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Abstract

Abstract
Multivariate multiple linear regression is multiple linear regression, but with multiple re-
sponses. Standard approaches assume that observations from different subjects are uncor-
related and so estimates of the regression parameters can be obtained through separate
univariate regressions, regardless of whether the responses are correlated within subjects.
There are three main extensions to the simplest model. The first assumes a low rank struc-
ture on the coefficient matrix that arises from a latent factor model linking predictors to
responses. The second reduces the number of parameters through variable selection. The
third allows for correlations between response variables in the low rank model. Chen and
Huang propose a new model that falls under the reduced-rank regression framework, em-
ploys variable selection, and estimates correlations among error terms. This project reviews
their model, describes its implementation, and reports the results of a simulation study
evaluating its performance. The project concludes with ideas for further research.

Keywords: Multivariate Regression; Reduced-Rank; Covariance Estimation; Variable Se-
lection; LASSO; Simulation
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Chapter 1

Introduction

Multivariate multiple linear regression is a technique to infer linear relationships between
response variables, Y = {Y1, . . . , Yq}, and a set of input variables, X = {X1, . . . , Xp}. This
is similar to multiple linear regression, but with the change that there are now multiple
response variables. In fact, the model used to estimate these linear relationships is a simple
extension of the multiple linear regression model.

Let X be the n× p matrix of predictor variables, Y, the n× q response matrix, and E,
the n× q error matrix. The multivariate regression model is then,

Y = XC + E, (1.1)

where C is the p × q matrix of regression parameters, and each row of E is from the
MVN(0,Σe) distribution. Under this model, the q observations from a single subject have
covariance matrix Σe; however, the observations from different subjects are assumed uncor-
related. Thus, the least squares estimates of the regression parameters, Ĉ, can be obtained
by performing q separate univariate regressions.

Let ĉ(i) be the least squares estimate obtained from the ith response,

ĉ(i) = (X′X)−1X′Y(i); (1.2)

then the collection of these separate estimates gives us,

Ĉ =
{
ĉ(1)|ĉ(2)| . . . |ĉ(q)

}
= (X′X)−1X′

{
Y(1)|Y(2)| . . . |Y(q)

}
= (X′X)−1X′Y.

(1.3)
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From this result, we can see that “multivariate regression is a procedure that has no true
multivariate context” [Izenman, 2013].

To add multivariate context, three main extensions have been proposed. The first is to
assume a low rank structure on the coefficient matrix that arises from a latent factor model
linking the predictors to the responses. The second is to reduce the number of parameters
in the model through variable selection. The third extension is to allow for correlations
between the response variables [Chen and Huang, 2016].

If we assume a low rank structure on the coefficient matrix C such that rank(C) = r ≤
min(p, q). (Recall that the rank of a matrix is defined as the dimension of the vector space
spanned by its columns.) The coefficient matrix can then be decomposed in the following
way,

C = BA′

where B is a p×r matrix and A is an q×r matrix. This is called the reduced-rank regression
model.

By assuming this low-rank structure of the coefficient matrix, we effectively reduce the
number of parameters to be estimated from pq to (p+ q)r. Under this formulation we can
think of XB as underlying predictive factors and A′ as their coefficients. This model gives
us a nice framework from which to work, but does not perform variable selection. More-
over, some reduced rank regression models still assume that the errors are independently
and identically distributed. In the article Sparse reduced rank regression with covariance
estimation [Chen and Huang, 2016], the authors propose a new model and a corresponding
algorithm to fit this model that falls under the reduced-rank regression framework, but also
employs variable selection and estimation of the correlation among error terms. In this
report, I review this method, describe its implementation, and evaluate its performance
through a simulation study. The project concludes with ideas for further research and a
discussion of this method’s potential application in the area of imaging genetics.
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Chapter 2

Methods

2.1 Reduced-Rank Model

In the multivariate linear regression model, we have response variables, Y1, Y2, . . . , Yq and
multiple predictor variables, X1, X2, . . . , Xp. We assume a linear relationship between the
response variables and the predictor variables such that,

Yj =
p∑

k=1
Xkckj + εj , j = 1, 2, . . . , q (2.1)

where εj is the error term and the collection of the εj ’s are assumed to be jointly
MVN(0,Σe) distributed. Thus the regression model can be written,

Y = XC + E, (2.2)

where Y is the n× q matrix of responses, X is the n× p matrix of predictors, C is the p× q
coefficient matrix, and E is the n × q error matrix, each row of which is drawn from the
MVN(0,Σe) distribution.

The negative log-likelihood of the unknown parameters in the model can be written as,

l(C,Σe) ∝
1
n
tr
[
(Y−XC)′Σ−1

e (Y−XC)
]
− log |Σ−1

e | (2.3)

or
l(C,Ω) ∝ 1

n
tr
[
(Y−XC)′Ω(Y−XC)

]
− log |Ω|, (2.4)

where Ω = Σ−1
e . Minimizing this equation over the unknown parameters, (C,Ω), we can ob-

tain the maximum likelihood estimates, Ĉ = (X′X)−1X′Y and Ω̂ = Y′[1−X(X′X)−1X′]Y
[Tso, 1981]. The maximum likelihood estimate for C is actually equal to the estimate given
by performing q separate linear regressions and does not depend on the error covariance
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structure. If, however, we impose some structure on C this will not be the case.

