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Abstract

In many areas of applied science the time and space evolution of variables can be naturally

described by differential equation models, which define states implicitly as functions of

their own rates of change. Inference for differential equation models requires an explicit

representation of the states (the solution), which is typically not known in closed form,

but can be approximated by a variety of discretization-based numerical methods. However,

numerical error analysis is not well-suited for describing functional discretization error in a

way that can be propagated through the inverse problem, and is consequently ignored in

practice. Because its impact can be substantial, characterizing the effect of discretization

uncertainty propagation on inference has been an important open problem.

We develop a probability model for the systematic uncertainty introduced by a finite-

dimensional representation of the infinite-dimensional solution of ordinary and partial dif-

ferential equation problems. The result is a probability distribution over the space of pos-

sible state trajectories, describing our belief about the unknown solution given information

generated from the model over a discrete grid. Our probabilistic approach provides a use-

ful alternative to deterministic numerical integration techniques in cases when models are

chaotic, ill-conditioned, or contain unmodelled functional variability. Based on these re-

sults, we develop a fully probabilistic Bayesian approach for the statistical inverse problem

of inference and prediction for intractable differential equation models from data, which

characterizes and propagates discretization uncertainty in the estimation. Our approach is

demonstrated on a number of challenging forward and inverse problems.
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Chapter 1

Introduction

Variables of interest in many physical, chemical, and biological systems evolve over time and

space in a way that is intrinsically linked to their rates of change. Consider, for example, the

concentration of a reagent, such as a toxic compound in the liver, metabolized by reacting

with enzymes into a product. On a molecular level, the rate at which the toxic substance

and the enzymes come into contact depends on their relative concentrations. That is, the

instantaneous rate of change of the concentration is a function of the current concentration

in the system. Another example might be the velocity of an object, such as a meteorite or

re-entering spacecraft, falling in the atmosphere, whose velocity over time is related to its

rate of change, or acceleration.

Differential equations (DEs) provide a convenient modelling framework for describing

the natural dependence of variables on their derivatives. Such models are widely used in the

physical, biological, and social sciences. Frequently, quantities parameterizing DE models

are unknown and interest lies in estimating them from measurement data.

Statistical inference for differential equations is made challenging by the fact that the

variables of interest, or system states, are implicitly defined in terms of their derivatives,

while the data is typically only directly measured on the states. In our metabolism example,

one can only measure concentrations of each compound, and not their rates of change.

Similarly, while acceleration in our physics example can be computed indirectly from the

velocity, we can directly only measure the displacement of a falling object.

Therefore, statistical inference about a DE model requires obtaining its equivalent rep-

resentation in terms of the states alone, also known as the solution of the DE. However,

1



CHAPTER 1. INTRODUCTION 2

solutions in closed form are typically only available for relatively simple systems, requir-

ing modellers to frequently rely on numerical approximations. Pointwise error bounds on

numerical solutions are not well-suited for a probabilistic analysis so that, in practice, dis-

cretization error is ignored for the purposes of inference.

1.0.1 Inference for differential equation models

Consider the problem of inferring unknown parameters θ ∈ Θ, defining a nonlinear DE

model with unknown closed-form solution u(t,θ), t ∈ D , from discretely observed data

y(t), t ∈ DT . The likelihood function Ly(t)

(
u(t,θ)

)
provides a measure of distance between

the data and the model under a given parameter value. As this likelihood depends on the

unknown DE solution, the conventional inference approach substitutes the solution with its

N -dimensional numerical approximation uN (t,θ). Inference then proceeds based on the

approximation,

Ly(t)

(
u(t,θ)

)
≈ Ly(t)

(
uN (t,θ)

)
.

As will be illustrated in this thesis, there are many cases in which the mismatch between the

true DE solution and its discrete approximation uN (t,θ) has a well-defined, non-negligible

structure, leading to serious inferential bias under the conventional inferential approach.

However, this approach remains popular for a number of possible reasons.

1. A satisfactory probability model of discretization uncertainty has been unavailable.

Numerical error analysis is a well-established field studying the accuracy of numer-

ical techniques (see, for example, Butcher, 2008). However, because error estimates

are typically computed pointwise, they are not well-suited for quantifying functional

uncertainty in the solution. Moreover, it is unclear how classical numerical error anal-

ysis can be considered and propagated forward through the inference methodology to

characterize model uncertainty.

2. Incorrect interpretation of a probabilistic uncertainty model. A probabilistic descrip-

tion of the discretization unvertainty for an unknown DE solution represents our

knowledge about the states given a finite-dimensional discretization grid by a distri-

bution over the space of possible trajectories. This can incorrectly be interpreted as a

stochastic model for the deterministic solution itself, which would then be inconsistent
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with the theory of deterministic differential equations.

3. Convenience. Many statistical procedures rely on approximations. When the approx-

imation error is believed to be negligible and not systematic, it may be difficult to

justify adding an additional layer of uncertainty to an already challenging analysis.

The present work develops a probabilistic formalism for describing model uncertainty

resulting from discretization of an unknown DE solution, and naturally incorporates the

associated functional variability into a fully probabilistic inferential framework. We show

that such a probability model can characterize solution uncertainty in a consistent way,

and allows us to distinguish discretization uncertainty from other sources of variability. We

develop efficient Monte Carlo methods to generate approximate samples from posterior dis-

tributions defined by introducing the additional layer of uncertainty associated with model

error in the solution.

1.1 Numerical methods and the role of probability

Solving differential equations, either exactly or approximately, is a critical tool for modelling

in the natural, applied, and social sciences. Despite the availability of pointwise error bounds

for many numerical methods, these are typically assumed negligible for convenience when

doing statistical inference. This approach is not limited to differential equation models.

Indeed, numerical approximations are commonly used in statistical procedures (see, for

example, Lange, 1999), and the associated numerical error is frequently ignored. But should

such approximations be considered from a statistical perspective, or should they remain

firmly in the area of numerical analysis?

1.1.1 History of probability in numerical analysis

The earliest explicit use of probability to address a numerical problem, pointed out in Di-

aconis (1988), was due to Poincaré (1896). Poincaré considered the problem of polynomial

interpolation of a finite number of function evaluations g = [g(t1), . . . , g(tN )] based on a

power series expansion. Uncertainty about the coefficients of the expansion was modelled

through zero-mean Gaussian priors, updated given the function evaluations g. Uncertainty

in the coefficients thus induces a distribution over the space of polynomials. This approach
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predated Gaussian process (GP) regression, but provided an equivalent estimate of the pos-

terior distribution under a specific covariance specification (e.g., Rasmussen and Williams,

2006).

With advances in computational power and sampling methodology, the Bayesian ap-

proach to function estimation became more generally feasible. This led a number of re-

searchers to consider problems of numerical analysis from the point of view of probability

theory. O’Hagan (1992) proposed a Gaussian process based approach to contour estimation

and function interpolation, and consequently quadrature in low-dimensions exploiting the

integrability of GPs. In the last several decades, the Markov chain Monte Carlo (MCMC)

approach (Hastings, 1970; Metropolis and Ulam, 1949) has become a standard way to es-

timate integrals, even in high-dimensional problems when numerical quadrature alone is

infeasible. This feature is very useful because many problems reduce to complex integra-

tion. For example, Doucet et al. (2010) show how to use two types of Monte Carlo methods

to approximate the solution to a class of integral equations. Fredholm equations of the

second kind are restated as high-dimensional integrals via their Von Neumann representa-

tion and estimated from a sample obtained via sequential or reversible-jump Monte Carlo

sampling.

Models defined by differential equations are very flexible and simple to formulate but

often difficult to solve. The challenge, as will be illustrated in this thesis, is that the implicit

dependence between states and their derivatives is typically nonlinear so that the solution

does not reduce to a simple quadrature problem. A very interesting, although not well-

known suggestion in Skilling (1991) considered the question of solving ordinary differential

equation initial value problems by modelling solutions and their derivatives as convolutions

of an underlying latent process that could then be integrated or differentiated as required.

The difference with the problem studied by O’Hagan (1992) is that function evaluations

must be made sequentially from the updated model because of the implicit dependence of

the states on their derivatives.

1.2 Contribution and organization of this thesis

This thesis develops the ideas proposed by Skilling (1991) into a fully usable and widely

applicable framework for solving general classes of analytically intractable ordinary and

partial differential equation problems. We formalize the model and show that these ideas
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can be made computationally feasible, proposing sequential sampling methodologies that

capture fast-changing, or even chaotic, dynamics. For these methods, convergence results

are obtained under relatively mild conditions. Additionally, we investigate methodologies to

make probabilistic solutions more efficient, through the development of recursive algorithm

formulations and statistical step size selection techniques.

Using this probabilistic perspective on the forward problem, we then incorporate the

model uncertainty into a fully probabilistic inferential framework. We design Monte Carlo

algorithms capable of generating samples from posterior distributions for unknown model

parameters and state functions, taking into account the additional hierarchical layer intro-

duced by model uncertainty. Our contribution allows us to characterize and separate model

uncertainty from other sources of error.

The thesis is organized as follows. Chapter 2 provides a basic review of ordinary and par-

tial differential equations (ODEs and PDEs), defining a number of ODE and PDE problems

that often arise in practical applications. We also discuss the types of numerical techniques

available to provide approximate solutions to these problems, and point out cases where

they fail to reasonably approximate the solution due to model error. Chapter 3 formalizes

the Bayesian uncertainty model for unknown univariate ODE solutions, and further extends

this framework to multivariate PDE solutions. The stochastic process model for the un-

certainty in the system states, which we call the probabilistic solution, given a number of

model-based derivative evaluations is shown to have a well-defined density with respect to

the prior measure under some conditions. Then, Chapter 4 develops sequential sampling

strategies that allow us to generate derivative evaluations in a self-consistent model-based

way to build up a picture of the implicitly defined DE solution. Furthermore, this chap-

ter provides techniques and algorithms for sampling functional realizations of the proba-

bilistic solution. Next, Chapter 5 considers the statistical inverse problem of estimating

model parameters and states from measurement data. We develop a Monte Carlo sampling

methodology to obtain realizations of the posterior distribution of the states and the un-

known solution. Chapter 6 describes three important kernel functions, two of which were

specifically designed to model DE solutions with certain properties. We also compute ana-

lytically the pairwise convolutions between each kernel and its integrated version, required

for the computational implementation of our probabilistic algorithm. Finally, Chapter 7

discusses adaptive sequential design for discretizing the domain of integration by optimizing

an information theoretic criterion.



Chapter 2

Background on Differential

Equation Models and Their

Solutions

Differential equations are a class of models that describe the relationship, common in nature,

between system states and their rates of change with respect to one or several, usually spatio-

temporal, variables. In addition to describing the evolution of state variables over time

or space, differential equation models also provide some basic constraints on the states,

to ensure that a finite number of solutions can exist, and to incorporate any additional

information into the model that is known about a particular system.

The versatility of differential equation models, and the variety of dynamics they describe,

is best reviewed by examining a number of model types. Therefore, this chapter briefly

introduces some commonly used ordinary and partial differential equation (ODE and PDE)

problems, and provides examples of their use in modelling real-world phenomena.

The flexibility and intuitive appeal of differential equation models usually comes at a

price, stemming from the difficulty in obtaining an explicit representation of the states, or

solution, that is independent of the derivatives. This chapter gives a broad description of

numerical techniques for obtaining approximate solutions given model parameters for each

of the ODE and PDE problems presented. We also point out situations in which numerical

approximations may give a misleading representation of the true solution.

6
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Throughout this thesis we use examples of differential equation problems which illus-

trate the systematic nature of discretization error, and showcase the probabilistic posterior

solution developed in this work. These models and their interpretation, as well as relevant

references, are provided in this section. We shall refer to the task of solving these sys-

tems, given any parameters or inputs, as the forward problem, which will then be applied

in Chapter 5 to the inverse problem of inferring unknown parameters from data.

2.1 Ordinary differential equation models

Ordinary differential equations (ODEs) describe the relationship between the states (or

dependent variables), u( · ,θ) : [a, b] → RP , and their derivatives, u̇( · ,θ) : [a, b] → RP , with

respect to a single indexing variable (or independent variable), t ∈ [a, b] ⊂ R, which we

shall call “time” for convenience. We refer to P as the dimension of the system. The order

of the system refers to the highest-order derivative in the expression. Nevertheless, ODEs

of order greater than one can be reformulated by defining derivatives as additional states.

Therefore, without loss of generality, we shall consider first order ODE systems, written in

the explicit form:

u̇(t,θ) = fθ
(
t,u(t,θ)

)
, t ∈ [a, b],

where the vector field function, fθ : [a, b]×RP → RP , is fully specified given the inputs (or

model parameters), θ ∈ Θ. The space containing all possible state trajectories is called the

phase space.

For the purposes of modelling real systems, and in order to obtain a finite number of

solutions satisfying the system dynamics, some constraints on the states or derivatives must

be imposed. Broadly speaking, the type of constraints and their relationship to the model

define different classes of ODE problems discussed below.

2.1.1 Initial value problems

Initial value problems (IVPs) are well suited for describing systems that begin at known

initial conditions and evolve according to the dynamics described by the ODE model. Many

problems in the natural sciences are formulated as IVPs, such as the trajectory of a single

object orbiting a large stationary body; the movement of a simple pendulum; atmospheric
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convection; chemical kinetics; and the interaction of animal populations in a predator-prey

system.

Definition 1. A P -dimensional, first-order initial value problem (IVP) in explicit form is

given by: 
u̇(t,θ) = fθ

(
t,u(t,θ)

)
, t ∈ [a, b],

u(a,θ) = ua,

(2.1)

on the interval [a, b], where u( · ,θ) : [a, b] → RP , and fθ : [a, b]× RP → RP .

A unique solution for this system exists under a relatively mild assumption on the vector

field, known as the Lipschitz condition.

Definition 2. Let | · | denote the Euclidian vector norm. A function f : [a, b]× RP → RP

is Lipschitz continuous with respect to the second variable if there exists a constant L < ∞
such that, for any t ∈ [a, b] and u,v ∈ RP , the inequality:

|f (t,u)− f (t,v) | ≤ L|u− v|,

holds.

Roughly, this condition ensures that small deviations between trajectories do not prop-

agate into disproportionately large differences in their respective vector field evaluations.

This allows the use of a result known as the contraction mapping lemma on metric spaces

(e.g. Butcher, 2008, p. 22) to show that a unique solution satisfying (2.1) exists. We refer

the reader to Butcher (2008, p.23) for the proof of the following well-known result.

Theorem 2.1.1. If fθ : [a, b]× RP → RP is Lipschitz continuous in the second argument,

then there exists a unique solution, u(·,θ) : [a, b] → RP , satisfying the initial value problem

(2.1).

Although a unique solution for (2.1) exists under this relatively mild condition, it is

typically not available in closed form. In such cases, modellers rely on numerical integration

(or numerical solution) techniques to provide an approximation to the ODE solution, based

on discretizing the time domain by an ordered partition s = [s1, · · · , sN ] ∈ [a, b]N , where
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each point sn is called a knot. Many widely-used numerical methods are variants of the

approximation obtained by replacing the integrals in the equations:
u(sn+1,θ) = u(sn+1−k,θ) +

∫ sn+1

sn+1−k
fθ
(
t,u(t,θ)

)
dt, k − 1 ≤ n ≤ N,

u(s1,θ) = ua,

(2.2)

with a quadrature rule defined by quadrature weights, {wj}Jj=1, intermediate quadrature

nodes, tj ∈ [sn−k+1, sn+1], 1 ≤ j ≤ J , and step number, k. The result is a set of nonlinear

algebraic equations:
u(sn+1,θ) = u(sn+1−k,θ) +

∑J
j=1wj fθ

(
tj ,u(tj ,θ)

)
, k − 1 ≤ n ≤ N,

u(s1,θ) = ua.

(2.3)

The difficulty in solving system (2.3) lies in the implicit dependence of the vector field,

fθ, on the state, u. For this reason, each subsequent state, u(sn+1,θ), must either be

approximated recursively, or via deterministic nonlinear optimization techniques. By their

nature, such numerical solutions, are deterministic, in the sense that a numerical solver

algorithm, implemented under the same conditions, will always yield the same solution for

a given ODE system.

Algorithms defined with k = 1 steps have no evaluation points within each interval of

integration, [sn, sn+1], so a temporary approximation for u(t) is used to evaluate fθ at the J

quadrature nodes within each interval. After the approximation for u(sn+1,θ) is computed,

these temporary values are discarded. Such methods are called one-step quadrature schemes,

and include the well-known Euler and Runge-Kutta algorithms. Multistep methods allow a

step number of k > 1, so that approximation of u(sn+1,θ) can be based on evaluations of

the vector field, fθ, at k previously computed states, u(sn−k+1,θ), . . . ,u(sn,θ). Examples

of multistep algorithms include the k-step Adams-Bashforth and Adams-Moulton solvers.

For a given discretization grid, s, the quality of the approximation is related to the

choice of quadrature method. Error propagation through the solver occurs largely as a result

of replacing the true solution evaluations with approximations, ũ(s2,θ), . . . , ũ(sn,θ), and

using these to estimate the solution, u(sn+1,θ), at the subsequent grid point. Although this

sequential loss of precision may seem alarming, standard assumptions about the smoothness
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of the vector field typically result in an upper bound on such error propagation.

