.3 0.994 1.000 Uniform
7 0 5 -0.3 0.997 1.000 Uniform
7 0 5 -0.05 0.998 0.997 Uniform
7 0 5 0.05 0.998 0.997 Uniform
7 0 5 0.3 0.999 1.000 Uniform
8 -10 0.5 -0.3 0.909 0.970 Uniform
8 -10 0.5 -0.05 0.909 0.952 Uniform
8 -10 0.5 0.05 0.909 0.960 Uniform
8 -10 0.5 0.3 0.909 0.986 Uniform
8 -10 1 -0.3 0.908 0.968 Uniform
8 -10 1 -0.05 0.908 0.949 Uniform
8 -10 1 0.05 0.908 0.957 Uniform
8 -10 1 0.3 0.908 0.985 Uniform

71



MSEUniform/MSERatio

Setting γ δ φ pijt vijt Recommend
8 -10 2 -0.3 0.907 0.965 Uniform
8 -10 2 -0.05 0.906 0.943 Uniform
8 -10 2 0.05 0.907 0.952 Uniform
8 -10 2 0.3 0.907 0.983 Uniform
8 -10 5 -0.3 0.910 0.955 Uniform
8 -10 5 -0.05 0.910 0.927 Uniform
8 -10 5 0.05 0.911 0.936 Uniform
8 -10 5 0.3 0.910 0.974 Uniform
8 -1 0.5 -0.3 0.962 0.999 Uniform
8 -1 0.5 -0.05 0.963 0.988 Uniform
8 -1 0.5 0.05 0.963 0.989 Uniform
8 -1 0.5 0.3 0.963 1.000 Uniform
8 -1 1 -0.3 0.963 0.999 Uniform
8 -1 1 -0.05 0.967 0.988 Uniform
8 -1 1 0.05 0.966 0.989 Uniform
8 -1 1 0.3 0.967 1.000 Uniform
8 -1 2 -0.3 0.972 0.999 Uniform
8 -1 2 -0.05 0.972 0.989 Uniform
8 -1 2 0.05 0.971 0.988 Uniform
8 -1 2 0.3 0.974 0.999 Uniform
8 -1 5 -0.3 0.989 0.999 Uniform
8 -1 5 -0.05 0.990 0.991 Uniform
8 -1 5 0.05 0.990 0.991 Uniform
8 -1 5 0.3 0.990 0.999 Uniform
8 1 0.5 -0.3 0.962 0.999 Uniform
8 1 0.5 -0.05 0.964 0.980 Uniform
8 1 0.5 0.05 0.965 0.980 Uniform
8 1 0.5 0.3 0.965 0.999 Uniform
8 1 1 -0.3 0.964 0.999 Uniform
8 1 1 -0.05 0.966 0.980 Uniform
8 1 1 0.05 0.967 0.980 Uniform
8 1 1 0.3 0.967 0.999 Uniform
8 1 2 -0.3 0.971 0.999 Uniform
8 1 2 -0.05 0.973 0.981 Uniform
8 1 2 0.05 0.973 0.980 Uniform
8 1 2 0.3 0.974 0.999 Uniform
8 1 5 -0.3 0.989 0.999 Uniform
8 1 5 -0.05 0.990 0.988 Uniform
8 1 5 0.05 0.990 0.986 Uniform
8 1 5 0.3 0.990 0.999 Uniform
8 10 0.5 -0.3 0.910 0.950 Uniform
8 10 0.5 -0.05 0.910 0.900 Uniform
8 10 0.5 0.05 0.911 0.908 Uniform
8 10 0.5 0.3 0.911 0.959 Uniform
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MSEUniform/MSERatio

Setting γ δ φ pijt vijt Recommend
8 10 1 -0.3 0.909 0.949 Uniform
8 10 1 -0.05 0.910 0.897 Uniform
8 10 1 0.05 0.909 0.905 Uniform
8 10 1 0.3 0.909 0.958 Uniform
8 10 2 -0.3 0.908 0.946 Uniform
8 10 2 -0.05 0.908 0.892 Uniform
8 10 2 0.05 0.909 0.901 Uniform
8 10 2 0.3 0.909 0.955 Uniform
8 10 5 -0.3 0.913 0.936 Uniform
8 10 5 -0.05 0.914 0.879 Uniform
8 10 5 0.05 0.913 0.887 Uniform
8 10 5 0.3 0.913 0.947 Uniform
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