Reduced-rank regression works by imposing a rank constraint on the coefficient matrix
such that,

rank(C) = r ≤ min(p, q). (2.5)

By doing so, we can greatly reduce the number of free parameters that need to be estimated
for the coefficient matrix.

With the imposition of the rank constraint on the coefficient matrix we can further
decompose the coefficient matrix, C, into the product of two rank-r matrices,

C = BA′, (2.6)

where B has dimension p × r and A has dimension q × r. Thus we are able to reduce
the number of free parameters from pq, assuming a full-rank coefficient matrix, to (p+ q)r
in the reduced-rank setting. Under this formulation, the negative log-likelihood of the
reduced-rank regression is,

l(B,A,Ω) ∝ 1
n
tr
[
(Y−XBA′)′Ω(Y−XBA′)

]
− log |Ω|. (2.7)

In this setting, in order to ensure identifiability, additional constraints on A and B are
required. For example, without placing constraints on these matrices, if F is an r × r

invertible matrix and BA′ = C, then we have BFF−1A′ = GH′ = C, where G = BF is
a p × r matrix and H′ = F−1A′ is an r × q matrix. One way to formulate reduced rank
regression is as a two-step procedure [Davies and Tso, 1982]. In the first step, we use the
singular-value decomposition of the n×q fitted response matrix, ŶOLS , from ordinary least
squares regression of Y on X to obtain Ŷr, a rank-r approximation. In the second step, we
find the coefficient matrix, C such that XC = Ŷr. This formulation can be used to derive
a solution C = AB′ such that A′ΩA = Ir and B′SxB is diagonal, where Sx is the sample
covariance of X [Chen and Huang, 2012].

In addition to reducing the number of parameters to be estimated, the reduced-rank
formulation is described as “finding the interaction between the q response variables as a
group and the predictors X” [Chen and Huang, 2016]. One possible explanation of this
statement is as follows [SAS, 2016]. Conceptually, reduced-rank regression selects factors
underlying Y, represented by linear combinations of the response variables, that account
for as much variation as possible in the OLS predictions, ŶOLS . These factors are projected
onto the column space of X to obtain the factors underlying X. One particular procedure
for performing the estimation in the reduced-rank regression [Davies and Tso, 1982] does
this explicitly. This procedure uses the singular value decomposition (SVD) of the uncon-
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strained OLS predictions, ŶOLS = ∑τ
i=1 λiuiv

′
i = UDV ′, where τ is the rank of ŶOLS , to

form a reduced-rank projection matrix Pr = ∑r
i=1 viv

′
i, where r < τ . This reduced-rank

projection matrix is then used to compute the reduced-rank coefficient matrix. This is
clearly very different from unconstrained multivariate regression which “has no true multi-
variate context” [Izenman, 2013].

2.2 Covariance Estimation and Variable Selection

The reduced-rank model clearly has some advantages over the classic multivariate regres-
sion model. However, it is still quite limited. Reduced rank regression does not address the
issue of consistent covariance estimation for high-dimensional data. In high-dimensional
settings, standard estimators of covariances are not consistent (i.e. the elements of the es-
timated covariance matrix do not converge in probability to their population counterparts)
and can lead to invalid conclusions [Cai et al., 2016]. Also, the reduced-rank regression does
not provide a method for variable selection. Both of these issues are important in many
applications. In order to address these issues, Chen and Huang propose a penalized version
of the reduced-rank regression model that aims to jointly perform variable selection and
covariance estimation. These goals are achieved through the incorporation of two separate
penalizations on the likelihood equations. The first is a row-wise penalty on B which al-
lows us to select predictive variables. The second is an element-wise lasso penalty on the
precision matrix Ω.

By imposing these penalties, it is possible to avoid overfitting when the sample size is
small. That is, by introducing some bias we may be able to reduce the variance of our
predictions. The element-wise lasso penalty on the precision matrix provides the necessary
regularization to estimate the precision matrix, while the row-wise penalty on B allows us to
select the most important variables in the model. These properties are desirable, especially
when there are a large number of predictors, of which only a small subset may be relevant.

In order to achieve the first goal of variable selection we can consider a form of penalized
regression from Chen and Huang [2012] which results in the following objective function:

min
A,B

1
n
tr
[
(Y−XBA′)′(Y−XBA′)

]
+

p∑
j=1

λj ||Bj||2,

s.t. A′A = Ir,

(2.8)
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where Bj is the jth row of B and λj is a tuning parameter that encourages row-wise
sparsity. This form of penalized regression is very similar to the group-wise lasso penalty
proposed by Yuan and Lin [2006]. In the case of many predictors, we can greatly reduce
the computational burden of determining penalty parameters by setting all λj ’s equal. This
gives us

min
A,B

1
n
tr
[
(Y−XBA′)′Ω(Y−XBA′)

]
+ λ

p∑
j=1
||Bj||2,

s.t. A′A = Ir.

(2.9)

It is important to note that the solution to this optimization problem is not unique, or
rather, it is only unique up to an r × r orthonormal matrix (i.e. QQ′ = Q′Q = I). For
example, if (Â, B̂) is a solution to the optimization and Q is an r × r orthonormal matrix,
letting Ã = ÂQ and B̃ = B̂Q, it follows that B̂Â′ = B̃Ã′ since QQ′ = I [Chen and Huang,
2012]. The penalty term is also unchanged since the length of a row of B is not affected by
post-multiplying by Q.