Collocation approaches are based on a solution approximation via truncated basis ex-

pansion at each grid knot:

ũ(sn+1,θ) =
J∑

j=1

cj ψj(sn+1), 1 ≤ n ≤ N,

with continuously differentiable basis functions, ψj ∈
(
C1
(
[a, b]

))P
, and unknown coeffi-

cients, cj ∈ RP . The coefficients are then obtained by solving the system of N nonlinear

algebraic equations:
∑J

j=1 cj ψ̇j(sn+1) = fθ
(
sn+1, ũ(sn+1,θ)

)
, 1 ≤ n ≤ N,

u(s1,θ) = ua,

usually, by means of a sequential optimization procedure. When bases have a bounded

support on the scale of the discretization size, we have local collocation schemes. A well-

known global collocation scheme (Shu et al., 2003) uses radially symmetric basis functions,

ψj(tk) = ψj

(
|tk − tj |

)
. The formalism presented in this thesis has some similarities with

collocation methods constructed using a basis system of eigenfunctions of a covariance op-

erator.

Understanding the performance of numerical methods is crucial for practitioners and

modellers. This is called error analysis, and includes statements about the convergence of

a particular method to a true unknown ODE solution under some assumptions, as well as

asymptotic rates of convergence. The theorems apply to a sequence of partitions of the

range [a, b] into N intervals, (sn−1, sn], 2 < n ≤ N . The dependence on N of the knots is

supressed in what follows.

Definition 3. A numerical approximation, ũn(t,θ), of the true unknown ODE solution,

u(t,θ), is convergent if it satisfies,

sup
t∈[a,b]

|ũn(t,θ)− u(t,θ)| → 0, as max
n=2,...,N

(
sn − sn−1

)
→ 0,

where | · | is the Euclidian vector norm.
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Proving that this global error tends to zero requires some assumptions about the smooth-

ness of the true solution, typically that it is continuously differentiable on each interval

(sn−1, sn). For linear multistep methods, convergence arguments hold the step number

fixed, but consider the step length (related to the size of the discretization grid) in the limit.

Chaotic systems

The deterministic nature and apparent simplicity of many nonlinear dynamical systems can

nevertheless lead to unpredictable behaviour in the solution. This phenomenon, known as

deterministic chaos, lacks a formal definition but has many characteristic features. Chaotic

systems have time-evolution trajectories that diverge exponentially fast with time following

any small perturbation in the phase space. This feature was first noted in Poincaré (1913,

p. 397), who suggested that prediction for such systems appears to be impossible. The

detailed study of chaos is a recent undertaking, which became possible with computational

advances that allowed for numerical simulation of chaotic systems, starting with the work

of Lorenz (1963) on atmospheric convection using an early computer.

When systems of nonlinear differential equations describe chaotic trajectories, numeri-

cal solutions inherit their extreme sensitivity to perturbations. Hence, numerical methods

produce solutions that can vary immensely with small changes in the discretization grid or

in the choice of numerical solver. As a result, the deterministic solution approximation does

not capture, even on average, the true long-range behaviour of the system. Crucially, this

uncertainty in solving the forward problem leads to challenges for the inverse problem.

Presently, the study of chaos is extremely relevant for modelling a large variety of physical

systems, including laser cavities, chemical reactions, fluid motion, crystal growth, weather

prediction, earthquake dynamics (Baker and Gollub, 1996, chapter 7). In this thesis, we

provide a probabilistic framework for addressing existing issues for such systems. We will

provide examples ranging from the canonical Lorenz system to a model of reaction-diffusion

dynamics, and the classical Navier-Stokes model of turbulent fluid flow.

Lorenz chaotic system

The Lorenz system (Lorenz, 1963) is a canonical example of a chaotic ODE model of greatly

simplified, three-state fluid convection between two moving surfaces of different tempera-

tures. States u, v, and w describe, respectively, the streamflow (a feature of the fluid flow),
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the temperature difference between rising and descending currents, and the nonlinearity

in the temperature difference between surfaces. The model is formulated as a first-order

nonlinear IVP,

u̇(t,θ) = −θ1 u(t,θ) + θ1 v(t,θ), t ∈ [a, b],

v̇(t,θ) = −θ2 u(t,θ)− v(t,θ)− u(t,θ)w(t,θ), t ∈ [a, b],

ẇ(t,θ) = u(t,θ) v(t,θ)− θ3w(t,θ), t ∈ [a, b],

(u(a,θ), v(a,θ), w(a,θ)) = (ua, va, wa),

(2.4)

with dimensionless parameters, θ = (θ1, θ2, θ3) ∈ R3, that represent fluid properties and

the experimental and temperature configuration. We consider the standard choice of pa-

rameters θ = (10, 8/3, 28) in the chaotic regime. In such cases, the flow (state trajectory)

becomes restricted around a three-dimensional bounded region called a strange attractor

(this was shown independently by Afraimovich et al., 1977; Guckenheimer and Williams,

1979; Williams, 1979). Trajectories travel around one of two unstable fixed points, at times

traversing the attractor to the other fixed point. Moreover, neighbouring trajectories diverge

exponentially fast from one another.

The Lorenz IVP has a unique solution whose trajectory lies on a bounded region of

the phase space (e.g., Robinson, 2001, pp. 271-272). However, the solution is not known

in closed form and must be approximated numerically. Although numerical solutions are

by their nature deterministic, qualitative dynamics of the system are nevertheless studied

statistically by introducing artificial perturbations on the numerical solution. For example,

the rate of exponential growth (the Lyapunov exponent) between nearby trajectories can be

estimated statistically using numerical techniques while introducing small changes to the

trajectory over a grid defined along the domain.

As with all chaotic systems, numerical methods fail to capture the long-range effect of

error propagation on the system dynamics due to the severe amplification of truncation

error (e.g., Foias and Temam (2001); Sauer et al. (1997); and, as illustrated in Figure 2.2).

Nevertheless, the importance of computing numerical solutions to such systems lies in the,

often qualitative, study of the dynamics at larger scales of resolution.

Despite the extreme effects of truncation error, numerical solutions of the Lorenz system
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Figure 2.1: Two numerical solutions to the Lorenz IVP (2.4), for each state in the system (top, middle,

bottom rows), computed under almost identical initial conditions. The trajectories correspond to the initial

function (−10,−5, 36) (red), and the initial function perturbed by adding 10−3 (blue). Numerical solutions

were obtained via the ode45 (MATLAB) numerical solver with an error tolerance of 10−4.

have played a central role in the mathematical study of deterministic chaos (e.g., Mischaikow

and Mrozek, 1995). In particular, the existence of a strange attractor for this system was

shown by Tucker (1999) using a computer-assisted proof. Roughly speaking, the proof re-

quired constructing a specialized numerical solver for the Lorenz system that would provide

exact upper bounds on the numerical error at each solver iteration, particularly within

phase space regions where the trajectories are most sensitive to perturbations. However,

computation of error bounds for general chaotic systems is still an active area of research

(see review in Mrozek and Srzednicki, 2010).

2.1.2 Multi-point boundary value problems

The boundary value problem (BVP) imposes constraints on the states at one or more lo-

cations, c = [c1, · · · , cD] ∈ [a, b]D, on the time domain. The method of solution for these

systems varies depending on the form of the constraints. Here we examine two categories of

BVP, depending on whether constraints are specified at the same time locations for some

subset of the system states. It is important to note that BVP constraints often have the form
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of algebraic equations, which we limit in our exposition to the case where each boundary

value is given an explicit value.

Definition 4. The P -dimensional, first-order, multi-point boundary value problem (MP-

BVP) in explicit form is given by:
u̇(t,θ) = fθ

(
t,u(t,θ)

)
, t ∈ [a, b](

u(α)(c1,θ), . . . ,u
(α)(cD,θ)

)
=

(
u
(α)
c1 , . . . ,u

(α)
cD

)
, α ∈ {1, . . . , P} \ ∅,

(2.5)

on the interval [a, b], where u( · ,θ) : [a, b] → RP , and fθ : [a, b]× RP → RP . The notation

u(α) represents some non-empty subset of the P states.

Mixed, or separated, boundary value problems do not have all constraints applied at the

same set of time points across states.

Definition 5. The P -dimensional, first-order mixed boundary value problem (MBVP) with

two constraints is given in explicit form by:
u̇(t,θ) = fθ

(
t,u(t,θ)

)
, t ∈ [a, b],(

u(α1)(a,θ),u(α2)(b,θ)
)

=
(
u
(α2)
a ,u

(α2)
b

)
, αi ∈ {1, . . . , P} \ ∅, α1 ̸= α2,

(2.6)

on the interval [a, b], where u( · ,θ) : [a, b] → RP , and fθ : [a, b]× RP → RP .

In contrast to IVPs, which require relatively mild conditions for existence of a unique

solution, the multiple constraints imposed by BVPs can result in no solutions or multiple

solutions under the same conditions (e.g. Keller, 1968).

Approaches for numerically solving multi-point BVPs fall within two categories: shooting

(or initial value) methods, and the finite differences method. Both approaches begin by

discretizing the time domain over a finite grid. The finite difference method attempts

to solve the fully constrained algebraic equations (2.3) simultaneously. The more popular

shooting methods ignore all the constraints in the system except for the known initial states,

propose values for the unknown initial states, and solve the resulting IVP numerically. Each

proposed initial value is then given a weight corresponding to how well the associated IVP

solution satisfies the remaining boundary conditions. The resulting objective function in
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the unknown state is then optimized numerically (see, for example Keller, 1968), yielding a

single deterministic approximation of the solution, without any indication that additional

solutions may exist. For this reason, the presence of multiple solutions introduces severe

challenges for parameter estimation methods based on deterministic numerical BVP solvers

if the data is inconsistent with the single solution found in the optimization step.

Lane-Emden mixed boundary value problem

It may be difficult to imagine a dynamic system that imposes constraints on the states at

multiple locations along the domain. Indeed, BVPs do not often directly arise in models

of a specific phenomenon, but instead occur when higher-order IVPs are translated to first-

order, or when PDE boundary value problems are reduced to ODE problems via spectral

projection techniques.

As an example, we consider a special case of the Lane-Emden equation, a second-order

IVP which appears in models of gaseous spherical objects, such as stars (Shampine, 2003),

relating pressure scaled relative to central density to its rate of change over distance from

the centre of the object. The Lane-Emden equation is solved by rewriting it as a first order

mixed boundary value problem,
u̇(t,θ) = v(t,θ), t ∈ [a, b],

v̇(t,θ) = −θ1 v(t,θ)
t − θ2 u

5(t,θ), t ∈ [a, b],(
u(b,θ), v(a,θ)

)
=

(
ub, va

)
,

(2.7)

where θ = (θ1, θ2) ∈ R2. When θ2 is a constant with respect to time, this system has a

unique analytical solution on the interval t ∈ [0, 1]. However, multiple solutions may be

possible on a restricted domain of integration. Indeed, numerical approximations of the

solution to the Lane-Emden MBVP on the interval t ∈ [0.5, 1], given parameter values

θ = (2, 1), and boundary conditions
(
ub, va

)
=
(√

3
2 ,−

288
2197

)
, appear to suggest the presence

of two solutions. Each of the numerical solutions shown in Figure 2.2 is obtained using the

bvp4c solver in MATLAB, which employs a shooting technique starting from a user-specified

initial guess for the optimization routine. In the case that multiple solutions approximately

satisfy the system dynamics, the objective function of the shooting algorithm is multimodal
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Figure 2.2: Numerical solutions to the Lane-Emden MBVP with parameters θ = (2, 1) and boundary

conditions
(
ub, va

)
=

(√
3

2
,− 288

2197

)
. The bvp4c (MATLAB) numerical solver was used with two different

starting points: ua ∈ {1, 2}. Two distinct solutions were obtained (red, blue).

in the unknown initial value. Moreover, modes are extremely highly peaked (converging to

removable discontinuities as the step size tends to zero), and may be located relatively far

apart from one another. The optimizer is thus capable of detecting only one mode, and

corresponding single solution, at a time for a given initial guess.

2.1.3 Delay initial function problems

Incorporating time lags into ODE models allows the description of a large class of systems,

such as mechanisms governing gene transcription (Bernard et al., 2006; Lewis, 2003), sig-

nalling pathways (Swameye et al., 2003), and cell kinetics (Busenberg and Tang, 1994).

ODE delay initial function problems (DIFPs) relate state derivatives to both present and

past states, with fixed delays τj ∈ [0,∞).

Definition 6. The P -dimensional, first-order delay initial function probelm (DIFP) is given

in explicit form by:
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u̇(t,θ) = fθ

(
t,u(t,θ),u(t− τ1,θ), . . . ,u(t− τd,θ)

)
, t ∈ [a, b],

u(t,θ) = ϕ(t), t ∈ [a− max
1≤j≤d

τj , a] ,

(2.8)

where u( · ,θ) : [a, b] → RP , fθ : [a, b]× RP → RP , and ϕ : [a− max
1≤j≤d

τj , a] → RP .

DIFP trajectories depend on an infinite-dimensional input function, or history, ϕ, in-

stead of a finite-dimensional initial state. For this reason, DIFPs are considered transitional

models between ODEs, which provide vector-valued constraints, and PDEs, which impose

function-valued constraints at the boundaries of the domain. DIFPs are well-suited to de-

scribing biological and physical dynamics that take time to propagate through systems.

Time delayed components are often used to proxy unmodelled or poorly-understood mech-

anisms that introduce a time lag in the dynamics. Such models can contain additional

functional inputs and yield solutions with periodic discontinuities in the derivative.

We refer the interested reader to Bellen and Zennaro (2003) for an overview of the condi-

tions required for the existence and uniqueness of DIFP solutions, and for a discussion of how

numerical methods approach the variety of challenges associated with such problems. Al-

though numerical DIFP solvers are available, they are sometimes considered unsatisfactory

in applications, as illustrated in Figure 2.3 for a simple system of time-delayed oscillatory

decay. Additional problems arise when the history function is not fully specified, but only

available at a finite number of nodes. In this case, numerical methods rely on interpolation

of the initial nodes, and ignore the uncertainty introduced by replacing ϕ with an approx-

imation. This has potential for impacting the system dynamics even over the short term,

changing the structure of the solution. The following simple example illustrates how this

situation affects the numerical approach.

Delayed oscillatory decay model

As an example, let us consider the simple one-dimensional DIFP,
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u̇(t,θ) = −θ1 u(t− τ,θ), t ∈ [a, b]

u(t,θ) = ϕ(t), t ∈ [a− τ, a],

(2.9)

and consider the model parameters θ = (θ1, τ) = (1, 1). The analytical solution for this

DIFP is obtained by a recursion implemented using the symbolic toolbox in MATLAB.

Let us examine, for comparison, a numerical solution obtained via the dde23 software in

MATLAB when the initial function is only available at a selected number of nodes.

The first row of Figure 2.3 shows the analytical solution to problem (2.9) with fully known

initial function, ϕ(t) = 1, t ∈ [−1, 0]. In this case, the numerical solution undersmooths

the function starting at t = 1 on the domain, although the oscillatory decay dynamics

of the system are such that the solution eventually settles into a trajectory that matches

the true solution well. In the second row of Figure 2.3, we consider the history function,

ϕ(t) = 1 + sin(4πt)
4 , t ∈ [−1, 0], that is only partially specified, without error, over a set

of six nodes. An approximation to the initial function is taken to be the mean of an

interpolating Gaussian process with square exponential covariance structure. Uncertainty

associated with the interpolation is discarded, and the dde23 algorithm is applied to solve

the problem numerically. This results in severe deviations from the true solution, even for

this very stable system.

2.2 Partial differential equation models

Partial differential equation (PDE) models describe the evolution of a variable implicitly as

a function of its rates of change with respect to multiple indexing variables. PDE models

are ubiquitous in the applied sciences, where they are used to study a variety of phenomena,

from animal movement, to the propagation pattern of a pollutant in the atmosphere.

2.2.1 Initial boundary value problems

PDE boundary value problems (PDE BVPs) relate the state to its rates of change with

respect to multiple variables, under a constraint imposed at the boundary of the domain

D ⊂ Rq+1.
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Figure 2.3: Top: analytical (black) and numerical (red) solution to the DIFP (2.9) with fully-specified

initial function ϕ(t) = 1, t ∈ [−1, 0]. Bottom: analytical (black) solution to the DIFP (2.9) with initial

function ϕ(t) = 1 + sin(4πt)
4

, t ∈ [−1, 0]. The numerical solution (red) is obtained for the same system with

only a partially specified initial function, given without error at a set of six knots (circled in red).
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Definition 7. The P -dimensional PDE boundary value problem (PDE BVP) in implicit

form is given by:
Fθ

(
x, t,Du(x, t,θ), D2u(x, t,θ), . . . , Dku(x, t,θ)

)
= 0, (x, t) ∈ D ,

u(x, t,θ) = uB(x, t), (x, t) ∈ ∂D ,

(2.10)

where D ⊂ Rq+1 is the domain with boundary ∂D , x ∈ Rq is a vector of spatial coordinates,

and u( · ,θ) : D → RP is the state. The operator D is defined as:

Dαu(x, t,θ) =
∂|α|u(x, t,θ)

∂tα0 ∂x(1)
α1 . . . ∂x(q)

αq
= ∂tα0 ∂x(1)

α1
. . . ∂x(q)

αq
u(x, t,θ),

using the multi-index notation, |α| = α0, . . . , αq.