In order to incorporate the correlation structure into this model, Chen and Huang [2016]
use a penalized Gaussian Likelihood to estimate the precision matrix [Yuan and Lin, 2007].
This likelihood penalizes all the off-diagonal entries in the precision matrix, encouraging
sparsity. For a fixed value of (A,B), the precision matrix Ω is the solution to

min
Ω

tr(ΣRΩ)− log |Ω|+ λ1
∑
j 6=j′

|ωj′j |, (2.10)

where ΣR = 1
n(Y−XBA′)′(Y−XBA′) is the sample covariance matrix of the errors, ωj′j

is the (j′, j) entry in the precision matrix Ω and λ1 is the tuning parameter that controls
the sparsity of the solution.

Combining these two penalties into the reduced-rank regression model, we get the fol-
lowing penalized likelihood,

min
A,B,Ω

1
n
tr
[
(Y−XBA′)′Ω(Y−XBA′)

]
− log |Ω|+ λ1

∑
j 6=j′

|ωj′j |+ λ2

p∑
j=1
||Bj||2,

s.t. A′ΩA = Ir.

(2.11)

2.3 Algorithm

Due to the complexity of the problem, solving this equation can be very difficult. We can,
however, break the problem down into two separate parts and solve each separately given
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the results of the other part. That is, for a given coefficient matrix C = BA′ we can op-
timize the precision matrix, Ω, with the appropriate penalty, λ1, and for a given precision
matrix, Ω, we can solve the reduced-rank regression problem incorporating the row-wise
penalty, λ2. The algorithm proposed by Chen and Huang [2016] alternates between these
two tasks.

Given a coefficient matrix C = BA′ we can optimize the following criterion to solve for
the precision matrix,

min
Ω

tr(ΣRΩ)− log |Ω|+ λ1
∑
j 6=j′

|ωj′j | (2.12)

where ΣR = 1
n(Y−XBA′)′(Y−XBA′). This is the same problem as that of learning

the structure in an undirected Gaussian graphical model. The graphical lasso (GLASSO)
[Friedman et al., 2008] is a popular algorithm for learning this structure using l1 regu-
larization to control the number of zeroes in Ω. However, convergence of the GLASSO
algorithm can be troublesome and “the converged precision matrix might not be the inverse
of the estimated covariance” [Mazumder and Hastie, 2012]. This is due to the fact that the
GLASSO algorithm is actually targeting the covariance matrix rather than its inverse (the
precision matrix). Because our model seeks to identify a sparse precision matrix, we instead
use the related DP-GLASSO algorithm [Mazumder and Hastie, 2012] which directly targets
the precision matrix.

For a given precision matrix Ω we then minimize over (A,B),

min
A,B

1
n
tr
[
(Y−XBA′)Ω(Y−XBA′)′

]
+ λ2

p∑
j=1
||Bj||2,

s.t. A′ΩA = Ir.

(2.13)

If we let Ã = Ω1/2A we can rewrite the equation as

min
Ã,B

1
n
tr
[
(YΩ1/2 −XBÃ′)(YΩ1/2 −XBÃ′)′

]
+ λ2

p∑
j=1
||Bj||2

= min
Ã,B

1
n
||YΩ1/2 −XBÃ′||+ λ2

p∑
j=1
||Bj||2

= min
Ã,B

1
n
||Ỹ−XBÃ′||+ λ2

p∑
j=1
||Bj||2,

s.t. Ã′Ã = Ir,

(2.14)
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where Ỹ = YΩ1/2. This has the same form as equation (2.8) and can be solved in the
manner proposed by Chen and Huang [2012].

In order to minimize equation (2.14) we use an algorithm that iterates between opti-
mizing Ã for a fixed B, and optimizing B for a fixed Ã. For a fixed B, equation (2.14) can
be expressed as

min
Ã
||Ỹ−XBÃ′||, s.t. Ã′Ã = Ir. (2.15)

This minimization problem can be viewed as trying to find an orthogonal matrix Ã that
transforms XB to fit Ỹ as closely as possible. Such a problem is known as an “orthogonal
Procrustes Problem”[Gower and Dijksterhuis, 2004] and has the solution Ã = UV′ where
U and V are from the singular value decomposition of Y′XB = UDV′ [Chen and Huang,
2012].

For a fixed Ã, optimizing B is difficult because the function in equation (2.14) is convex,
but non-differentiable [Chen and Huang, 2016]. In order to overcome these difficulties, Chen
and Huang [2012] propose the use of a subgradient method [Bertsekas, 1999] and provide
an algorithm that employs blockwise coordinate descent [Friedman et al., 2007] to update
B one row at a time, holding the rest of the matrix fixed. The subgradient method is a
standard way to minimize a non-smooth convex function.

When minimizing equation (2.14) for a fixed Ã with respect to a row Bl of B, the objec-
tive function is non-differentiable at the vector Bl = 0 because the penalty term involves the
non-differentiable function ||Bl||2 =

√∑q
i=1(Bl

i)2. To see why ||Bl||2 is non-differentiable,
consider the simplest case of q = 1. Then ||Bl||2 reduces to the absolute value function |Bl

1|
which is not differentiable at zero. The subgradient generalizes the derivative to functions
such as ||Bl||2 which are not differentiable at all points. A subgradient at a point can be
viewed as the slope of any tangent line to the function at that point that lies at or below
the function at points everywhere else on its domain [Wikipedia, 2016b].

At points where the function is differentiable, subderivatives are equal to the deriva-
tives and unique. At points where the function is non-differentiable, subderivatives are
non-unique. A point Bl is a minimum of the function if and only if zero is a subgra-
dient of the function at Bl [Gordon and Tibshirani]. For ||Bl|| 6= 0, the subgradient is
unique and is equal to 2Xl

(∑p
k 6=l XkBk −YA

)
+λ2Bl/||Bl|| [Chen and Huang, 2012]. For

||Bl|| = 0, the subgradients are of the form 2Xl

(∑p
k 6=j XkB

k − Y A
)

+ λ2sl, where ||sl|| is
any vector with Euclidean length ||sl|| < 1 [Chen and Huang, 2012, Gordon and Tibshirani].
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We wish to find the Bl which has zero as its subgradient. If Bl is a differentiable point,
this means we check whether zero is its derivative. If Bl is a non-differentiable point, this
means we check whether zero is in its set of subgradients. Chen and Huang [2012] refer to
these checks as “solving the subgradient equations”. That is, we solve for Bl in

2X′l

 p∑
k 6=l

XkBk −YÃ

+ λ2sl = 0, l = 1, 2, ..., p, (2.16)

where sl = Bl/||Bl|| if ||Bl|| 6= 0 or sl is a vector satisfying ||sl|| < 1 if ||Bl|| = 0.

For ||Bl|| = 0, we can solve for sl in the subgradient equations and find

sl = − 2
λ2

X′l

 p∑
k 6=l

XkBk −YÃ

 = − 2
λ2

X′lRl, (2.17)

where Rl = YÃ−
∑p
k 6=l XkBk and then check whether ||sl|| < 1. If

||sl|| =
2
λ2
||X′lRl|| < 1, (2.18)

then zero is in the set of subgradients for Bl = 0; i.e., Bl = 0 is the minimizer of equation
(2.14) for fixed Ã with respect to Bl.

For ||Bl|| 6= 0, we have the subgradient (gradient) equation,

2X′l

 p∑
k 6=l

XkBk −YÃ

+ λ2
Bl

||Bl||
= 0, (2.19)

which can be transformed into

− 2X′l(Rl −XlBl) + λ2
Bl

||Bl||
= 0. (2.20)

Solving for Bl we get

Bl =
(

X′lXl + λ2
2||Bl||

)−1
X′lRl. (2.21)

This equation involves ||Bl|| on the right-hand side. However, by taking the norm on both
sides, we obtain ||Bl|| = (||X′lRl|| − λ2/2)||Xl||2. By substituting this expression for ||Bl||
into equation (2.21), we obtain

Bl = 1
X′lXl

[
1− λ2

2||X′lRl||

]
X′lRl. (2.22)
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In summary, we first check if Bl = 0 by checking if equation (2.18) to see if 2
λ2
||X′lRl|| <

1. If Bl 6= 0, then 2
λ2
||X′lRl|| ≥ 1 in equation (2.18) and Bl is given by equation (2.22).

These two cases can be combined to obtain a general expression for Bl:

Bl = 1
X′lXl

[
1− λ2

2||X′lRl||

]
+

X′lRl, (2.23)

where Rl = YÃ−
∑p
k 6=l XkBk and “+” indicates the positive part of a real number.

By iterating over these steps of estimating Ω, A, and B until the objective function is
minimized, we can easily obtain estimates for both our coefficient matrix C = BA′ and
precision matrix Ω and arrive at the following overall algorithm.

Algorithm 1: Algorithm to solve the Sparse Reduced Rank Regression with Covari-
ance Estimation

Input : X,Y, λ1, λ2
Output: A,B,Ω
initialization;
while objective function (2.11) not converged do

For fixed (A,B), estimate Ω via DP-GLASSO algorithm;
while objective function (2.14) not converged do

For fixed B solve Ã by SVD;
For fixed Ã while B not converged do

for each row l in B do
estimate Bl using equation (2.23);

end
check for convergence of B;

end
check for convergence of objective function (2.14);

end
check for convergence of objective function (2.11)

end

Use of subgradients in this method guarantees convergence to an arbitrarily close approx-
imation to the minimum value [Bertsekas, 1999]. In the implementation of this algorithm,
B was initialized to be the first r columns of the right singular vectors of X, the nearest
possible matrix of rank r to X [Wikipedia, 2016a]. Ω was initialized as S−1

Y or an identity
matrix, I, if SY was not invertible.
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Chapter 3

Evaluation

Following Chen and Huang [2016], we performed a simulation study to evaluate the per-
formance of the method under a variety of circumstances. Specifically, we evaluated the
performance in terms of the prediction error and variable selection ability of the method.
For variable selection we consider both the sensitivity (the proportion of non-zero elements
that are correctly included) and the specificity (the proportion of zero elements that are
correctly excluded) of the rows of B.

3.1 Simulation Design

Data for the simulation study were generated using the model Y = XBA′ + E. Each
component of this model is generated in the following way.

• The columns of the n × p matrix X are generated from N(0,Σx) with Σx(i, j) =
0.5|i−j|.

• The first p0 rows of the p× r matrix B are generated from N(0, 1) and the rest of the
p− p0 rows are set to be zero.

• The entries of the q × r matrix A are generated from N(0, 1)

• The entries in the n×q matrix E are generated from N(0, σ2Σe) with Σe(i, j) = ρ
|i−j|
e

and σ2 is chosen so that the signal to noise ratio is 1.