Existence of solutions for PDE boundary value problems is a vast area, and we refer

the reader to Jost (2012) for an introduction to this topic. Methods for numerically solving

PDE BVPs of this type typically begin by discretizing the spatial derivatives using algebraic

approximations. Finite difference approximations for the partial derivatives relate the state

of the PDE at neighbouring spatial discretization nodes to one another. The more precise

spectral methods project the functions defining the PDE onto a finite-dimensional subspace

of the space of solution trajectories. More precisely, spectral methods provide a global

approximation in terms of basis functions ψk ∈
(
C1
(
[a, b]

))P
:

ũm(xm, t,θ) =

Nt∑
j=1

bj ψj(xm, t), 1 ≤ m ≤ Nx,

with coefficients bj ∈ RP . Substituting this representation into the PDE, and projecting on

the bases, yields a system of Nt × Nx coupled ODEs which, given associated constraints,

can then be solved by one of a number of numerical methods, such as those described in the

previous section.
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Kuramoto-Sivashinsky nonlinear PDE

The Kuramoto-Sivashinsky (KS) PDE is a model of reaction-diffusion systems (Kuramoto

and Tsuzuki, 1976; Sivashinsky and Michelson, 1980), originally used to describe phenom-

ena, such as laminar flame fronts, driven far from equilibrium by instabilities. This model

is also of mathematical interest because it exhibits temporal chaotic dynamics. Just as

with the Lorenz system, we point out that numerical solutions do not provide a sensible

approximation of this system’s long-range behaviour.

The KS system is a one-dimensional, nonlinear PDE BVP describing the time evolution

of the intensity of a flame front, u, by,


∂
∂tu(x, t,θ) = −u(x, t,θ) ∂

∂xu(x, t,θ)−
∂2

∂x2u(x, t,θ)− ∂4

∂x4u(x, t,θ), (x, t) ∈ D

u(x, a,θ) = uB(x) (x, t) ∈ ∂D .

(2.11)

Following Kassam and Trefethen (2005), we consider the spatio-temporal domain D =

[0, 32π] × [0, 150]. Figure 2.4 shows two numerical solutions of the Kuramoto-Sivashinsky

BVP under two nearly identical initial functions: uB(x) = cos
(

x
16

) {
1 + sin

(
x
16

)}
, and

uB(x) = cos
(

x
16

) {
1 + sin

(
x
16

)}
+10−2. Numerical trajectories were obtained by transform-

ing (2.11) to a 128-dimensional system of ODEs via spectral projection on the Fourier space.

The resulting stiff ODE initial value problem was solved numerically with a fourth-order

Runge-Kutta scheme while using an exponential time-differencing transformation at each

algorithm iteration (see, for example, Kassam and Trefethen, 2005). Figure 2.4 illustrates

that small differences in the initial function become amplified over time, resulting in sub-

stantially different dynamics over the second half of the domain. Discretization uncertainty

along the domain likely has a similarly disruptive effect on the solution, which however

cannot be studied using a deterministic numerical solution approximation.

Navier-Stokes model of fluid dynamics

The Navier-Stokes system is a fundamental model of fluid dynamics, incorporating laws of

conservation of mass, energy and linear momentum, as well as physical properties of the

fluid over a domain under constraints imposed along the boundaries. It is used to describe
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Figure 2.4: Top view of a numerical solution of the Kuramoto-Sivashinsky PDE boundary value problem

on the domain D = [0, 32π] × [0, 150]. The numerical solution on the left was obtained under the initial

function uB(x) = cos
(

x
16

) {
1 + sin

(
x
16

)}
, while the numerical solution on the right was obtained under the

initial function uB(x) = cos
(

x
16

) {
1 + sin

(
x
16

)}
+ 10−2.

a variety of phenomena from the flow of water around a bridge beam to the movement of

air around the wing of an aircraft. Therefore it is an important component of complex

models in oceanography, weather, atmospheric pollution, and glacier movement. Despite

its extensive use, the dynamics of Navier-Stokes models are poorly understood at small

time-scales, where they can give rise to turbulence (chaotic dynamics).

The Navier-Stokes PDEs models the time evolution of P components of the velocity,

u : D → RP , of an incompressible fluid on a spatial domain X . The Navier-Stokes BVP on

the spatio-temporal domain D = X × T is defined by:



∂
∂tu− θ1∆u+

(
u · ∇

)
u = f−∇p, (x, t) ∈ D ,

∇ · u = 0, (x, t) ∈ D ,∫
u(j) dx = 0, (x, t) ∈ D , j = 1, 2,

u = uB, (x, t) ∈ X × {0}.

(2.12)

The model is parameterized by the viscosity of the fluid, θ1 > 0; the pressure function



CHAPTER 2. DIFFERENTIAL EQUATION MODELS 23

p : D → R, and the external time-homogeneous forcing function f : X → R. We consider

a domain defined by a 2-dimensional torus X = [0, 2π) × [0, 2π), expressed in spherical

coordinates. We further assume periodic boundary conditions, and viscosity θ1 = 1× 10−3

in the turbulent regime.

Often, the quantity of interest is the local spinning motion of the incompressible fluid,

called vorticity, which we will define as,

ϖ(x, t,θ) = −∇× u(x, t,θ),

where clockwise rotation corresponds to positive vorticity. This variable will be used to

better visualize the solution of the Navier-Stokes system by reducing the two components

of velocity to a one-dimensional function.



Chapter 3

A Probability Model for the

Unknown Solution and its

Derivative

This chapter introduces a probability model for the functional uncertainty associated with

estimating an unknown DE solution from a finite number of model evaluations. Such an idea

was first considered informally by Skilling (1991), although with little practical success. In

this chapter we translate this insight into a formal framework, and show that the resulting

probability model is well-defined under standard assumptions for general univariate and

multivariate solutions.

Section 3.1 reviews some fundamental notions required for defining measures on general

Hilbert spaces (our focus in this thesis will be the L2(D) Hilbert space of square integrable

functions). In Section 3.2, we introduce the proposed probabilistic model for the uncertainty

in the unknown DE solution. We first define a prior measure on the space of solutions and

then provide an informal derivation of the posterior measure given a set of noisy derivative

realizations. In Section 3.3 we show that this probability measure is indeed well-defined and

absolutely continuous with respect to the prior measure.

24
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3.1 Review of selected measure theoretic concepts

A model of functional uncertainty in the solution of differential equations requires defining

convenient measures on (infinite-dimensional) spaces of functions of specified smoothness.

In this section, we provide a selected review of some relevant measure theoretic concepts

and define the probability measures that we will work with in this thesis. For an in-depth

overview of this subject, we refer the reader to Lifshits (1995), Stuart (2010), and references

therein. This section assumes familiarity with the basics of function space theory, for which

we refer the reader to Megginson (1998).

3.1.1 Radon measures on Hilbert spaces

We restrict1 our attention specifically to measures defined on Hilbert spaces.

Definition 8. A Hilbert space (H, || · ||) is a complete vector space, whose norm, || · ||,
is defined by its inner product ⟨·, ·⟩. Moreover, a Hilbert space that admits a countable

orthonormal basis is called separable.

We will hereafter refer to this space simply as H and omit the vector norm from the

notation. A useful separable Hilbert space that we will work with is the L2(D) space of

square integrable functions on the compact closed set D ⊂ Rq+1.

Definition 9. The space L2(D) includes all functions f : D → R such that
∫
D f

2 (x) dx <

∞, and has inner product:

⟨f, g⟩ =
∫

D
f(x) g(x) dx, f, g ∈ L2(D).

The above definition applies to real functions. There are corresponding definitions of

Hilbert spaces in which the scalar field is the set of complex numbers. We will use them

without further comment.

Throughout this thesis we will consider the underlying probability space, (H,A, µ0),
where H is a Hilbert space with associated norm || · ||; A is a σ-algebra of subsets of H; and

µ0 is a probability measure defined on the measure space (H,A). We further restrict our

1Results for more general Banach spaces are sometimes required. We refer the reader to Stuart (2010)
for a more general review in the Banach space setting.
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attention to the class of Radon measures, which have desirable topological properties, and

avoid certain pathologies (e.g., Lifshits, 1995).

Definition 10. A Radon measure on H is a measure µ such that,

µ(A) = sup
{
µ(B)|B ⊂ A,B compact

}
, A ∈ A.

These include Gaussian measures on finite and infinite-dimensional Hilbert spaces (Billings-

ley, 1968). We will also use the notions of absolute continuity and the Radon-Nikodym

Theorem:

Definition 11. Let µ and µ0 be two measures defined on the same measure space, (H,A).

Then µ is absolutely continuous with respect to µ0 if µ0(A) = 0 implies µ(A) = 0 for A ∈ A.

Theorem 3.1.1 (Radon-Nikodym Theorem). Let µ and µ0 be two measures defined on

the same measure space, (H,A). If µ is absolutely continuous with respect to µ0 and µ0 is

σ-finite, then there exists an A-measurable function f : H → [0,∞] such that,

µ(A) =

∫
A
f(x) dµ0(x), ∀A ∈ A.

The function f(x) is denoted by dµ
dµ0

(x) and is called the Radon-Nikodym derivative of

µ with respect to the reference measure µ0, or informally, the density. When H is finite-

dimensional, the Lebesgue measure is a useful standard reference measure. However, the

Lebesgue measure is not defined when H is infinite-dimensional (see, for example, Kuo,

1975). In these cases, the Gaussian measure, which exists on infinite-dimensional spaces, is

a convenient choice.

3.1.2 Preliminaries

Appropriate choice of positive definite covariance functions for our model will require con-

sideration of their properties, including stationarity and isotropy.

Definition 12. A function K : D × D → R that induces an operator on a Hilbert space H

of functions defined on D via Kg(t) =
∫
K(t, t̃)g(t̃)dt̃, g ∈ H, is called positive semidefinite

if ⟨g,Kg⟩ ≥ 0. Moreover, if the function also satisfies the condition that ⟨g,Kg⟩ = 0 iff

g = 0, it is called positive definite.
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Note for the space of interest L2(D), the (necessary and sufficient) condition for positive

semidefiniteness can be written as,

∫
D

∫
D K(t, t̃) g(t) g(t̃) dµ(t) dµ(t̃) ≥ 0, ∀ g ∈ L2(D),

with respect to the measure µ. For positive definiteness, this integral must also equal zero

iff g = 0.

Definition 13. A function K : D × D → R is called stationary if it can be written as a

function of the difference between its arguments:

K(t, t̃) = g(t− t̃).

Furthermore K is isotropic if it can be written as function of the normed difference between

its arguments,

K(t, t̃) = g(|t− t̃|).

3.1.3 The Gaussian measure

In this thesis, we will consider continuously-indexed Gaussian processes, where the indexing

variable can be any element of an uncountable set D ⊂ Rq+1.

Definition 14. A Gaussian process {h(d, ω) : d ∈ D , ω ∈ Ω} is a mapping D×
(
Ω,A, P

)
→

R such that h(·, ω) ∈ H, distributed according to a Gaussian measure on
(
H,B(H)

)
, where

B(H) is the Borel sigma algebra of subsets of H.

Therefore, we will sometimes refer to the Gaussian process {h(d) : d ∈ D}, omitting

dependence on ω, as a random function with samples h : D → R ∈ H, having Gaussian

measure. The Gaussian measure on an infinite-dimensional Hilbert space is characterized

by the joint distribution of any finite-dimensional realization.

Definition 15. A measure µ defined on
(
H,B(H)

)
is Gaussian if for any finite set of

indices, d = [d1, · · · , dN ] ∈ DN , the vector h = [h(d1), · · · , h(dN )] ∈
(
H∗)N , where H∗ is

the dual space of linear functionals of H, is distributed according to a multivariate Gaussian

measure, NN

(
m, C

)
, where m ∈ RN is the mean vector and C ∈MN (R) is a positive definite

covariance matrix.
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The mean and covariance of a measure on H are defined as follows.

Definition 16. Let H be a Hilbert space of functions. The mean of a measure µ on (H,A)

is a function m ∈ H such that for all h ∈ H,

m =

∫
H
h(x)dµ(x),

which we denote by Eh. The covariance of µ is a linear operator C : H → H such that for

all k, ℓ ∈ H

C = E (k −m)⊗ (ℓ−m),

where ⊗ is the tensor product.

Importantly, given a mean and covariance operator, we can uniquely describe a Gaussian

process.

Theorem 3.1.2. A Gaussian process is uniquely defined by its mean and covariance oper-

ator.

Next, we present an important theorem that will allow us to show that the conditional

unknown DE solution and its derivative, as defined in the next section, exist and are dis-

tributed according to a Gaussian measure.

Theorem 3.1.3 (e.g., Stuart, 2010). Let H = H1⊕H2 be a separable Hilbert space, and let(
h1, h2

)
∈ H1 ⊕H2 be a Gaussian random variable with mean m =

(
m1,m2

)
and positive

definite covariance operator C. Then the conditional distribution of h1 given h2 is well-

defined, Gaussian with mean and covariance operator:

m = m1 + C12C−1
22 (h2 −m2) ,

C = C11 − C12C−1
22 C21,

where the cross-covariances are defined as Cij = E (hi −mi)⊗ (hj −mj).
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3.2 Model for the probabilistic solution and its derivative

We wish to construct a probability model describing our uncertainty about an unknown

infinite-dimensional solution of a differential equation problem reconstructed from a finite-

dimensional vector of evaluations generated from the model. Such a probabilistic represen-

tation requires modelling solution uncertainty as a measure defined on a suitable probability

space. From a modelling perspective, care must be taken in describing this as a model of our

knowledge about the system given available information, rather than of any stochasticity

inherent in the deterministic DE model. This characteristic is a familiar one in the field

of Bayesian statistics, where distributions on unknown quantities are used to describe their

uncertainty relative to the observer.

We begin by considering a univariate ODE solution u ∈ H on the domain D ⊂ R, and
then extend the result for multivariate PDE solutions. We restrict our attention to solutions

on the space H =
(
L2(D)

)P
, noting that the model can be extended to more general Hilbert

spaces. Employing Gaussian distributional assumptions throughout allows us to obtain a

closed form expression for the posterior distribution of the solution and its derivative. It is

certainly possible to make alternative distributional assumptions, which will introduce the

need for an additional layer of Monte Carlo draws from the posterior distribution, as we

will see in Chapter 4.

3.2.1 Univariate solution model

Suppose that there exists an unknown function, or functions, u(·,θ) : D → RP satisfying

a general ODE problem (e.g., 2.1, 2.5, 2.6, or 2.8). The vector field fθ and parameters θ

are fully specified, and any constraints, such as initial or boundary conditions, are provided

without error. From this we can usually obtain full or partial a priori information about

the smoothness of the solution. We can also make a judgement about whether multiple

solutions are possible, such as in the case of mixed boundary value problems, and, in some

cases, the exact number of solutions. This information will be encoded in the prior measures

on the solution and its derivative, which will then be updated based on a set of derivative

realizations generated from the model.

For exposition, we have made the simplifying assumption that the P solution states are

mutually independent, so that cross-covariances between states in our model may be set to

zero and the analysis can proceed sequentially over each dimension. Indeed, an analogous
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assumption commonly underlies classical numerical methods. However, our probabilistic

approach can straightforwardly incorporate dependence between states by modelling the

derivatives via dependent Gaussian process priors (see, for example, Boyle and Frean, 2005).

Derivative realizations

Let us consider a discrete grid, or mesh, defined by the partition s1:n = [s1, · · · , sn]T ∈ Dn

of the domain D = [a, b] ⊂ R. Suppose also that we are able to obtain n realizations,

f1:n = [f1, · · · , fn]T ∈ Mn,P
(
R
)
, of the random function describing our knowledge of the

derivative. Assume the following Gaussian error model:

f1:n | u̇(s1,θ), . . . , u̇(sn,θ) ∼ Nn

(
[u̇(s1,θ), . . . , u̇(sn,θ)]

T,Λn

)
, (3.1)

where Λn ∈
(
Mn(R)

)P
is a positive definite covariance matrix.

Solution derivative

Next, define a Gaussian prior measure for the time derivative of the solution function,

u̇(·,θ) ∼ µf0 = N (mf
0 , C

f
0 ), (3.2)

on the measure space
(
L2
(
[a, b]

)P
,A
)
with mean function and covariance:

mf
0(t) = ℓ(t), (3.3)

Cf
0 (t, t̃) = α−1

∫
RRλ(t, z)Rλ(t̃, z)dz ≡ RR(t, t̃). (3.4)

The prior mean function, ℓ : [a, b] → RP , contains any information about the shape of

the derivative that is known a priori2. The covariance operator, Cf
0 , is defined in terms

of a kernel function, Rλ : D × R → RP , chosen in such a way that the eigenfunctions of

Cf
0 form a basis for the space containing the derivative of the true solution. The function

Rλ is positive definite and square integrable in each input, and scaled by the length-scale

hyperparameter, λ ∈ (0,∞)P , and the prior precision hyperparameter, α ∈ (0,∞)P . We use

the notation RR = RKR∗ to denote the operator obtained by a convolution of R with its

2Practically speaking, if we have some prior knowledge of the derivative dynamics, encoding them in the
prior mean function will, in general, require using fewer model evaluations than would otherwise be necessary
to obtain a reliable estimate of the solution.
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adjoint, R∗ weighted by K = α−1. For convenience, we will often omit from the notation

the dependence on auxiliary parameters, Ψn = [α, λ,R, s1:n], associated with the derivative

model.

Let us use the subscript n to indicate an update based on n derivative realizations, f1:n.

Informally, updating the prior derivative measure (3.2) using model derivative realizations

distributed according to (3.1) yields the Gaussian predictive posterior measure,

u̇(·,θ) | f1:n,ua ∼ µfn = N
(
mf

n, Cf
n

)
, (3.5)

on the probability space
(
L2
(
[a, b]

)P
,A, µf0

)
with mean and covariance:

mf
n(t) = mf

0(t) + RR(t, s1:n)
(
Λn +RR(s1:n, s1:n)

)−1(
f1:n −mf

0(s)
)
, (3.6)

Cf
n(t, t̃) = RR(t, t̃)− RR(t, s1:n)

(
Λn +RR(s1:n, s1:n)

)−1
RR(s1:n, t̃). (3.7)

This notation will be convenient when we consider a sequential algorithm for sampling

derivative realizations in the next chapter.