Chen and Huang [2016] state that the signal to noise ratio they wish to be equal to 1
is trace(C′ΣxC)/trace(E′E). However, this equation seems to be different from the actual
signal to noise ratio which can be expressed as

trace(C′ΣxC)
trace

(
1
nE(E′E)

) . (3.1)
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Evaluating the expectation we get

trace(C′ΣxC)
trace (σ2Σe)

. (3.2)

Therefore, by setting σ2 = trace(C′ΣxC)/trace(Σe), we can ensure that the signal to noise
ratio is one-to-one.

In order to test the algorithm under a variety of circumstances, following Chen and
Huang [2016], we set n = 50, r = 3, let ρe = 0, 0.5, or 0.9, and considered 3 different
combinations of p, p0, and q, (p, p0, q) = (30, 10, 10), (100, 20, 20) and (60, 20, 60). Tuning
parameters, λ1 and λ2, were selected in the same manner as Chen and Huang [2016], using
a validation set of size 50. A test set of size 1000 was used to evaluate prediction accuracy.
This setup follows closely that of Chen and Huang [2016]. My interpretation of these au-
thors’ statements is that a dataset of size n = 1100 is generated from the process detailed
above, 100 of which are used for the training and validation process, while the remaining
1000 are used as a held-out test to evaluate the prediction performance of the algorithm.

For each set of runs in the simulation (for each combination of p, p0, q, and ρe), I first
performed a coarse grid search over values of λ1 and λ2, performing 2-fold cross-validation
(CV) at each pair of fixed values. That is, I split the size 100 training and validation set
into 2 equally sized parts, train the model on the first half and calculate its prediction error
on the second half, and then train the model on the second half and calculate its prediction
error on the first half. Then the average of these two prediction errors forms the CV error
for that fixed value of (λ1, λ2). Once the CV error has been obtained over this coarse grid of
(λ1, λ2), the pair with the lowest CV error value is chosen as the starting point of a quasi-
Newton optimization algorithm to find the optimal (λ1, λ2) that minimized the prediction
error for each run of the simulation at the same values of p, p0, q, and ρe.

3.2 Variable Selection and Prediction

From Table 3.1, we can see that the algorithm does a very good job at excluding irrelevant
variables in the model (specificity ≈ 1 for all simulations) and does a decent job at selecting
the appropriate variables to include in the model. In particular, in the presence of strongly
autocorrelated error, the algorithm yields better sensitivity, while still retaining the high
specificity, than in the presence of uncorrelated error. I believe that this may be due to
under-penalization of the precision matrix when correlation is not present, however more
investigation into this would be needed in order to say anything conclusive.
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p p0 q ρe Prediction Error Sensitivity Specificity
30 10 10 0 22.923 (41.117) 0.317 (0.137) 1(0)

0.5 37.869 (36.412) 0.447 (0.201) 0.997 (0.013)
0.9 41.847 (28.14) 0.527 (0.22) 0.972 (0.055)

100 20 20 0 71.491 (47.701) 0.377 (0.159) 0.992 (0.018)
0.5 90.002 (70.805) 0.347 (0.149) 0.993 (0.018)
0.9 81.361 (47.577) 0.428 (0.169) 0.99 (0.018)

60 20 60 0 39.54 (37.378) 0.083 (0.065) 1 (0)
0.5 49.073 (31.933) 0.435 (0.167) 0.99 (0.021)
0.9 56.529 (48.589) 0.34 (0.193) 1 (0)

Table 3.1: Results from 30 simulations. Reported numbers are means with sd’s in paren-
theses

Figure 3.1: Mean Prediction Error vs CV Error with p = 100, p0 = 20, q = 20, and ρe = 0.9

The prediction error, on the other hand, seems to suffer badly. In Figures 3.1 and 3.2
we observe that the relationship between the cross-validation error and the prediction error
does not have the positive linear relationship that we would expect. In fact, in Figure 3.1
we can see that, despite the small CV error for a number of the simulation runs, the pre-
diction error on those runs is highly variable. This could be due to the fact that 2-fold
cross-validation is being used, which will be more variable than higher order k-fold cross-
validation [Hastie et al., 2013]. Also, the small size of the training and validation set relative
to the test set (100 vs 1000) suggests that (i) the test set will contain more observations at
the tail ends of the distribution from which the data were generated, and (ii) the estimates
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Figure 3.2: Mean Prediction Error vs CV Error with p = 60, p0 = 20, q = 60, and ρe = 0

of the tuning parameters may not be well determined.

The results in Table 3.1 differ from those produced in Chen and Huang [2016]. This
could be due to a number of reasons. Firstly, the choice of σ2 in the simulation differs
from that in Chen and Huang [2016], which could lead to differences in the data generated.
Secondly, the convergence of B in the algorithm can be problematic, with the algorithm
occasionally selecting all variables as non-zero and then pushing the coefficients to large
values. Because of this problem, in the implementation of the algorithm, I chose to check
for this situation and abort the algorithm if this happened. I believe this happens when
the tuning parameter λ2 (corresponding to the penalty term for B) is too small. The third
possible reason for this problem, is that because the tuning process is very time consuming,
I sought to automate the tuning process and used an optimization algorithm which does
not guarantee that we have found the best (λ1, λ2). In my experience, manually tuning the
algorithm using progressively finer grid searches yields much better results.

From Figure 3.3, we see that the algorithm does a fairly good job at correctly identifying
the structure of the precision matrix, especially in the presence of strongly autocorrelated
errors. This, of course, depends on the appropriate selection of the tuning parameter λ1,
corresponding to the penalty term for Ω, and the algorithm can, if λ1 is not selected care-
fully, select all or none of the entries in the precision matrix. Chen and Huang [2016] allude
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Figure 3.3: Comparison of estimated and actual precision matrices from a simulation run
with p = 100, p0 = 20, q = 20, and ρe = 0.9

to this behavior when they say “The sensitivity and the specificity are undefined (noted as
“-”) when all elements are zero and nonzero respectively”. Note that their statement is re-
ferring to the sensitivity and specificity for the elements of Ω, which we have not considered
in our simulation study. We did not consider sparsity of Ω in our evaluation, because it is
not of particular interest in the application that motivated this work. Our motivation is an
imaging genetics study involving a moderate number, q, of correlated imaging phenotypes.
In this application, the number of genetic markers, p, far exceeds the sample size, n, but q
is well below n. We expect sparsity in B because it reflects the genetic association, which is
typically sparse. However, we do not expect sparsity in Ω because the imaging phenotypes
are known to be correlated. Hence sparseness in the elements of Ω was of less interest than
sparseness in the rows of B.

The simulation design chosen by Chen and Huang could be improved upon in that,
rather than random assignment of the entries in B and A, one could fix the entries and
thus gain more insight into the performance of the algorithm. Also, the tuning method
used in Chen and Huang [2016] uses a validation set of size n = 50 and training set of size
n = 50. This is similar to performing 2-fold cross-validation and can lead to a more vari-
able CV error than a higher order k-fold cross validation tuning process [Hastie et al., 2013].
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The data generating process currently does not account for the tuning parameters but
it would be nice to incorporate them, since the performance of the algorithm is highly de-
pendent on the appropriate selection of λ1 and λ2. This idea would lend itself better to a
Bayesian hierarchical model approach as in Kyung et al. [2010]. However, in utilizing such
an approach we may lose some of the speed of the Chen and Huang algorithm.

3.3 Timing

p p0 q ρe Tuning Time Model Fit Time
30 10 10 0 102.076 (110.636) 1.165 (0.766)

0.5 101.312 (208.353) 1.444 (1.469)
0.9 93.436 (94.585) 1.349 (1.043)

100 20 20 0 860.131 (1700.269) 18.749 (14.431)
0.5 1484.486 (3753.604) 14.92 (11.933)
0.9 543.897 (504.389) 19.148 (18.805)

60 20 60 0 1049.746 (1055.286) 6.939 (4.856)
0.5 801.185 (964.388) 4.495 (3.257)
0.9 617.814 (797.179) 4.767 (3.253)

Table 3.2: Timing results from 30 simulations. Reported numbers are means (in seconds)
with sd’s in parentheses

In Table 3.2 we can see that fitting the final model, after λ1 and λ2 have been chosen
via cross-validation, is very fast. The tuning process, on the other hand, takes a significant
amount of time and is highly variable. As the dimensionality of the problem increases, the
time needed to both tune and fit increases. One possible reason for the high variability
in the time needed for the tuning is the use of a quasi-Newton optimization algorithm to
“automate” the tuning process. At each iteration of the optimization algorithm, it must
compute an approximation to the gradient and Hessian in order to update the parameter
values. The optimization algorithm must compute these numerically. I believe that it is
this computation that accounts for the long amount of time the tuning took in performing
the simulations. Alternative tuning methods, such as adaptive, manual tuning on a fixed
grid of (λ1, λ2) values, may result in shorter tuning times. Because of the relatively long
tuning times, a Bayesian approach [Kyung et al., 2010], in which the tuning is “built-in” to
this model, may be competitive.
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Chapter 4

Concluding Remarks

The work done by Chen and Huang provides a useful extension to the standard multivari-
ate regression framework that satisfies a number of needs. The model proposed provides
dimension reduction through the use of the reduced-rank regression framework, it performs
shrinkage and variable selection through its use of the LASSO penalty on the rows of the
coefficient matrix, and it performs sparse inverse covariance estimation which allows the
model to account for a potentially large number of correlated errors, even when the sample
size is small compared to the number of response variables. Their work also gives us a fast
algorithm to estimate the unknown parameters in the model. However, as with any model
that incorporates a tuning parameter, appropriate tuning of the model can be difficult.

Though the simulation design could be improved upon and manual tuning of the model
is preferred to the use of a quasi-Newton optimization algorithm to “automate” the tuning
process, this simulation study gives us a good picture of the potential advantages of this
model and corresponding algorithm. From the results of the simulation study, we can see
that the model does a very good job at excluding unimportant variables and a decent
job at identifying important variables. It also performs very good covariance estimation
when there are strongly correlated errors. The main drawbacks of this method are that
the tuning of the model can take some time and can be quite sensitive to small changes
in the tuning parameters and that we cannot obtain measures of uncertainty around the
parameter estimates that we obtain. The first drawback of this method can be addressed
by taking the time to carefully tune the model. As for the second drawback, unfortunately,
there exists no easy way to obtain uncertainty measures. In fact, it has been shown that
bootstrap estimates for the standard errors of the lasso estimator are inconsistent [Kyung
et al., 2010]. A Bayesian hierarchical framework could yield both parameter estimates and
uncertainty measures, but might sacrifice the fast computation that a manually-tuned Chen
and Huang algorithm could provide.
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4.1 Future Work