It is useful to note here that the posterior distribution (3.5) in the derivative space takes

the form of the well-known Gaussian process regression model (see, for example, Rasmussen

and Williams, 2006).

Solution state

We can now obtain a model of the solution, u(·,θ) : D → RP , by taking the corresponding

integrated Gaussian prior measure:

u(·,θ) ∼ µ0 = N (m0, C0), (3.8)

on the measure space
(
L2
(
[a, b]

)P
,A
)
with mean and covariance:

m0(t) = ua +
∫ t
a ℓ(z)dz, (3.9)

C0(t, t̃) = α−1
∫
RQλ(t, z)Qλ(t̃, z)dz ≡ QQ(t, t̃), (3.10)

where Qλ(t, z) =
∫ t
a Rλ(x, z)dx is the integrated scaled kernel, and ua is the initial condition

of the differential equation. The mean function m0 can be used to enforce boundary con-

ditions and constraints, as will be shown in Chapter 4. Informally, the resulting posterior
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measure for the solution of the differential equation follows as,

u(·,θ) | f1:n,ua ∼ µn = N
(
mn, Cn

)
, (3.11)

on the probability space
(
L2
(
[a, b]

)P
,A, µ0

)
with mean function and covariance:

mn(t) = m0(t) + QR(t, s1:n)
(
Λn +RR(s1:n, s1:n)

)−1(
f1:n −mf

0(s1:n)
)
, (3.12)

Cn(t, t̃) = QQ(t, t̃)−QR(t, s1:n)
(
Λn +RR(s1:n, s1:n)

)−1
RQ(s1:n, t̃). (3.13)

Hence, under the Gaussian prior specification and Gaussian error model, we have a

closed form representation of the posterior distribution of the solution state and of its

derivative. All that remains for conveniently evaluating their realizations is a closed form

representation of RR,RQ,QR,QQ : [a, b] × [a, b] → RP . These are provided in Chapter 6

for three illustrative types of kernel function.

3.2.2 Multivariate solutions

Having defined a probability model for the uncertainty in an unknown ODE solution, we

can now examine the case of PDE solutions of the form u(·,θ) : D → RP on the domain

D ⊂ Rq+1, q > 0. We will consider Gaussian processes indexed by a spatio-temporal variable

d = [x, t]T ∈ Rq+1 with partition defined by the mesh with vertices s1:n ∈ Dn. As before,

we define a Gaussian prior distribution on the derivative function u̇(·,θ) and update it

given derivative realizations f1:n. We define the mean function as before, but assume tensor

product (multiplicative) kernel functions in each dimension,

Rλ(d, d̃) =

q+1∏
i=1

Rλ(i)(d(i), d̃(i)),

where λ ∈ Rq+1 is a vector of length-scales, and the notation, d(i), denotes the ith element

of the vector d. Indeed, a multiplicative kernel greatly simplifies the analysis, as we are able

to compute the required convolutions exactly as follows:

RR(d, d̃) = α−1
∫
Rq+1 Rλ(d, z)Rλ(d̃, z)dz

= α−1

∫
Rq+1

q+1∏
i=1

Rλ(i)(d(i), z(i))

q+1∏
i=1

Rλ(i)(d̃(i), z(i)) dz(i)
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= α−1
q+1∏
i=1

∫
R
Rλ(i)(d(i), z(i))Rλ(i)(d̃(i), z(i)) dz

= α−1
q+1∏
i=1

RRλ(i)(d(i), d̃(i)),

and, similarly,

RQ(d, d̃) = α−1
q+1∏
i=1

RQλ(i)(d(i), d̃(i)),

QR(d, d̃) = α−1
q+1∏
i=1

QRλ(i)(d(i), d̃(i)),

QQ(d, d̃) = α−1
q+1∏
i=1

QQλ(i)(d(i), d̃(i)).

One important requirement for obtaining the correct covariances is to properly parameterize

the domain D in order to evaluate each of the bivariate convolutions involving Qλ(i) over

the correct intervals D (1), . . . ,D (q+1).

Probabilistic Posterior Solution

We will hereafter use the term probabilistic solution to refer to the random function dis-

tributed according to the posterior measure (3.11) defining our belief about the unknown

differential equation solution given a set of noisy realizations of the derivative.

Definition 17. The probabilistic solution of a PDE problem, given n realizations of the

derivative, refers to the random function,

u(·,θ) |θ, f1:n,ua,Ψn ∈
(
L2
(
D ; (Ω,A, P )

))P
, (3.14)

distributed according to (3.11). For notational convenience, we shall sometimes denote the

probabilistic solution by un(·,θ), and its derivative by u̇n(·,θ).

Therefore, we now have a probability statement describing DE solution uncertainty at
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any finite set of time points, d = [x, t]T ∈ R(q+1)×T , conditioned on an approximate finite-

dimensional solution estimated using an n-dimensional mesh s:

p
(
u(d,θ)

∣∣θ, f1:n,ua,Ψn

)
= NT

(
mn(d), Cn(d,d)

)
. (3.15)

The next section provides technical details about the above informal derivation, and

shows that the posterior measures presented above are indeed well-defined.

3.3 The probabilistic solution is well-defined

In this section, we justify the claim that the conditional distribution of the DE solution

given n derivative evaluations is well-defined, and that it has density dµn/dµ0 with respect

to the prior measure µ0.

Theorem 3.3.1. Consider the model presented in Section 3.2 and let ℓ : D → RP and

Rλ : Rq+1 × Rq+1 → RP be deterministic, square integrable functions. The probabilistic

solution un (·,θ) and its derivative u̇n (·,θ) are well-defined and distributed according to

(3.11) and (3.5), respectively.

Proof. Without loss of generality, we restrict our attention to solutions of dimension P = 1

on a univariate domain, D = [a, b] ⊂ R. Consider the space F = L2 (R; (H,A, µ0)) and

let F∗ denote the dual space of linear functionals of F . Define, for all u ∈ F and v ∈
F∗, the following linear continuous operators. Define R : F → F∗ to be the integral

transform, Ru(t) =
∫∞
−∞Rλ(t, z)u(z)dz, and let R∗ : F∗ → F be its adjoint, R∗v(t) =∫∞

−∞Rλ(z, t)v(z)dz. Similarly, define Q : F → F∗ to be the integral transform, Qu(t) =∫∞
−∞Qλ(t, z)u(z)dz, and let Q∗ : F∗ → F denote its adjoint, Q∗v(t) =

∫∞
−∞Qλ(z, t)v(z)dz.

Consider the white noise process ζ(t) ∈ F , distributed as,

ζ ∼ N (0,K),

with mean 0 and covariance K(t, t̃) = δt(t̃) α
−1. Next, model the derivative of the solution

by the integral transform:

u̇(t,θ) = mf
0(t) + Rζ(t), (3.16)
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defined for all ζ ∈ F and t ∈ [a, b]. Then, the differential equation solution model is obtained

by integrating u̇(t,θ) with respect to t:

u(t,θ) = m0(t) + Qζ(t). (3.17)

We are interested in the conditional distribution of the state u(·,θ) − m0 ∈ F∗ and

derivative u̇(·,θ)−mf
0 ∈ F∗ given a vector of n noisy derivative evaluations, f1:n−mf

0(s1:n) ∈
Rn, on a grid defined by s1:n ∈ [a, b]n under the Gaussian error model:

f1:n −mf
0(s1:n) = Rζ(s1:n) + η(s1:n),

where η(s1:n) ∼ Nn(0,Λn) is independent of ζ, and Λn ∈ Mn(R) is a positive definite matrix.

Now consider the vector [u̇(·,θ)−mf
0 , f1:n−m

f
0(s1:n)] = [Rζ,Rζ(s1:n)+η(s1:n)] ∈ F∗⊕Rn,

where the first element is function-valued and the second element is a vector-valued. This

vector is jointly Gaussian with mean M = (0,0) and covariance operator C with positive

definite (see Chapter 6) cross-covariance operators:

C11 = RKR∗ C12 = RKR∗

C21 = RKR∗ C22 = RKR∗ + Λn. (3.18)

Since both F∗ and Rn are separable Hilbert spaces, it follows from Theorem 3.1.3 that the

random variable [u̇(·,θ)−mf
0 |f1:n −mf

0(s1:n)] is well-defined and distributed according to a

Gaussian measure with mean and covariance:

E
(
u̇(·,θ)−mf

0

∣∣ f1:n −mf
0(s1:n)

)
= C12C

−1
22 (f1:n −mf

0(s1:n)),

Cov
(
u̇(·,θ)−mf

0

∣∣ f1:n −mf
0(s1:n)

)
= C11 − C12C

−1
22 C21.

Similarly, we consider the vector [u(·,θ)−m0, f1:n−mf
0(s1:n)] = [Qζ,Rζ(s1:n)+η(s1:n)] ∈

F∗ ⊕ Rn, with mean M = (0,0) and cross-covariances:

C11 = QKQ∗ C12 = QKR∗

C21 = RKQ∗ C22 = RKR∗ + Λn.
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By Theorem 3.1.3, the conditional distribution of [u̇(·,θ) − mf
0 |f1:n − mf

0(s1:n)] is a well-

defined Gaussian distribution with mean and covariance:

E
(
u(·,θ)−m0

∣∣ f1:n −mf
0(s1:n)

)
= C12C

−1
22 (f1:n −mf

0(s1:n)),

Cov
(
u(·,θ)−m0

∣∣ f1:n −mf
0(s1:n)

)
= C11 − C12C

−1
22 C21.

Furthermore, µn and µ̇n are absolutely continuous with respect to the corresponding

prior Gaussian measures µ0 and µf0 , and therefore the Radon-Nikodym derivatives dµn/dµ0

and dµfn/dµ
f
0 exist.

Extension to multivariate solutions follows straightforwardly under tensor product ker-

nels, defined in Section 3.2.2. Extension to solutions of dimension P > 1 is immediate

for mutually independent states. Dependence between states can be incorporated through

dependent Gaussian priors, and requires more cumbersome notation.

The posterior distribution of the derivative function is a Gaussian process, and the

posterior distribution of the state is its integrated version. Therefore, we can obtain the

distribution of any finite number T of sample evaluations on d ∈ DT by Definition 15. The

conditional density of the state evaluated at d is jointly Gaussian,

p
(
u(d,θ)

∣∣ f1:n −mf
0(s1:n),ua,Ψn

)
= NT

(
mn (t) , Cn (d,d)

)
,

where mn and Cn are defined in (3.13). Similarly, the conditional density of the derivative

computed at d becomes,

p
(
u̇(d,θ)

∣∣ f1:n −mf
0(s1:n),ua,Ψn

)
= NT

(
mf

n (d) , Cf
n

(
d,d

))
.

where mf
n and Cf

n are defined in (3.7). As a consequence, estimation only requires a finite

number of matrix operations if the convolutions RR, QR, RQ, and QQ can be obtained

analytically (see Chapter 6).

Equation (3.15) suggests the probabilistic solution can be utilized as an alternative to

a numerical solution approximation and associated error analysis, with prediction replacing

deterministic interpolation. There just remains the question of how to obtain noisy eval-

uations of the derivative. In the following chapter we provide a detailed description of a

suitable probabilistic algorithm and show that it has desirable properties.



Chapter 4

Probabilistic Solution of

Differential Equations

In Chapter 3, we presented a Gaussian process model for the DE solution given a finite-

dimensional set of realizations, f1:n = [f1, · · · , fn]T ∈ Mn,P
(
R
)
, of the derivative process

over the discrete mesh with vertices s1:n = [s1, · · · , sn]T ∈ Dn. In this chapter we show

how to generate realizations, f1:n, from the model when the solution and its derivative

are unknown. Based on this sequential approach, we develop probabilistic solutions for

P -dimensional ODE problems (2.1), (2.5), (2.6), and (2.8), as well as the P -dimensional

PDE boundary value problem (2.10). For each case, we outline a sampling algorithm for

generating realizations from the joint density of the predicted state, u(t,θ), t ∈ DT and

vector field evaluations, f1:N ,

p
(
u(t,θ), f1:N

∣∣θ,ua,ΨN

)
= p
(
u(t,θ)

∣∣f1:N ,θ,ua,ΨN

)
p
(
f1:N

∣∣θ,ua,ΨN

)
, (4.1)

where the two terms on the right hand side represent the probability density of the proba-

bilistic solution and the auxiliary vector of field evaluations, respectively. We also suggest

a recursive formulation of the proposed algorithms, which introduces computational effi-

ciencies, provides intuitive insight about iterative updating, and is used to show that the

probabilistic solution of a Lipschitz-continuous ODE initial value problem is consistent for

the unique solution satisfying the system under standard regularity conditions. Finally, we

illustrate our methodology through a number of challenging forward problems described in

37
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Chapter 2.

4.1 Solving ODE initial value problems

Our goal is to generate a sequence of derivative realizations, f1:N , upon which we may

condition our inference of the solution of a system of differential equations. Moreover,

we must generate f1:N in a completely model-based way, without the availability of any

experimental measurements of the states, or any prior knowledge of the true solution or

suitable approximation. As hinted in the introduction, we may consider these realizations

to be auxiliary variables that extract information from the model sequentially.

4.1.1 Generating derivative realizations from the model

Suppose that at time step (n + 1), 1 ≤ n < N , we have access to n derivative realizations,

f1:n, corresponding to the ordered knots s1:n. Conditioned on these, and according to the

model presented in Chapter 3, we can obtain a closed form predictive distribution µn for the

solution that admits sampling. We then generate a realization, ũn

(
sn+1,θ

)
, of the solution

state at the next defined knot sn+1 and map the realization to the derivative space by using

the vector field transformation,

fn+1 = fθ
(
sn+1, ũ(sn+1,θ)

)
.

In a fundamental difference with numerical solvers, our model accounts for the fact that the

derivative realization fn+1 is measured with error (arising from using a previously estimated

state). Indeed, we are able to incorporate this uncertainty into each subsequent posterior

solution by parameterizing the error model (3.1) for fn+1 using the variance Cf
n(sn+1, sn+1).

We can now update the estimated state given the newly generated derivative observation,

fn+1, and update the covariance of the error model (3.1) as follows:

Λn+1 = diag
(
Cf
0 (s1, s1), . . . , C

f
n(sn+1, sn+1)

)
. (4.2)

Once all N derivative realizations are obtained, we can make predictions about any of the

P solution states at an arbitrary collection of evaluation points, t ∈ DT . This procedure

is described in Algorithm 1 for the ODE initial value problem (2.1), using the notation
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...

ua

..

f1 = fθ
(
a,ua

)

..

ũ1(s2,θ)

..

f1:2 = [f1, fθ
(
s2, ũ1(s2, θ)

)
]

. . . ..

. . .

..

ũN−1(sN ,θ)

..

f1:N = [f1:N−1, fθ
(
sN , ũN−1(sN , θ)

)
]

..

uN (t,θ)

Figure 4.1: Directed acyclic graph diagram for Algorithm 1, producing a sample from the probability

density p
(
uN (t,θ), f1:N

∣∣θ,ua,ΨN

)
. The grey nodes represent values that are returned by the algorithm,

and all others are discarded.

mn and Cn defined in (3.12, 3.13). We characterize the error in the derivative realizations

by defining the covariance matrix Λn in terms of the variance of the step-ahead predictive

posterior density for the derivatives as shown in (4.2). This algorithm is also illustrated

graphically in Figure 4.1.

In Section 4.1.4 we will show that the sequential probabilistic solution generated via

Algorithm 1 is consistent for the unique solution satisfying the IVP (2.1). The recursive

formulation used in the proof, which allows efficient implementation of Algorithm 1, is

developed in Section 4.1.3.

Probabilistic solution of the Lorenz system

Figure 4.2 shows 100 realizations from the probabilistic solution of the Lorenz system with

model parameters θ = (10, 8/3, 28) and initial states ua = (−11,−5, 38). The probabilistic

solution is obtained by discretizing the interval t ∈ [0, 30] by an equally-spaced grid of size

N = 3000. The squared exponential covariance is chosen for this application based on our

assumption that the solution is infinitely-differentiable. We set the length-scale in each

dimension to twice the step size, effectively giving largest weight to the latest generated

derivative realization. The prior precision is set to the low value of α = 10−2 [1, 1, 1]T units,

reflecting our prior knowledge that the system exhibits chaotic dynamics.
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Algorithm 1 Sample a probabilistic IVP solution from p
(
u(t,θ), f1:N

∣∣θ,ua,Ψn

)
Initialize f1 = fθ(a,ua) and C0(s1, s1) = 0 ;

for step number n = 1 : N − 1 do

for state p = 1 : P do

Sample step-ahead realization ũ(p)(sn+1,θ) from the predictive distribution for state

p,

ũ(p)(sn+1) ∼ p
(
u(p)(sn+1,θ)

∣∣θ, f (p)1:n,ua,Ψn

)
= N

(
m(p)

n (sn+1), C(p)
n (sn+1, sn+1)

)
;

end for

Compute next derivative observation with mean fn+1 = fθ(sn+1, ũ(sn+1,θ)) and vari-

ance Cf(p)
n (sn+1, sn+1);

end for

for state p = 1 : P do

Sample a realization, u(p)(t,θ), of the solution from the conditional distribution for

state p at the chosen points t ∈ [a, b]T ,

u(p)(t,θ) ∼ p
(
u(p)(t,θ)

∣∣θ, f (p)1:N ,ua,Ψn

)
= N

(
m

(p)
N (t), C(p)

N (t, t)
)
;

end for

Return u(t,θ), f1:N .
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Figure 4.2: Sample of 100 realizations from the probabilistic solution for the Lorenz system under a fixed

initial state.