There are several avenues for further investigation that we were not able to pursue due
to time constraints. As mentioned before, a better simulation design could give us more
information about the model’s strengths and weaknesses and may give us some insight into
why the algorithm performs better in the presence of strong correlation. This project did
not investigate the implications of choosing r, the assumed rank of the coefficient matrix.
Misspecification of the rank is subject to a bias-variance trade off in that choosing a low rank
can introduce bias, while choosing a rank that is too high would increase the variance of the
predictions. It is possible that, since we have already incorporated a penalization on the
rows of B and thus on the rows of C, the reduction in variance gained by this penalization
may counteract the increase in variance from choosing too high a rank. It is unclear what the
implications of mis-specifying r would be and thus further investigation would be needed. A
comparison of the performance of this algorithm to a Bayesian hierarchical algorithm could
be another area for future investigation. The overall picture that we get from the simulations
so far is very encouraging. In future simulation studies, it would be interesting to examine
more systematically the performance of the precision-matrix estimator Ω̂ through measures
such as:

• its mean square error: 1
q

∑q
i=1

∑q
j=1,j 6=i(Ω̂ij −Ωij)2, and

• its sensitivity and specificity (as defined by Chen and Huang; i.e., for the sensitiv-
ity, the proportion of non-zero off-diagonal elements that are correctly included and,
for the specificity, the proportion of zero off-diagonal elements that are correctly ex-
cluded.)

This method has many potential applications because of its low computational burden and
its easily interpreted structure. For situations in which the data has high dimensionality
and small sample size, such as in imaging genomics, this method could potentially provide
insight into which variables are important to the model. The application that motivated this
work was an analysis of 56 brain imaging phenotypes and their association with 510 single-
nucleotide polymorphisms (SNPs) in 33 candidate genes for Alzheimer’s disease [Greenlaw
et al., 2016]. In this data, there is spatial correlation in the phenotypes as well as strong
correlation between left- and right-hemisphere versions of phenotypes for the same brain
structure. We expect a sparse set of SNPs to be associated with the imaging phenotypes
based on previous experience with low signal in genetic association studies [Carbonetto and
Stephens, 2012]. We also expect the SNPs within genes to be correlated, thus extensions
of sparse reduced-rank regression that allow for this group structure at the gene level is
another interesting area for future research. Application of this algorithm to the data in
Greenlaw et al. [2016] is a potential avenue for future work.
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Appendix A

R Code

################## main algorithm ################

Algorithm_1 = function(Y,X,l1,l2,r){
# Main algorithm function to perform Cov-SRRR
# Input:
# Y is nxq matrix of responses
# X is nxp matrix of covariates
# l1 is L1 penalty on all of the entries in the precision matrix
# l2 is a real number that controls the row-wise sparsity in B
# r is an integer denoting the assumed rank of the coefficient matrix
# Output: a list contining the following elements
# A - an rxq coefficient matrix
# B - a pxr factor matrix
# O - a qxq precision matrix
svd_x = svd(X)
B = svd_x$v[,1:r] %>% as.matrix(ncol = r)

svd_results = svd(t(Y)%*%X%*%B)
A_tilde = svd_results$u%*%t(svd_results$v)

O = diag(nrow = ncol(Y))

A = solve(chol(O))%*%A_tilde

obj_4_val = obj_fun_4(Y,X,A,B,O,l1,l2)
obj_7_val = obj_fun_7(Y,X,A_tilde,B,O,l2)

obj_4_newval = 10000000
obj_7_newval = 10000000
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B_new = B

max_iter = 100
iter1 = 1
iter2 = 1
iter3 = 1
obj_4_diff = 10000
while(obj_4_diff>0.001 && iter1<max_iter){

# run DP-GLASSO to estimate precision matrix for fixed A,B
Sigma_R = calc_Sigma_R(Y,X,A,B)
dp_results = dpglasso(Sigma = Sigma_R, rho = l1)
O = dp_results$X
obj_7_diff = 10000
while(obj_7_diff>0.001 && iter2<max_iter){

# do SVD to estimate A for fixed B
svd_results = svd(t(Y)%*%X%*%B)
A_tilde = svd_results$u%*%t(svd_results$v)
B_diff = 10000
while(B_diff>0.001 && iter3 < max_iter){

# For fixed A estimate B
for(l in 1:nrow(B)){

# update B row by row
sum_XB = 0
X_l = as.matrix(X[,l])
for(k in 1:nrow(B)){

# calculate summation part of R_l
if(k!=l){

sum_XB = sum_XB + as.matrix(X[,k])%*%t(as.matrix(B[k,]))
}

}
R_l = Y%*%A_tilde - sum_XB
# check whether row of B should be set to zero
check = 1-(l2/(2*(sqrt(sum((t(X_l)%*%R_l)^2)))))
if(check>0){

B_new[l,] = (1/(t(X_l)%*%X_l))%*%check%*%t(X_l)%*%R_l
}else{

B_new[l,] = rep(0,ncol(B))
}

}
#check whether B has converged
B_diff = sum(abs((B_new-B)))
B = B_new
# print(paste("iter3 =", iter3))
iter3 = iter3+1
if(sum(B[,1]==0)==0){

return(list(A = A,B = B,O = O))
}
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}
iter3 = 1
#set A = O^(-0.5)A_tilde
# A = solve(chol(O))%*%A_tilde
#check whether objective function 7 has converged
obj_7_newval = obj_fun_7(Y,X,A_tilde,B,O,l2)
obj_7_diff = (obj_7_val - obj_7_newval)
obj_7_val = obj_7_newval
# print(paste("iter2 =", iter2))
iter2 = iter2+1

}
A = solve(chol(O))%*%A_tilde
iter2 = 1
#check whether objective function 4 has converged
obj_4_newval = obj_fun_4(Y,X,A,B,O,l1,l2)
obj_4_diff = (obj_4_val - obj_4_newval)
obj_4_val = obj_4_newval
# print(paste("iter1 =", iter1))
iter1 = iter1+1

}
# Sigma_R = calc_Sigma_R(Y,X,A,B)
# dp_results = dpglasso(Sigma = Sigma_R, rho = l1)
# O = dp_results$X
return(list(A = A,B = B,O = O))

}

obj_fun_4 = function(Y,X,A,B,O,l1,l2){
# Function to evaluate objective function 4 from Chen and Huang 2016
# Inputs:
# Y is nxq matrix of responses
# X is pxq matrix of covariates
# A is qxr matrix of coefficients
# B is pxr matrix of predictive factors
# O is qxq precision matrix
# l1 is L1 penalty on all of the entries in the precision matrix
# l2 is a real number that controls the row-wise sparsity in B
# Output:
# negative log-likelihood value
n = nrow(Y)
Sigma_R = calc_Sigma_R(Y,X,A,B)
return(sum(diag(Sigma_R%*%O)) - log(det(O)) +

l1*sum(abs(O[row(O)!=col(O)])) + l2*sum(sqrt(B^2)))
}

obj_fun_7 = function(Y,X,A_tilde,B,O,l2){
# Function to evaluate objective function 7 from Chen and Huang 2016
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# Inputs:
# Y is nxq matrix of responses
# X is pxq matrix of covariates
# A is qxr matrix of coefficients
# B is pxr matrix of predictive factors
# O is qxq precision matrix
# l2 is a real number that controls the row-wise sparsity in B
# Output:
# negative log-likelihood value
root_O = chol(O)
# A_tilde = root_O%*%A
Y_tilde = Y%*%root_O
n = nrow(Y)
p = nrow(B)
B_sum = 0
for(j in 1:p){

B_sum = B_sum + sqrt(sum(B[j,]^2))
}
result = (1/n)*sqrt(sum((Y_tilde-X%*%B%*%t(A_tilde))^2)) + l2*B_sum
return(result)

}

calc_Sigma_R = function(Y,X,A,B){
# Function to calculate sample covariance
# Inputs:
# Y is nxq matrix of responses
# X is pxq matrix of covariates
# A is qxr matrix of coefficients
# B is pxr matrix of predictive factors
# Output:
# Sigma_r the sample covariance of the errors as determined by the model
# Y = XBA' + E
n = nrow(Y)
Sigma_R = (1/n)*(t(Y-X%*%B%*%t(A))%*%(Y-X%*%B%*%t(A)))
return(Sigma_R)

}

generate_data = function(n,p,p0,q,rho_e,seed = FALSE){
if(is.numeric(seed)){

set.seed(seed)
}
r = 3
Sigma_x = matrix(nrow = p, ncol = p)
Sigma_e = matrix(nrow = q, ncol = q)

# generate Sigma_x with AR(0.5) structure
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for(i in 1:p){
for(j in 1:p){

Sigma_x[i,j] = 0.5^(abs(i-j))
}

}

X = rmvnorm(n,sigma=Sigma_x)
# generate Sigma_e with AR(rho_e) structure
for(i in 1:q){

for(j in 1:q){
Sigma_e[i,j] = rho_e^(abs(i-j))

}
}

# Generate B matrix first p0 rows from N(0,1) the rest p-p0 rows all 0
data = c(rnorm((p0*r)),rep(0,(p-p0)*r))
B = matrix(data, nrow = p, ncol = r,byrow=T)

# Generate A matrix from N(0,1)
data = rnorm((q*r))
A = matrix(data, nrow = q, ncol = r)

# calculate coefficient matrix from C = BA'
C = B%*%t(A)

# calculate correct sigma^2 factor to ensure 1-to-1 signal to noise ratio
sigma_2 = sum(diag(t(C)%*%Sigma_x%*%C))/(sum(diag(Sigma_e)))

# Generate error matrix
E = rmvnorm(n,sigma = sigma_2*Sigma_e)

# Calculate response Y=XC+E
Y = X%*%C + E
return(list(Y = Y, X = X, A = A, B = B))

}

do_cv = function(params,Y,X,num_folds){

l1 = params[1]
l2 = params[2]
if(length(params)==3){

r = params[3]
}else{

r = 3
}

fold_size = nrow(Y)/num_folds
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fold_err = numeric(length = num_folds)
for(k in 1:num_folds){

Y_in = Y[-c(((k-1)*fold_size+1):(k*fold_size)),]
X_in = X[-c(((k-1)*fold_size+1):(k*fold_size)),]
Y_out = Y[c(((k-1)*fold_size+1):(k*fold_size)),]
X_out = X[c(((k-1)*fold_size+1):(k*fold_size)),]
res = Algorithm_1(Y_in,X_in,l1,l2,r)
fold_err[k] = pred_err(Y_out,X_out,res$A,res$B)
# message(paste(k,"folds done!"))

}
mean_err = mean(fold_err)
# print(paste("MSE:",mean_MSE))
return(mean_err)

}
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