4.1.2 Relationship with numerical solvers

Interestingly, many classical numerical solvers can be interpreted from this probabilistic

perspective. Instead of providing a probability measure on the a space of functions, they

instead yield a functional point estimate of the DE solution. This can be achieved by

Rao-Blackwellizing the probabilistic solution at each step of Algorithm 1,

un(sn+1) = E
(
u(·,θ) |θ, f1:n,ua,Ψn

)
,

while assuming noise-free derivative realizations f1:n, by letting Λn = 0 for all 1 ≤ n ≤ N .

Under these assumptions, the probabilistic solver becomes a k-step numerical radial basis

function quadrature method with bases given by the eigenfunctions of the covariance C0.
The number of steps is determined by the length-scale1. Using covariance functions with

unbounded support results in a more general multi-step solver, which gives positive weight

to all past derivative realizations, with weights decaying towards zero at rates that depend

1for example, under a covariance function with bounded support of length 2λ and fixed step size h, the
number of steps in the algorithm becomes k = ⌈λ/h⌉.
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on the choice of covariance.

4.1.3 Recursive formulation of probabilistic solution

In this section we introduce two results. Lemma 4.1.1 provides a recursive formulation for

the probabilistic solution of the IVP (2.1) generated via Algorithm 1. This lemma is an

important part of the proof of consistency in Section 4.1.4. The related result in Lemma

4.1.2 allows us to avoid computationally expensive matrix inversions in the algorithmic

implementation.

We denote the probabilistic solution and its derivative obtained after n solver iterations

by un(t,θ) and u̇n(t,θ) respectively, and derivative realizations by:

f1:n =
[
fθ
(
a,ua

)
, fθ
(
s2, ũ1(s2,θ)

)
, · · · , fθ

(
sn, ũn−1(sn,θ)

)]T
,

where ũn(t,θ) denotes a realization of the probabilistic solution un(t,θ) at time t ∈ D .

Lemma 4.1.1. The probabilistic IVP solution and its derivative at the nth iteration of

Algorithm 1 can be expressed in terms of the mean and covariance computed in the (n−1)st

iteration. They are related by the expressions:

mn(t) = m0(t) +mn−1(t) + (fn −mf
0(sn)−mf

n−1(sn))
∫ t
a C

f
n−1(x, sn)dx/2C

f
n−1(sn, sn)

mf
n(t) = mf

0(t) +mf
n−1(t) + (fn −mf

0(sn)−mf
n−1(sn)) C

f
n−1(t, sn)/2C

f
n−1(sn, sn)

Cn(t, v) = Cn−1(t, v)− Cn−1(t, sn) Cn−1(sn, v)/2Cf
n−1(sn, sn)

Cf
n(t, v) = Cf

n−1(t, v)− Cf
n−1(t, sn) C

f
n−1(sn, v)/2C

f
n−1(sn, sn).

Furthermore, the matrix B−1
n = (Λn + RR(s1:n, s1:n))

−1 can be written in block form in

terms of B−1
n−1 (row and column indices are denoted in brackets),

B−1
n(1:n−1,1:n−1)

= B−1
n−1

(
2Cf

n−1(sn, sn) + RR(s1:n−1, sn)RR(sn, s1:n−1)B
−1
n−1

)
/2Cf

n−1(sn, sn)

B−1
n(1:n−1,n)

= −B−1
n−1RR(s1:n−1, sn)/2Cf

n−1(sn, sn)

B−1
n(n,1:n−1)

= −RR(sn, s1:n−1)B
−1
n−1/2C

f
n−1(sn, sn)

B−1
n(n,n)

= 1/2Cf
n−1(sn, sn),

starting from B−1
1 = 1/RR(s1, s1) and Cf

0 (s1, s1) = 0.



CHAPTER 4. PROBABILISTIC SOLUTION OF DIFFERENTIAL EQUATIONS 43

Proof. We use the fact that Bn is a non-negative symmetric partitioned matrix to write its

inverse in the block form:

B−1
n ≡ (Λn +RR(s1:n, s1:n))

−1 =

 Bn−1 RR(s1:n−1, sn)

RR(sn, s1:n−1) Cf
n−1(sn, sn) + B1


−1

=
1

2Cf
n−1(sn, sn)

B−1
n−1

(
2Cf

n−1(sn, sn) + RR(s1:n−1, sn)RR(sn, s1:n−1)B
−1
n−1

)
−B−1

n−1RR(s1:n−1, sn)

−RR(sn, s1:n−1)B
−1
n−1 1

 ,
(see for example, Rohde, 1965), starting with the base case:

B−1
1 =

(
Cf
0 (s1, s1) + RR(s1, s1)

)−1
= 1/RR(s1, s1).

Using this and the definition of the mean and covariance of the probabilistic solution and

its derivative obtained in Section 3.2, we obtain the expressions,

mn(t) = m0(t) + QR(t, s1:n−1)B
−1
n−1(f1:n−1 −mf

0(s1:n−1))

+
{
QR(t, s1:n−1)B

−1
n−1RR(s1:n−1, sn)RR(sn, s1:n−1)B

−1
n−1(f1:n−1 −mf

0(s1:n−1))

−QR(t, sn)RR(sn, s1:n−1)B
−1
n−1(f1:n−1 −mf

0(s1:n−1))

−QR(t, s1:n−1)B
−1
n−1RR(s1:n−1, sn)(fn −mf

0(sn))

+ QR(t, sn)(fn −mf
0(sn))

}
/2Cf

n−1(sn, sn)

= mn−1(t) + (fn −mf
0(sn)−mf

n−1(sn))
∫ t
a C

f
n−1(x, sn)dx/2C

f
n−1(sn, sn),

mf
n(t) = m0(t) + RR(t, s1:n−1)B

−1
n−1(f1:n−1 −mf

0(s1:n−1))

+
{
RR(t, s1:n−1)B

−1
n−1RR(s1:n−1, sn)RR(sn, s1:n−1)B

−1
n−1(f1:n−1 −mf

0(s1:n−1))

− RR(t, sn)RR(sn, s1:n−1)B
−1
n−1(f1:n−1 −mf

0(s1:n−1))

− RR(t, s1:n−1)B
−1
n−1RR(s1:n−1, sn)(fn −mf

0(sn))

+ RR(t, sn)(fn −mf
0(sn))

}
/2Cf

n−1(sn, sn)

= mf
n−1(t) + (fn −mf

0(sn)−mf
n−1(sn)) C

f
n−1(t, sn)/2C

f
n−1(sn, sn),
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Cf
n(t, v) = RR(t, v)− RR(t, s1:n−1)B

−1
n−1RR(s1:n−1, v)

− RR(t, s1:n−1)B
−1
n−1RR(s1:n−1, sn)RR(sn, s1:n−1)B

−1
n−1RR(s1:n−1, v)/2Cf

n−1(sn, sn)

+ RR(t, sn)RR(sn, s1:n−1)B
−1
n−1RR(s1:n−1, v)/2Cf

n−1(sn, sn)

+ 2Cf
n−1(sn, sn)RR(t, s1:n−1)B

−1
n−1RR(s1:n−1, sn)RR(sn, v)/2Cf

n−1(sn, sn)

− RR(t, sn)RR(sn, v)/2Cf
n−1(sn, sn)

= Cf
n−1(t, v)− Cf

n−1(t, sn) C
f
n−1(sn, v)/2C

f
n−1(sn, sn),

Cn(t, v) = QQ(t, v)−QR(t, s1:n−1)B
−1
n−1RQ(s1:n−1, v)

−QR(t, s1:n−1)B
−1
n−1RR(s1:n−1, sn)RR(sn, s1:n−1)B

−1
n−1RQ(s1:n−1, v)/2Cf

n−1(sn, sn)

+ QR(t, sn)RR(sn, s1:n−1)B
−1
n−1RQ(s1:n−1, v)/2Cf

n−1(sn, sn)

+ QR(t, s1:n−1)B
−1
n−1RR(s1:n−1, sn)RQ(sn, v)/2Cf

n−1(sn, sn)

−QR(t, sn)RQ(sn, v)/2Cf
n−1(sn, sn)

= Cn−1(t, v)− Cn−1(t, sn) Cn−1(sn, v)/2Cf
n−1(sn, sn).

Lemma 4.1.2. The step-ahead predictive probabilistic solution at the nth step can be ob-

tained by using the recursion,

mn(sn+1) = m0(sn+1) +mn−1(sn+1)

+ (fn −mf
0(sn)−mf

n−1(sn))
∫ sn+1

a Cf
n−1(x, sn)dx/2C

f
n−1(sn, sn)

Cf
n(sn+1, sn+1) = Cf

n−1(sn+1, sn+1)− (Cf
n−1(sn+1, sn))

2/2Cf
n−1(sn, sn),

starting with the base case:

B−1
1 = 1/RR(s1, s1),

Cf
1 (s2, s2) = RR(s2, s2)− RR(s2, s1) B

−1
1 RR(s1, s2),

m1(s2) = m0(s2) +QR(s2, s1) B
−1
1 (f(s1,ua)−mf

0(s1)).
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Proof. The proof follows by directly applying Lemma 4.1.1 and using the fact that the

Gaussian measure is uniquely defined by its mean and covariance (see Theorem 3.1.2).

Computational considerations

The iterative smoothing step in Algorithm 1 requires inverting the n × n matrix, Bn, for

every 1 ≤ n ≤ N , which quickly becomes computationally expensive. Therefore we rec-

ommend avoiding costly matrix inversions by instead updating the matrix inverse, B−1
n , at

each iteration via Lemmas 4.1.1 and 4.1.2 using output obtained in the previous algorithm

iteration. Additionally, computational efficiency can further be increased by using bounded

support kernel functions, which render the Toeplitz matrix RR(s1:n, s1:n) sparse, reducing

the number of matrix operations required for the inversion of Bn.

For a fixed grid s and given hyperparameters, α and λ, the inverse matrix B−1
n and the

derivative covariance matrix Cf
n(sn+1, sn+1) may be stored and reused when many evalua-

tions of Algorithm 1 are required2 (e.g., when evaluating the posterior distribution of model

parameters θ from observed data).

4.1.4 Posterior consistency

We have described how to infer the unknown solution to the initial value problem (2.1) with

Lipschitz-continuous vector field fθ : [a, b] × RP → RP , based on derivative information

generated sequentially from the model. We now show that the resulting probabilistic solution

converges in L1 to the true solution satisfying (2.1). The result is obtained for the case of

IVPs, but also extends to the probabilistic solutions of ODE and PDE problems that are

based on Algorithm 1, which will be presented in the following sections.

Theorem 4.1.3. The probabilistic solution obtained using Algorithm 1 for the initial value

problem (2.1) on [a, b] with Lipschitz continuous vector field fθ : [a, b]×Rp → Rp, converges

in L1 to the unique solution satisfying (2.1) if the solution is continuously differentiable

and its derivative lies in the function space spanned by the eigenfunctions of the covariance

operator Cf
0 .

2The reader is also referred to the related discussion of ensemble MCMC in Neal (2011) for sampling from
mixture distributions while viewing function evaluations as “fast” parameters.
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Proof. For clarity of exposition, we assume that m0(t) = 0 for all t ∈ [a, b], and define

h = maxn=2,...,N

(
sn − sn−1

)
to be the maximum step length. We would like to show that

the integrated Gaussian process {un(t,θ), t ∈ [a, b]}, or probabilistic solution, is a consistent

estimator of the solution when the vector f1:n is built up sequentially using Algorithm 1

as h → 0 and λ, α−1 =
(
o(h)

)P
. Solution updates are constructed using the recurrence

derived in Lemma 4.1.1, where the mean update is the expected difference between the

forward predicted derivative at the nth knot and the corresponding vector field evaluation,

multiplied by the scaled cross-covariance
Cf
n−1(t,sn)

2Cf
n−1(sn,sn)

. If we further consider the case of

interpolation, the scaled cross-covariance becomes
Cf
n−1(t,sn)

Cf
n−1(sn,sn)

.

Assume that the true solution u(·,θ) is continuously differentiable on [a,b]. Then, if

the probabilistic solution un−1(·,θ) is mean-square differentiable on [a,b], we can write the

difference between the expected probabilistic solution and the true solution in terms of their

Taylor expansions around sn (assuming bounded remainders):

E (un(t,θ)− u(t,θ))

= E

[{
un(sn,θ)− u(sn,θ)

}
+ (t− sn) ·

{
u̇n(sn,θ)− fθ

(
sn,u(sn,θ)

)}
+O(h2)

]
= E

[
un−1(sn,θ) +

{
fθ
(
sn,un−1(sn,θ)

)
− u̇n−1(sn,θ)

} Cn−1(sn, sn)

Cf
n−1(sn, sn)

− u(sn,θ)

+ (t− sn) ·
[
u̇n−1(sn,θ) +

{
fθ
(
sn,un−1(sn,θ)

)
− u̇n−1(sn,θ)

} Cf
n−1(sn, sn)

Cf
n−1(sn, sn)

− fθ
(
sn,u(sn,θ)

)]
+O(h2)

]
= E

[
un−1(sn,θ)− u(sn,θ) +

{
fθ
(
sn,un−1(sn,θ)

)
− u̇n−1(sn,θ)

} Cn−1(sn, sn)

Cf
n−1(sn, sn)

+ (t− sn) ·
[
fθ
(
sn,un−1(sn,θ)

)
− fθ

(
sn,u(sn,θ)

)]
+O(h2)

]
, (4.3)

where we have used the recursion from Lemma 4.1.1 to rewrite un(sn,θ) and u̇(sn,θ). Since

(un(t,θ) − u(t,θ)) is a normal random variable, its absolute value follows a folded normal

distribution (see, for example, Leone et al., 1961) with mean,

E
∣∣un(t,θ)− u(t,θ)

∣∣ (4.4)
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= E
(
un(t)− u(t,θ)

){
1 + 2Φ

(
E(un(t)− u(t,θ))√

Cn(t, t)

)}
+

√
2

π
Cn(t, t) exp

{
−E(un(t,θ)− u(t,θ))2

2Cn(t, t)

}
,

where Φ is the cdf of the standard normal distribution. Then we can bound the expected

absolute difference as follows:

βn(t) ≡ E
∣∣un(t,θ)− u(t,θ)

∣∣
≤ |E(un(t,θ)− u(t,θ))|+

√
2C1(t, t)

≤ βn−1(sn) + |t− sn| · E
∣∣fθ(sn,un−1(sn,θ)

)
− fθ

(
sn,u(sn,θ)

)∣∣
+ E

∣∣fθ(sn,un−1(sn,θ)
)
− u̇n−1(sn,θ)

∣∣Cn−1(sn, sn)

Cf
n−1(sn, sn)

+
√

2C1(t, t),

where we have used equation (4.4), then equation (4.3) together with Jensen’s inequality.

The Lipschitz continuity of f and the fact that the expected value of
∣∣fθ(sn,un−1(sn,θ)

)
−

u̇n−1(sn,θ)
∣∣ is bounded then implies:

βn(t) ≤ βn−1(sn) + L|t− sn|βn−1(sn) +O

(
Cn−1(sn, sn)

2Cf
n−1(sn, sn)

)
+O(

√
C1(t, t))

= βn−1(sn) (1 + L|t− sn|) +O(h2),

Now we apply the Gronwall Lemma and the standard transformation used in the proofs of

convergence for one-step methods (see, for example, Butcher, 2008, p.67-68) to obtain the

inequality:

βn(t) ≤


β0(s1) + hB(t− a), L = 0,

exp{(t− a)L}β0(s1) + exp{(t− a)L− 1}hB/L, L > 0,

where B is the constant upper bound on all the remainders. This expression tends to 0 as

α−1, λ, h → 0, since β0(s1) = 0. Then, taking the expectation of βn(t) with respect to the

vector of derivative realizations, we obtain:

Ef
∣∣un(t,θ)− u(t,θ)

∣∣ = Ef
[
E{|un(t,θ)− u(t,θ)|}

]
→ 0, as α−1, λ, h→ 0,

and the probabilistic solution un(·,θ) is consistent for u(·,θ).
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To those who are familiar with the convergence arguments used in numerical analysis,

the assumption that auxiliary parameters, λ and α−1, associated with the solver should

tend to zero with the step size may seem unclear. However, this assumption is analogous

to maintaining a constant number of steps in a k-step numerical method regardless of the

step size.

4.2 Solving ODE Boundary value problems

We begin this section by describing our probability model for the unknown solution of the

mixed boundary value problem (2.6). We then use a variant of this method to obtain and

sample from the probabilistic solution of the two-point boundary value problem (2.5).

Mixed boundary value problems require a different probabilistic solver formulation from

the probabilistic IVP, as well as some care about the sampling algorithm. For the purpose

of exposition, we restrict our attention to the MBVP (2.6) with P = 2 states, and boundary

values
(
u(2)(b,θ),u(1)(a,θ)

)
=
(
u
(2)
b ,u

(1)
a

)
. Estimating the solution for this problem can

be reduced to (i) estimation of the initial value for the second state, u(2)(a,θ), followed by

(ii) estimation of the system solution given ũ(2)(a,θ). We note that the second stage is

equivalent to solving an IVP with initial condition, u(a,θ) =
(
u
(1)
a , ũ(2)(a,θ)

)
, where we

again make the simplifying assumption that the states, u(i)(·,θ), i = 1, 2, are conditionally

independent given vector field evaluations, to write,

u(·,θ)
∣∣ f1:N , [u(1)

a , ũ(2)(a,θ)],Ψn ∼ N1

(
mn, Cn

)
,

where mn and Cn are defined in (3.12, 3.13), and the derivative realizations are,

f1:n =
[
fθ
(
a, [u(1)

a , ũ(2)(a,θ)]T
)
, fθ
(
s2, ũ1(s2,θ)

)
, · · · , fθ

(
sn, ũn−1(sn,θ)

)]T
,

where ũn(t,θ) denotes a sampled realization of the probabilistic solution, un(t,θ), of the

IVP obtained by setting u(a,θ) = [u
(1)
a , ũ(2)(a,θ)], while ignoring the endpoint constraint,

u(2)(b,θ) = u
(2)
b .

We propose to address the first part of the problem by treating the known boundary

value, u
(2)
b , of the second state, as a data point obtained from the model, with the following
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likelihood:

u
(2)
b | f1:N , [u(1)

a , ũ(2)(a,θ)],Ψn ∼ N1

(
mn(b), Cn(b, b)

)
, (4.5)

where the predictive variance of the probabilistic solution at the endpoint boundary, Cn(b, b),
is interpreted analogously to an endpoint mismatch tolerance in the numerical setting. The

prior measure on the unknown second initial state, u(2)(a,θ), depends on our knowledge

about the system3.

We can now write the posterior distribution of the states, based on a mesh of size N , as

follows:

[
u(·,θ)

∣∣ f1:N , [u(2)
b ,u(1)

a ],ΨN

]
∝
[
u
(2)
b | f1:N , [u(1)

a , ũ(2)(a,θ)],ΨN

] [
u(·,θ)

∣∣ f1:N , [u(1)
a , ũ(2)(a,θ)],ΨN

]
[
f1:N

∣∣ [u(1)
a , ũ(2)(a,θ)],ΨN

] [
ũ(2)(a,θ)

]
. (4.6)

In contrast to the case of IVPs, the MBVP probabilistic solution distributed according

to (4.6) will typically not be available analytically. However, any number of samples from

it may be obtained via Monte Carlo. In fact, we can easily evaluate the likelihood (4.5) of

the endpoint constraint of the first state, and the prior distribution on the unknown second

initial state, while the second and third factors of the expression (4.6) can be obtained by

forward-simulation from Algorithm 1.

Algorithm 2 describes the basic Metropolis-Hastings procedure for sampling from the

probabilistic solution (4.6). An important consideration for solving MBVPs probabilistically

is to sample efficiently from possibly multimodal posteriors in the initial value. In fact,

MBVPs often have multiple solutions, whose number may not be known a priori. In such

cases, there may be several disjoint regions of the state space where functions obey the DE

model dynamics approximately. This multimodality in (4.5) translates into a multimodal

posterior probabilistic solution, as shown on the left side of Figure 4.3. Therefore, we

recommend using a population MCMC scheme, such as parallel tempering (Geyer, 1991),

which can quickly identify and explore disjoint regions of high posterior probability.

3For example, if we know that the endpoint is equally likely to lie within a certain interval, we may use
a uniform prior on that interval. Otherwise, a prior distribution with unbounded support should be used.
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Algorithm 2 Draw K realizations from the probabilistic mixed BVP solution

p
(
u(t,θ), f1:N

∣∣ θ, (u(2)
b ,u

(1)
a

)
,ΨN

)
Initialize ũ(2)(a,θ),u(t,θ), f1:N ;

for iteration k = 1 : K do

Propose ũ(2)⋆(a,θ) ∼ q(ũ(2)⋆(a,θ)|ũ(2)(a,θ));

Conditionally simulate solution u⋆(t,θ) and vector field realizations f⋆1:N from the den-

sity p
(
u⋆(t,θ), f⋆1:N

∣∣ θ, (u(1)
a , ũ(2)⋆(a,θ)

)
,ΨN

)
via Algorithm 1;

Compute:

ρ
(
ũ(2)(a,θ),u(t,θ), f1:N → ũ(2)⋆(a,θ),u⋆(t,θ), f⋆1:N

)
=
q(ũ(2)⋆(a,θ)|ũ(2)(a,θ))

q(ũ(2)(a,θ)|ũ(2)⋆(a,θ))

p(ũ(2)⋆(a,θ))

p(ũ(2)(a,θ))

p
(
u
(2)
b | f⋆1:N , [u

(1)
a , ũ(2)⋆(a,θ)],ΨN

)
p
(
u
(2)
b | f1:N , [u(1)

a , ũ(2)(a,θ)],ΨN

) ;

if min
{
1, ρ
}
> U[0, 1] then

Update ũ(2)(a,θ) = ũ(2)⋆(a,θ);

Update u(t,θ) = u⋆(t,θ);

Update f1:N = f⋆1:N ;

end if

Return u(t,θ), f1:N .

end for
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Next, let us consider the related question of solving a two-point boundary value problem

(2.5) on the domain D = [a, b]. For expositional simplicity, we consider a boundary value

problem with one constraint located at each boundary of the domain for each of at most

M < P states,
(
u(i)(a,θ),u(i)(b,θ)

)
=
(
u
(i)
a ,u

(i)
b

)
, i = 1, . . . ,M4.

We again treat the known boundary values, u
(1)
b , . . . ,u

(M)
b , as data points obtained from

the model, assumed independent with likelihood,

u
(1)
b | f1:N , [u(1)

a , . . . ,u(M)
a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN ∼ N1

(
m

(1)
N (b), C(1)

N (b, b)
)
,

...

u
(M)
b | f1:N , [u(1)

a , . . . ,u(M)
a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN ∼ N1

(
m

(M)
N (b), C(M)

N (b, b)
)
,

The posterior distribution of the states, based on a mesh of size N , differs from (4.6) and

has the form:

[
u(·,θ)

∣∣ f1:N , {u(i)
a ,u

(i)
b }i=1,...,M ,ΨN

]
∝
[
u
(2)
b | f1:N , [u(1)

a , . . . ,u(M)
a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN

]
[
u(·,θ)

∣∣ f1:N , [u(1)
a , . . . ,u(M)

a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN

]
[
f1:N

∣∣ [u(1)
a , . . . ,u(M)

a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN

] [
ũ(2)(a,θ)

]
. (4.7)

Realizations from this posterior distribution can be obtained via Algorithm 3.

Probabilistic solution of the Lane-Emden mixed boundary value problem

We illustrate the probabilistic solution of a MBVP by solving the Lane-Emden model de-

scribed in the introduction. Our goal is to obtain a Monte Carlo estimate of the unknown

initial state u(a,θ) and the associated probabilistic solution for the system (2.7). As ex-

plained above, we treat the given boundary value ub as a single data sample, with Gaussian

observation error centered at the mean of probabilistic solution on t = b. The unknown ini-

tial state ũ(a,θ) is assigned a Gaussian prior with a mean of 1.5 and a standard deviation

of 2
∣∣ub−va∣∣. The probabilistic solver in this example uses a squared exponential covariance

4Note that the order of the states can be permuted without loss of generality.
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Algorithm 3 Draw K realizations from the probabilistic two-point BVP solution

p
(
u(t,θ), f1:N

∣∣ θ, {u(i)
a ,u

(i)
b }i=1,...,M ,ΨN

)
Initialize {ũ(i)(a,θ)}i=M+1,...,P ,u(t,θ), f1:N ;

for iteration k = 1 : K do

Propose ũ(i)⋆(a,θ) ∼ q(ũ(i)⋆(a,θ)|ũ(i)(a,θ)), i =M + 1, . . . , P ;

Conditionally simulate u⋆(t,θ) and vector field realizations f⋆1:N from the density

p
(
u⋆(t,θ), f⋆1:N

∣∣ θ, [u(1)
a , . . . ,u

(M)
a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN

)
via Algorithm 1;

Compute:

ρ
(
{ũ(i)(a,θ)}i=M+1,...,P ,u(t,θ), f1:N → {ũ(i)⋆(a,θ)}i=M+1,...,P ,u

⋆(t,θ), f⋆1:N
)

=
P∏

i=M+1

q(ũ(i)⋆(a,θ)|ũ(i)(a,θ))

q(ũ(i)(a,θ)|ũ(i)⋆(a,θ))

p(ũ(i)⋆(a,θ))

p(ũ(i)(a,θ))

p
(
u
(i)
b | f⋆1:N , [u

(1)
a , . . . ,u

(M)
a , ũ(M+1)⋆(a,θ), . . . , ũ(P )⋆(a,θ)],ΨN

)
p
(
u
(i)
b | f1:N , [u(1)

a , . . . ,u
(M)
a , ũ(M+1)(a,θ), . . . , ũ(P )(a,θ)],ΨN

) ;

if min
{
1, ρ
}
> U[0, 1] then

Update ũ(i)(a,θ) = ũ(i)⋆(a,θ), i =M + 1, . . . , P ;

Update u(t,θ) = u⋆(t,θ);

Update f1:N = f⋆1:N ;

end if

Return u(t,θ), f1:N .

end for
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Figure 4.3: Sample of 100 probabilistic solution realizations for states u(·,θ) (left, above) and v(·,θ) (left,
below); the estimated marginal unnormalized log-density of the unknown initial state ua (right).

to model the solution on a grid of N = 100 equally-spaced solver knots. The length-scale

is set to twice the step size and the prior precision is 1 unit. The left side of Figure 4.3

shows a sample from the probabilistic solution and identifies two high-density regions cor-

responding to distinct solutions. The right side of Figure 4.3 shows the estimated marginal

unnormalized log-density of the unknown initial state ua, highlighting two distinct regions

of the state space where solutions may exist.

4.3 Solving ODE delay initial function problems

In this section, we outline a probabilistic solution method for the fixed delay initial function

problem (2.8). For notational clarity, we consider a delay initial function problem with a

single non-zero delay τ . We begin by partitioning the domain of integration, D = [a, b], into

I = ⌈(b− a)/τ⌉ intervals of length τ and define the mesh,

si =
[
si1, · · · , siN

]
, i = 0, . . . , I,
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si1 = a+ τ(i− 1), siN = a+ τi, i = 0, . . . , I,

with s =
[
s1, · · · , sI

]
. Again for notational simplicity, we use the same number, N , of mesh

points over each interval (this can be generalized straightforwardly to any number Ni > 2

of mesh points per interval). Any variable pertaining to the ith interval, where 1 ≤ i ≤ I,

will be represented with the superscript i.

In the case where the initial function ϕ : [a − τ, a] → RP in (2.8) is fully specified, we

may obtain the initial value, u(a) = ϕ(a), directly from the initial function. If the initial

function is known only at a finite set of nodes, s01:J , we first fit an interpolating Gaussian

process to the initial function evaluations,

ϕ |ϕ(s01), . . . ,ϕ(s0J),Ψ0
J ∼ N

(
m0

J , C0
J

)
using auxiliary parameters Ψ0

J = [α0, λ0, R0, s01:J ] (see for example, Rasmussen andWilliams,

2006). We then take the initial state, u(a) = ϕ̃(a), to be a realization of the estimated

initial function. The uncertainty in the initial function generates uncertainty in the initial

condition, which we encode in the state and derivative covariances by,

C1
0(a, a) = C0

N (a, a) + C0
N (a− τ, a− τ) + 2C0

N (a, a− τ) (4.8)

Cf1
0 (a, a) = Cf0

N (a, a) + Cf0
N (a− τ, a− τ) + 2Cf0

N (a, a− τ). (4.9)

Given n interval i derivative realizations,

f i1:n =
[
fθ
(
si1, ũ

i
0(s

i
1,θ), ũ

i−1
N (si1 − τ,θ)

)
, · · · , fθ

(
sin, ũ

i
n−1(s

i
n,θ), ũ

i−1
N (sin − τ,θ)

)]T
the predictive distribution also depends on the states evaluated on the preceding interval

through the following probabilistic solution:

ui(·,θ)
∣∣ f i1:n,ϕ,Ψi

n ∼ N
(
mi

k, Ci
n

)
where, Ψi

n = [α, λ,R, si1:n], and,

mi
n(t) = mi−1

N (si1) + QR(t, si1:n)
(
Λi

n +RR(si1:n, s
i
1:n)
)−1(

f i1:n −mf
0(s

i
1:n)
)
, (4.10)

Ci
n(t, t̃) = Ci−1

N (si1, s
i
1) + QQ(t, t̃)−QR(t, si1:n)

(
Λi

n +RR(si1:n, s
i
1:n)
)−1

RQ(si1:n, t̃), (4.11)
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Cfi
n (t, t̃) = Cf(i−1)

N (si1, s
i
1) + RR(t, t̃)− RR(t, si1:n)

(
Λi

n +RR(si1:n, s
i
1:n)
)−1

RR(si1:n, t̃),

(4.12)

Λi
n = diag

(
Cfi
0 (si1, s

i
1), · · · , C

fi
n−1(s

i
n, s

i
n)
)
. (4.13)

This process is repeated for each of the I = ⌈(b− a)/τ⌉ intervals and one additional

update is performed over the entire domain of integration,

u(·,θ)
∣∣ f1:NI ,ϕ,ΨNI ∼ N

(
mNI , CNI

)
where ΨNI = [α, λ,R, s], fNI =

[
f11:N , . . . , f

I
1:N

]T
, and mNI , CNI are defined in (3.6), (3.7).

in order to ensure continuity of the solution between intervals.

As before, the smoothness of the solution depends on the choice of the covariance struc-

ture. Therefore, we must account for second or higher derivative discontinuities by selecting

a derivative covariance function whose eigenbases span a space of differentiable functions

(e.g. the uniform kernel in Chapter 6 has this property).

Probabilistic solution of the oscillatory decay model with uncertain initial func-

tion

We illustrated in Chapter 2 that even in very simple cases, uncertainty in the initial function

can have a substantial effect on the numerical solution. Now we illustrate our probabilistic

approach, which quantification of both the uncertainty incurred in the discretization and

any additional uncertainty associated with the input.

The first row of Figure 4.4 shows the analytical, numerical, and mean probabilistic

solutions to problem (2.9) with fully known history ϕ(t) = 1, t ∈ [−1, 0]. The probabilistic

solution was obtained using a total of N = 500 equally spaced solver knots on I = 10

intervals [(i− 1)τ, iτ ], i = 1, . . . , 10.

Let us consider a modified version of problem (2.9) with history ϕ(t) = sin(4πt)/4+1 that

is only partially specified, without error, over a set of six nodes. The second row of Figure

4.4 illustrates this case. The first step to solving such a problem approximately is to infer

the initial function over the entire initial interval. For this we use an interpolating Gaussian

process with square exponential covariance structure. The uncertainty expressed by its

posterior distribution given the six nodes is accounted for in the probabilistic algorithm.

Although in this case the numerical and probabilistic mean solutions give similar results, the
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Algorithm 4 Sample a probabilistic DDE solution from p
(
u(t,θ), f1:NI

∣∣θ,ϕ,ΨNI

)
Initialize C1

0(s
1
1, s

1
1), C

f1
0 (s11, s

1
1) from (4.8-4.9), and set,

u0(s11:N − τ,θ) = ϕ̃(s11:N − τ)

f11 = fθ
(
s11, ϕ̃(s

1
1), ϕ̃(s

1
1 − τ)

)

for interval I = 1 : I do

Conditionally simulate a probabilistic solution realization, ui(si+1 − τ,θ), and deriva-

tive realizations, f i1:N , from the density p
(
ui(·,θ), f i1:N

∣∣θ,ϕ,Ψi
N

)
via Algorithm 1 with

means and covariances defined in (4.10 - 4.13);

end for

for state p = 1 : P do

Sample a realization of the solution, u(p)(t), for state p from the conditional distribution

at chosen points t ∈ [a, b]T ,

u(p)(t,θ) ∼ p
(
u(p)(t,θ)

∣∣θ, f (p)1:NI ,ϕ,ΨNI

)
= N

(
mNI(t), CNI(t, t)

)
;

end for

Return u(t,θ), f1:NI .
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Figure 4.4: Mean probabilistic solution (blue dashed line) constructed using 500 solver knots compared

with numerical (red dashed line) and analytical (black solid line) solutions for the system (2.9) with initial

function ϕ(t) = 1, t ∈ [−1, 0] fully specified (top), and ϕ(t) = sin(4πt)/4 + 1 (below) fully specified (black)

and estimated (dotted red line) from six nodal points (red circles). The grey bands show ± 100 standard

deviations around the mean probabilistic solution for exposition.

probabilistic solution provides information about how the additional functional uncertainty

propagates through the estimated solution.

4.4 Solving PDE boundary value problems

In this section, we describe how to formulate probabilistic solutions to general PDE bound-

ary value problems in two ways. The first, indirect method, models uncertainty along the

temporal dimension of the domain using the probabilistic solution developed for ODE initial

and boundary value problems, while the spatial discretization is achieved through spectral

projection techniques. The second, direct method, is analogous to the finite-differencing ap-

proach and follows from the model developed in Section 3.2.2 for multivariate solutions, to

produce a technique analogous to the numerical finite-differencing method, which is however

limited for high dimensional domains.
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4.4.1 Indirect probabilistic solution method

In Chapter 2 we introduced two nonlinear PDEs exhibiting temporal chaos, where interest

lay in understanding the impact of temporal discretization on the system. Modeling the

effect of discretization over the time domain can be achieved by using the framework de-

veloped in Section 4.1 for ODE initial value problems. The PDE boundary value problem

is first discretized over the spatial domain and mapped to a finite-dimensional subspace of

the solution space via spectral projection, yielding a system of coupled ODEs with initial

constraints. We can then use Algorithm 1 to solve the system and reconstruct the estimated

PDE solution.

Probabilistic solution of the Kuramoto-Sivashinsky nonlinear PDE

Following Kassam and Trefethen (2005), we considered the spatio-temporal domain D =

[0, 32π]× [0, 150] with initial function uB(x) = cos (x/16)
{
1 + sin (x/16)

}
, and discretized

the spatial domain via a Fourier spectral method, obtaining a high-dimensional (128 dimen-

sions) system of stiff ODEs. The exponential time-differencing transformation was used to

solve the linear part of each ODE exactly, while effectively dealing with the transformed

nonlinear part via the probabilistic solver. The inverse transformation was then applied

within each solver iteration. The probabilistic IVP solution was obtained via Algorithm 1

using N = 2000 equally-spaced mesh points. The squared exponential covariance was used

with a length-scale of twice the step size and prior precision of 100 units.

Figure 4.5 shows fifteen realizations of the probabilistic posterior solution for the KS non-

linear PDE boundary value problem (2.11). The divergence between the solutions starting

approximately around the middle of the temporal domain, illustrates the effect of temporal

discretization error propagation on the solution of this stiff system.

Probabilistic solution of the Navier-Stokes equations on a torus

The Navier-Stokes model on a two-dimensional torus (2.12) was reduced to a set of 64× 64

coupled ODEs with associated constraints through a pseudo-spectral projection in Fourier

space. Once again, we used exponential time-differencing to solve the linear part of each

ODE, alleviating problems with stiffness. The resulting probabilistic solution for this two-

dimensional PDE in two spatial and one time dimensions is difficult to visualize. Figures
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Figure 4.5: A sample of 100 realizations of the probabilistic solution of the Kuramoto-
Sivashinsky PDE using a fixed initial function. The spatial and temporal dimensions are
shown on the horizontal and vertical axes respectively. The solution is known to exhibit tem-
poral chaos, as evidenced by the variety of dynamics observed due to uncertainty introduced
in its estimation.
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Figure 4.6: Vorticities for a sample of 6 realizations of the probabilistic solution of the
Navier-Stokes equation on a two-dimensional torus at time t = 30 units, under a fixed
initial field. Vorticity of the 6 realizations are very similar at this stage.

4.6 and 4.7, show vorticity, a function of the two components of velocity, on a torus param-

eterized in spherical coordinates by the angle of the inner ring, θ, on the horizontal axis and

the angle of the cross-section of the ring, ρ, on the vertical axis. The probabilistic solution

was computed using an equally spaced temporal discretization grid on the interval [0, 100]

with N = 1000 time steps. The length-scale was chosen to be twice the length of a time

step, and the prior precision was set to the low value α = 0.5 to reflect the fact that, under

our choice of the viscosity parameter, the system lies in the turbulent regime.

Figure 4.6 corresponds to six realizations of the probabilistic solution for this system at

time t = 30 units, where no difference between the samples can be detected. Figure 4.7

shows the same six realizations at time t = 100 units, where differences in vorticity can now

clearly be seen. These differences are a result of the accumulation of discretization errors

along the time domain and the chaotic nature of the system dynamics.



CHAPTER 4. PROBABILISTIC SOLUTION OF DIFFERENTIAL EQUATIONS 61

Figure 4.7: Vorticities for a sample of 6 realizations of the probabilistic solution of the
Navier-Stokes equation on a two-dimensional torus at time t = 100 units, under a fixed
initial field. Vorticity of the 6 realizations have begun to diverge from one another as a
result of discretization error accumulation along the temporal domain.
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4.4.2 Direct probabilistic solution method

If instead interest lies in quantifying discretization uncertainty along more than one dimen-

sion, we recommend constructing a spatio-temporal mesh and using a variant of Algorithm

1 based on the multivariate solution model presented in Section 3.2.2. An important con-

sideration when solving PDEs in this way is how to enforce the spatio-temporal boundary

condition, which is now a function instead of a single point. This turns out to be relatively

straightforward once the domain is parameterized in a convenient way. In each dimension,

the boundary condition may need to be enforced (i) at the lower bound of the domain, or

(ii) at both endpoints, often within the same problem. In modelling dimensions of the type

(i) any standard kernel function will automatically satisfy the boundary value at the lower

limit of integration. In modelling dimensions of the type (ii) we recommend an asymmet-

rical kernel that takes on both positive and negative value and integrates to zero (such as

the diagonal kernel constructed in Chapter 6), which ensures that the estimated solution

in a particular dimension satisfies the model at both endpoints. As shown in Section 3.2.2

we may combine different kernels in each input dimension, which will allow us to enforce

mixed boundary constraints or work with functions with different smoothness in different

dimensions.

Finally, we note that this direct solution approach can be considered analogous to a

finite-difference numerical method, and as such incurs the same problems related to dimen-

sionality. Indeed, the number of vertices in the spatio-temporal mesh would need to increase

exponentially in the number of dimensions to yield a reasonable solution as the number of

dimensions increases.



Chapter 5

Incorporating Model Uncertainty

in the Inverse Problem

This chapter examines the effect of model uncertainty on the statistical inverse problem of

recovering information in the form of a probability distribution for variables1 given data the

y. In this chapter we consider the case where the data generating mechanism is governed by

a differential equation model defined by unknown parameters θ ∈ Θ. When the DE solution

is known in closed form, the inverse problem can be approached via nonlinear regression.

If the closed form solution is unavailable, we propose to incorporate model error resulting

from discretization into the inverse problem by augmenting the unknown parameters by the

solution u and related auxiliary variables.

The following sections show how our probabilistic model of discretization uncertainty

for an unknown DE solution naturally fits into the Bayesian framework for solving inverse

problems. We contrast our exact fully probabilistic approach with the conventional approx-

imate inference method based on numerical DE solutions. Finally, we demonstrate our

methodology on a delay initial function model of protein dynamics.

1Often in applications, the dimension of the unknown is greater than that of the observations y. Such un-
derdetermined problems arise when we try to recover an infinite-dimensional function from finite-dimensional
observations, as in the problem of inference on intractable differential equation models. This situation re-
quires restricting attention to a finite-dimensional subspace, which is accomplished in the Bayesian approach
by the choice of prior measure.

63
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5.1 Statistical inverse problem

Statistical inversion is the problem of inferring ξ from data y ∈ Hobs, both elements of

Hilbert spaces. The error model for the data depends on the often nonlinear operator G

and a zero-mean stochastic process ϵ ∈ Hobs that is independent of ξ. For simplicity, we

consider the additive error model,

y = G(ξ) + ϵ. (5.1)

5.1.1 Inference for differential equation models

Consider the problem of inference on parameters θ ∈ Θ defining a DE model given R-

dimensional measurements y(t) ∈ MT,R
(
R
)
taken at each of T time points, t ∈ DT , and

observed indirectly through the possibly nonlinear observation function G : MT,P
(
R
)
→

MT,R
(
R
)
. Although this framework can be applied to general error models, for simplicity

we shall hereafter consider the additive Gaussian model with error covariance Σ(r) ∈MT
(
R
)

and R independent observation states:

y(r)(t) = G(r)
(
u(t,θ)

)
+ ϵ(r)(t), ϵ(r)(t) ∼ NT (0,Σ

(r)), 1 ≤ r ≤ R.

For Σ = diag
(
Σ(1), . . . ,Σ(R)

)
, the data likelihood follows as,

Ly(t)

(
G ◦ u(t,θ)

)
= NT×R

(
G ◦ u(t,θ),Σ

)
.

Therefore in (5.1), ξ typically represents any unknown model parameters, θ, indexing

the DE:

ξ ≡ θ ∈ Θ,

transformed via the nonlinear observation operator,

G ≡ G ◦ u(t, ·) : Θ → Hobs

which maps the parameters from Θ to the observation space Hobs. When the true or exact

solution, u : D ×Θ → RP , is known in closed form, then G is known and the parameters θ

can typically be inferred via nonlinear regression.
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When the exact solution is unknown, the observation operator G ◦ u(t, ·) becomes un-

certain, as only G is available. Therefore we propose to restate the inverse problem by

considering the posterior probability distribution over the parameters θ as well as the sys-

tem states u, by augmenting the ξ as follows:

ξ ≡ [θ,u(·,θ),uB, f1:N ,ΨN ] ∈ Θ×H ≡ H,

and rewriting the observation operator in terms of the observation transformation G only,

G ≡ G : H → Hobs.

As a result, inference can now proceed via nonlinear regression as before.

5.1.2 Bayesian approach

In this section we will consider the standard Bayesian framework for statistical inverse

problems, which consists of obtaining a posterior measure for the unknown ξ ∈ H, where

H is a general Hilbert space, and will be referred to as inference on ξ. Informally, this

approach proceeds by applying Bayes’ rule:

ξ | y ∼ dνy

dν0
(ξ) =

Ly

(
G(ξ)

)∫
H Ly

(
G(ξ)

)
dν0(ξ)

∝ Ly

(
G(ξ)

)
, (5.2)

where νy is the posterior measure of ξ conditioned on the data, and where dνy/dν0 denotes

its Radon-Nikodym derivative with respect to the prior measure ν0. As in Chapter 3,

such an informal derivation is not typically sufficient to verify that the Radon-Nikodym

derivative exists, particularly in the infinite-dimensional setting. The following theorem

(see, for example, Stuart, 2010) sets out the conditions when this is the case.

Theorem 5.1.1. Consider the error model (5.1). Suppose that Ly is defined on RR, and

that ν0(H) = 1. If the observation operator, G : H → RR, is continuous, then ξ | y is

distributed according to νy, which is absolutely continuous with respect ν0, and has Radon-

Nikodym derivative (5.2).

From now on, we will work with distributions which are absolutely continuous with

respect to the Lebesgue measure, and will therefore adopt a simpler notation by writing the
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posterior density (5.2) as,

p(ξ | y) =
Ly

(
G(ξ)

)
p(ξ)∫

H Ly

(
G(ξ)

)
p(ξ)dξ

∝ Ly

(
G(ξ)

)
p(ξ).

5.1.3 Approximate inference under an unknown DE solution

When the DE solution is known, the likelihood Ly(t)

(
G ◦u(t,θ)

)
can be evaulated, and thus

functionals of the posterior distribution (5.2) may be obtained through standard techniques

(see, for example, Gelman et al., 2004). In practice, however, the likelihood cannot be

evaluated due to lack of a closed form solution for most nonlinear DE models (see, for

example, discussion in Ramsay et al., 2007). Therefore, the conventional approach replaces

the unknown analytical solution u(t,θ) by its finite-dimensional numerical approximation

uN (t,θ) obtained via numerical integration of the system equations over an N -dimensional

spatio-temporal mesh, to obtain the likelihood approximation,

Ly(t)

(
G ◦ u(t,θ)

)
≈ Ly(t)

(
G ◦ uN (t,θ)

)
.

Under the conditions of Theorem 5.1.1, this approach yields the approximate posterior

density,

pN
(
θ |y(t)

)
∝ Ly(t)

(
G ◦ uN (t,θ)

)︸ ︷︷ ︸
approximate likelihood of the data

× p(θ).︸ ︷︷ ︸
prior density

(5.3)

The approximate observation operator GN ≡ G ◦ uN can differ substantially from G ≡
G ◦ u in practice, leading to estimation bias, as illustrated in the extreme cases of chaotic

and ill-conditioned systems. Importantly, any systematic uncertainty associated with this

approximation is ignored under the conventional framework. Our goal is to show that an

alternative, exact model is not only feasible, but in many cases necessary.

5.2 A fully probabilistic approach

We propose to incorporate our probability model of discretization uncertainty into the in-

verse problem by introducing one additional layer in the posterior hierarchy, defined by the

joint density p
(
u(t,θ), f1:N |θ,uB,ΨN

)
over solutions u(t,θ) and derivative realizations
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f1:N . This yields a fully probabilistic alternative to the approximate posterior density (5.3),

by characterizing the uncertainty in the unknown system solution, u(t,θ).

5.2.1 Exact posterior density

First, define a prior measure ν0 for the unknown vector ξ = [u(·,θ),uB, f1:N ,ΨN ,θ] ∈ H
in such a way that ν0(H) = 1. Intuitively this condition guarantees that the prior assigns

positive probability to any function that satisfies the regularity conditions on the state space

of possible solutions. If the observation operator G : MT,P
(
R
)
→ MT,R

(
R
)
is continuous,

then ξ |y is distributed according to the measure νy that is absolutely continuous with

respect ν0, by Theorem 5.1.1. Evaluating the solution at time points t ∈ DT ensures that

the posterior distribution of the probabilistic solution is continuous with respect to the

Lebesgue measure, with density (3.15). Thus, the posterior density of the solution and the

model and auxiliary parameters is,

p (θ,u(t,θ),uB, f1:N ,ΨN |y(t))

∝ Ly(t)

(
G ◦ u(t,θ)

)︸ ︷︷ ︸
likelihood of the data

× p
(
u(t,θ) |θ,uB, f1:N ,ΨN

)︸ ︷︷ ︸
probabilistic solution

× p
(
θ,uB, f1:N ,ΨN

)︸ ︷︷ ︸
prior density

. (5.4)

Marginalizing over the auxiliary variables, derivative realizations, and the solution, yields

an exact posterior over model parameters, which explicitly takes into account the mismatch

between the true solution and a finite-dimensional approximation.

5.3 Sampling from the posterior distribution over model pa-

rameters

Posterior functionals of (5.4) will not usually be analytically tractable, but can be obtained

via Monte Carlo (e.g., Gelman et al., 2004). This requires a forward-simulation layer to

address the fact that the density (5.4) is not available analytically for most DE models,

due to the sequential nonlinear vector field transformation required to generate derivative

realizations given θ.

We propose a specialized Monte Carlo procedure to generate a sample from the fully

probabilistic posterior (5.4), which allows estimation of the model parameters and solution
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while taking into account solver uncertainty. For each proposed value of θ, Algorithm 5

applies the observation transformation G to each probabilistic solution realization generated

given initial conditions uB, and auxiliary parameters ΨN , avoiding explicitly calculating

the intractable density of the observation states within the Metropolis-Hastings acceptance

ratio. For clarity of exposition, Algorithm 5 targets the posterior distribution of model

parameters θ given boundary conditions uB, auxiliary parameters ΨN , and error covariances

Σ. However, the algorithm extends simply to accommodate sampling when uB, ΨN , and

Σ are also unknown.

Algorithm 5 Draw K samples from p
(
θ,u(t,θ), f1:N |uB,ΨN ,y(t)

)
Initialize θ;

for k = 1 : K do

Propose θ⋆ ∼ q(θ⋆ |θ);

Conditionally simulate vector field realizations, f⋆1:N , and associated solution realization,

u⋆(t,θ⋆), from p
(
u(t,θ⋆), f1:N

∣∣θ⋆,uB,Ψ1:N

)
using one of Algorithms 1 through 4;

Compute:

ρ
(
θ,u(t,θ), f1:N → θ⋆,u⋆(t,θ⋆), f⋆1:N

)
=
q(θ⋆ |θ, )
q(θ |θ⋆)

p(θ⋆)

p(θ)

p
(
y(t)|G

(
u⋆(t,θ⋆)

)
,Σ
)

p
(
y(t)|G

(
u(t,θ)

)
,Σ
) ;

if min{1, ρ} > U[0, 1] then

Update θ = θ⋆;

Update u(t,θ) = u⋆(t,θ⋆);

Update f1:N = f⋆1:N ;

end if

Return θ,u(t,θ), f1:N .

end for
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5.3.1 Inference for the JAK-STAT protein network model

We demonstrate fully probabilistic state and parameter inference for a 4-state ODE delay

initial function problem describing the dynamics of the JAK-STAT cellular signal trans-

duction pathway (Raue et al., 2009). Features of this model which pose a challenge to

conventional methods of parameter estimation include the presence of systematic model

uncertainty inherent in numerical DIFP solutions, dependence of the model on an uncer-

tain discretely specified input function, and possible model misspecification (Campbell and

Chkrebtii, 2013).

This mechanism describes a series of reversible biochemical reactions of STAT-5 tran-

scription factors in response to binding of Erythropoietin (Epo) hormone to cell surface

receptors, Pellegrini and Dusanter-Fourt (1997). After gene activation occurs within the

nucleus, the transcription factors revert to their initial state, returning to the cytoplasm to

be used in the next activation cycle. This last stage is not well understood and is proxied

in the model by the time delay τ . The model for this mechanism describes changes in 4

reaction states of STAT-5 through the DIFP,



u̇(1)(t,θ) = −θ1 u(1)(t,θ) EpoRA(t) + 2 θ4 u
(4)(t− τ,θ),

u̇(2)(t,θ) = θ1 u
(1)(t,θ) EpoRA(t)− θ2 u

(2)2(t,θ),

u̇(3)(t,θ) = −θ3 u(3)(t,θ) + 0.5 θ2 u
(2)2(t,θ),

u̇(4)(t,θ) = θ3 u
(3)(t,θ)− θ4 u

(4)(t− τ,θ),

(5.5)

on t ∈ [0, 60] time units, with known initial functions u(2)(t,θ) = u(3)(t,θ) = u(4)(t,θ) = 0

on t ∈ [−τ, 0]. Constant initial function u(1)(t,θ) on t ∈ [−τ, 0], the time delay τ , and the

reaction rates θ1, . . . , θ4 are unknown variables parameterizing this model.

The states cannot be measured directly, but are observed through the nonlinear trans-

formation G : R3 ×Θ → R4

G1(u,θ) = θ5

(
u(2) + 2u(3)

)
G2(u,θ) = θ6

(
u(1) + u(2) + 2u(3)

)
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Figure 5.1: Experimental data (red circles) and sample paths (lines) of the observation pro-
cesses. They are obtained by transforming a sample from the marginal posterior distribution
of the states by the observation function (5.6).

G3(u,θ) = u(1)

G4(u,θ) = u(3)/
(
u(2) + u(3)

)
, (5.6)

which is expressed in terms of unknown scaling factors θ5 and θ6. As per Raue et al. (2009),

observations y(t) = G
(
u(t,θ),θ

)
+ ϵ(t) are assumed contaminated with additive zero-mean

Gaussian noise with experimentally determined standard deviations.

Our analysis is based on experimental data from Swameye et al. (2003), which consists

of 16 observations (illustrated by red circles in Figure 5.1) for the first two states of the

observation process. Raue et al. (2009) further utilize an additional artificial data point

for each of the third and fourth observation process states to deal with lack of parameter

identifiability for this system. This assumption is also adopted in our analysis.

Prior distributions were defined on the unknown parameters as follows: θi ∼ Exp (1), i =

1, . . . , 6, τ ∼ χ2
6, and u(1)(0) ∼ N1

(
y(3)(0), 402

)
. We estimated functionals of the posterior

distribution from a Monte Carlo sample of model parameters, θ = [θ1, . . . , θ6, τ, u
(1)(0)],

solution states, u(t,θ), and auxiliary variables, ΨN . In order to construct a Markov chain

that would efficiently traverse the parameter space of this multimodal posterior distribution,

we chose to use a parallel tempering sampler (Geyer, 1991) with 7 parallel chains along a

uniformly spaced temperature profile over the interval [0.4, 1]. Parameters were sampled in

three blocks. The first block consists of the four rate parameters, two scaling factors, the

delay parameter and the initial value of the first state. The second and third blocks consist

of the precisions and length-scales respectively, with priors αi + 100 ∼ Log-N1 (10, 1) and

λi ∼ χ2
1, i = 1, . . . , 4. Each probabilistic DIFP solution was generated using Algorithm 4
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Figure 5.2: Marginal fully probabilistic posterior distribution in the model parameters
based on a sample of size 100,000 generated by a parallel tempering algorithm utilizing
seven chains, with the first 10,000 samples removed. Prior densities are shown in red.

using an equally spaced grid of size N = 300. The input function was estimated using a

linear interpolator of the EpoRA experimental data, following Swameye et al. (2003).

We obtained 100,000 posterior samples and removed the first 10,000 samples as burn-

in. Convergence was monitored by examining the marginal empirical distributions visually,

while ensuring that the acceptance rate fell roughly within the accepted range of 18%–28%

for each of the three parameter blocks, and that the total swap rate between any two chains

remained roughly within 5%-15%.

Marginal posterior samples of the observation states G
(
u(·,θ),θ

)
are shown in Figure

5.1, while marginal posterior samples of model parameters are illustrated using correlation

plots in Figure 5.2. All rate and scaling parameters are found to be identifiable with the

exception of θ2, as noted also in the identifiability analysis of Raue et al. (2009). Scaling

factors are correlated, positively with each other and inversely with the constant initial state

u(1)(0). Auxiliary parameters for the fully probabilistic model are found, for the most part,

to be non-identifiable. Indeed the transformed probabilistic solution for this system does

not appear to be overly sensitive to changes in the auxiliary parameters within a reasonable

range.



Chapter 6

Choice of Covariance Structure

The covariance function describes how two elements of a space are related to one another.

In the model for an unknown DE solution presented in Chapter 3, the prior covariance

determines the regularity of the space of possible solutions, and thus its specification is

an important consideration. In this chapter we discuss the construction of the covariance

operator for the unknown solution and its derivative, examine its properties, and provide

three examples of covariance structures that are used throughout this thesis.

6.1 Role and properties of prior covariances

In Chapter 3 we defined the following prior measures for the unknown DE solution state

and its derivative:

µ0 = N (m0, C0),

µf0 = N (mf
0 , C

f
0 ).

Covariance operators Cf
0 = RR(t, t̃) and C0 = QQ(t, t̃) follow a user-specified structure

governed by the kernel function Rλ and its integrated version Qλ.

6.1.1 Positive-definiteness

We have seen in Theorem 3.3.1 that a necessary condition for a well-defined probabilistic

solution derivative (3.14) is that the cross-covariance operators, (3.18), between the deriva-

tive and n noisy realizations be positive definite. Let us show that this condition is satisfied

72



CHAPTER 6. CHOICE OF COVARIANCE STRUCTURE 73

under the above prior covariance specification.

Recall that α denotes the prior precision defined in Section 3.2.1. Consider a kernel

Rλ ∈ L2(D2), such that the integral transform Rg of any nonzero function g ∈ L2(D) is not

everywhere zero (this condition is simple to verify for a given kernel), then,

⟨g,RKR∗g⟩ = α−1
∫ ∫

Rλ(t, z) g (t) dt
∫
Rλ(t̃, z) g

(
t̃
)
dt̃dz

=


α−1

∫ ( ∫
Rλ(t, z)g (t) dt

)2
dz = 0 if g(t) = 0 ∀t ∈ D

α−1
∫ ( ∫

Rλ(t, z)g (t) dt
)2
dz > 0 otherwise.

Therefore, the cross-covariance operators C11, C12, C21, defined in (3.18), are positive definite.

Next, we consider the covariance operator C22, defined in (3.18). For any vector g ∈ Rn and

positive semidefinite matrix ΛN , we have,

⟨g,
(
RKR∗ + Λn

)
g⟩ =

n∑
i=1

n∑
j=1

(
α−1

∫
RRλ(ti, z)Rλ(tj , z)dz + Λn(ti, tj)

)
g (ti) g (tj)

=


⟨g,RKR∗g⟩+ ⟨g,Λn g⟩ = 0 if g(t) = 0 ∀t ∈ D ,

⟨g,RKR∗g⟩+ ⟨g,Λn g⟩ > 0 otherwise.

Therefore C22 is also positive definite. This argument simply extends to the case of the

integrated covariances used for modelling the solution states.

6.1.2 Regularity

Theorem 4.1.3 requires that the mean-centered derivative of the true solution must be an

element of the spaceH spanned by the eigenfunctions of the covariance operator Cf
0 . We give

an intuitive justification for this requirement by showing that the prior Gaussian measure

assigns positive probability to any function that is suitably regular, i.e. µf0(H) = 1. The

following theorem shows how to obtain realizations of a Gaussian process on a Hilbert space,

and relates the smoothness of the realizations to the covariance structure.

Theorem 6.1.1 (Karhunen–Loève theorem). Let C be a self-adjoint, positive semi-definite,
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trace class1 operator in a Hilbert space H with an orthonormal set of eigenfunctions and as-

sociated eigenvalues, {ϕk, γk}∞k=1, ordered so that γ1 ≥ γ2 ≥ · · · . Let ℓ ∈ H and take {zk}∞k=1

to be a sequence of iid standard normal random variables. Then, the random function,

u = ℓ+
∞∑
k=1

zk
√
γkϕk

has distribution µ = N (ℓ, C).

From this theorem, follows a result (e.g. Stuart, 2010, pp. 539-540) which implies that

samples from µf0 are almost surely in L2(D) under some relatively mild conditions on the

covariance.

6.1.3 Role of kernel functions

Covariances for the unknown solution are constructed using the kernel Rλ and its integrated

version Qλ. Therefore, the choice of the kernel function should reflect our assumptions

about the true unknown DE solution, such as smoothness and any fixed zero points. In

general, imposing unrealistically strict smoothness assumptions onH by choice of covariance

operator may introduce estimation bias if the true solution derivative is not an element of

this space. Therefore, in cases where the solution smoothness is not known with certainty,

we recommend to err on the side of less regular kernels which alleviate possible bias by

allowing for the possibility of functions less smooth than the solution, at the cost of slower

rate of convergence of the estimated solution to the true unknown solution.

6.2 Some useful covariances

The illustrative examples in this thesis employ one of three types of covariance structure con-

structed by the choice of kernel. In the following section, we provide closed form expressions

of pairwise convolutions corresponding to each type of kernel.

1compact operator with finite trace that is independent of the choice of basis.
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6.2.1 Squared exponential covariance

The squared exponential isotropic covariance function,

Cf
0 (t, t̃) =

√
π αλ exp

(
− 1

4

(
t−t̃
λ

)2 )
, (6.1)

is popular in the Gaussian process literature (Rasmussen and Williams, 2006) for modelling

analytic functions. Here, we will focus on the case that D = [a, b]. We will show that this

covariance is obtained by pairwise convolution of the Gaussian kernel,

Rλ(t, t̃) = exp
(
− 1

2

(
t−t̃
λ

)2 )
,

and the integrated covariance is obtained by the pairwise convolution of the integrated

kernel,

Qλ(t, t̃) =
1
2 erf

(
1√
2

(
t−t̃
λ

)2 )
− 1

2 erf
(

1√
2

(
a−t̃
λ

)2 )
.

The integrated kernel produces a non-stationary state covariance operator, C0, which allows

us to constrain the solution state to zero at the initial boundary a of the domain.

Let us derive closed form expressions for the pairwise convolutions of the Gaussian

kernel and its integrated version, which are required for updating the probabilistic solution

as described in Chapter 4.

αRR(t, t̃) =
√
π λ exp

(
− 1

4

(
t−t̃
λ

)2 )
, t, t̃ ∈ [a, b]

αQR(t, t̃) = π λ2 erf
(

1
2λ (t− t̃)

)
+ π λ2 erf

(
1
2λ (t̃− a)

)
, t, t̃ ∈ [a, b]

αQQ(t, t̃) = π λ2(t− a) erf
(
1
2

(
t−a
λ

) )
+ 2

√
π λ3 exp

(
− 1

4

(
t−a
λ

)2 )
−πλ2(t̃− t) erf

(
1
2

(
t̃−t
λ

) )
− 2

√
π λ3 exp

(
− 1

4

(
t̃−t
λ

)2 )
+π λ2(t̃− a) erf

(
1
2

(
t̃−a
λ

) )
+ 2

√
π λ3 exp

(
− 1

4

(
t̃−a
λ

)2 )
− 2

√
π λ3, t, t̃ ∈ [a, b]
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Importantly, the result RR(t, t),QQ(t, t) <∞ for all t ∈ R implies that the kernel and its

integrated version are square integrable. Also note that RR(t, t̃) has the form of the squared

exponential covariance (6.1). Contour plots of the kernel, its integrated version, and the

state and derivative prior covariances are shown in Figure 6.1 on the domain D = [0, 1] with

prior precision α = 1 and length-scale λ = 0.1.

The covariance operator, Cf
0 , is infinitely differentiable, so that the Gaussian process

model for the derivative is mean-square differentiable. As such, this covariance is suited to

modelling solution derivatives that are known a priori to be very smooth. In this thesis,

we have used the squared exponential covariance for modelling the probabilistic solution

of the Lorenz system, the Kuramoto-Sivashinsky initial boundary function problem, the

Lane-Emden mixed boundary value problem, and the Navier-Stokes equations.

6.2.2 Uniform covariance

In some cases, one may wish to model the derivative by a function with first or higher

derivative discontinuities. For this purpose we propose the following uniform kernel function

and its integrated version:

Rλ(t, t̃) = I
(
t̃ ∈ (t− λ, t+ λ)

)
,

Qλ(t, t̃) = I
(
t̃ ∈ (a+ λ, t− λ)

)
+ 1

2

(
t−a
λ

)
I
(
t̃ ∈ (t− λ, a+ λ)

)
+ 1

2

(
t̃+λ−a

λ

)
I
(
t̃ ∈ (a− λ,min(a+ λ, t− λ))

)
+ 1

2

(
t−t̃+λ

λ

)
I
(
t̃ ∈ (max(a+ λ, t− λ), t+ λ)

)
.

Next, we derive the closed form expressions for the pairwise convolutions for the uniform

kernel.

αRR(t, t̃) =
(
min(t, t̃)−max(t, t̃) + 2λ

)
I
(
min(t, t̃)−max(t, t̃) > −2λ

)
, t, t̃ ∈ [a, b],

αQR(t, t̃) = 2λx I
(
min(t− λ, t̃+ λ) > max(a+ λ, t̃− λ)

)∣∣min(t−λ,t̃+λ)

max(a+λ,t̃−λ)

+
(
1
2x

2 + (λ− a)x
)
I
(
min(a+ λ, t− λ, t̃+ λ) > t̃− λ

)∣∣min(a+λ,t−λ,t̃+λ)

t̃−λ

+
(
(t+ λ)x− 1

2x
2
)
I
(
min(t, t̃) + λ > max(a+ λ, t− λ, t̃− λ)

)∣∣min(t,t̃)+λ

max(a+λ,t−λ,t̃−λ)

+(t− a)
(
max(t, t̃)− a− 2λ

)
I
(
a−max(t, t̃) > −2λ

)
, t, t̃ ∈ [a, b],
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Figure 6.1: Top row: contour plots of Gaussian kernel (left), and its integrated version
(right). Bottom row: contour plots of squared exponential derivative covariance (left) and
associated state covariance (right). Functions are evaluated over t, t̃ ∈ [0, 1], with (α, λ) =
(1, 0.1).
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αQQ(t, t̃) = 4λ2
(
min(t, t̃)− a− 2λ

)
I
(
min(t, t̃) > a+ 2λ

)
+2λ

(
(t̃+ λ)x− 1

2x
2
)
I
(
min(t− λ, t̃+ λ) > max(a+ λ, t̃− λ)

)∣∣min(t−λ,t̃+λ)

max(a+λ,t̃−λ)

+
(
1
3x

3 + (λ− a)x2 + (λ− a)2x
)
I
(
min(a+ λ, t− λ, t̃− λ) > a− λ

)∣∣min(a+λ,t−λ,t̃−λ)

a−λ

+(t̃− a)
(
1
2x

2 + (λ− a)x
)
I
(
min(a+ λ, t− λ) > t̃− λ

)∣∣min(a+λ,t−λ)

t̃−λ

+2λ
(
(t+ λ)x− 1

2x
2
)
I
(
min(t+ λ, t̃− λ) > max(a+ λ, t− λ)

)∣∣min(t+λ,t̃−λ)

max(a+λ,t−λ)

+
(
(t+ λ)(t̃+ λ)x− 1

2 (t+ t̃+ 2λ)x2 + 1
3x

3
)

I
(
min(t, t̃) > max(a, t− 2λ, t̃− 2λ)

)∣∣min(t,t̃)+λ

max(a+λ,t−λ,t̃−λ)

+(t− a)
(
1
2x

2 + (λ− a)x
)
I
(
min(a+ λ, t̃− λ) > t− λ

)∣∣min(a+λ,t̃−λ)

t−λ

+(t− a)(t̃− a)
(
a+ 2λ−max(t, t̃)

)
I
(
a+ 2λ > max(t, t̃)

)
, t, t̃ ∈ [a, b].

The result RR(t, t),QQ(t, t) <∞ implies that Rλ and Qλ are square integrable. Contour

plots of the resulting covariance functions Cf
0 (t, t̃) = RR(t, t̃) and C0(t, t̃) = QQ(t, t̃), as well

as kernels Rλ, Qλ are shown in Figure 6.2 on the domain D = [0, 1] with prior precision

α = 1 and length-scale λ = 0.1.

The uniform covariance Cf
0 is not everywhere differentiable, allowing discontinuities in

the first derivative of the solution. First derivative-discontinuous solutions typically arise

for delay initial function problems, where derivative discontinuities are often present at the

lag locations. Examples include the JAK-STAT system considered in Chapter 5.

6.2.3 Diagonal boundary covariance

Smoothness is not the only property of the solution that may be modelled by appropriate

choice of covariance. Indeed, we have seen that the use of integrated covariances in the

previous sections guarantees that the solution state always takes a zero or baseline value,

ℓ(a), at the initial boundary a. This is a very useful property for the ODE problems

examined in this thesis, but is not always suitable for modelling multivariate PDE BVP

solutions directly, where additional constraints may be required at the boundaries along

some of the spatio-temporal dimensions.

In order to constrain solutions at both boundaries of a component of the domain, we

propose a diagonal kernel, which takes on both positive and negative values in such a way

that its integral over the full domain, [a, b], is zero, and that still satisfies the necessary
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Figure 6.2: Top row: contour plots of uniform kernel (left), and its integrated version
(right). Bottom row: contour plots of derivative covariance (left) and state covariance
(right). Functions are evaluated over t, t̃ ∈ [0, 1], with (α, λ) = (1, 0.1).
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condition for the resulting covariance to be positive definite (i.e. that Rg is not everywhere

zero for all non-zero functions g ∈ L2(D)). This has the effect of setting the solution state

to zero at both ends of a one-dimensional domain. The proposed diagonal kernel function

and its integrated version are given by,

Rλ(t, t̃) =
(
t̃− t

)
I
(
t ∈ (t̃− λ, t̃+ λ), t̃ ∈ [a+ λ, b− λ]

)
+1

2

(
a+ t̃+ λ− 2t

)
I
(
t ∈ (a, t̃+ λ), t̃ ∈ [a,min(a+ λ, b− λ))

)
+1

2

(
b+ t̃− λ− 2t

)
I
(
t ∈ (t̃− λ, b), t̃ ∈ (max(a+ λ, b− λ), b]

)
+1

2 (a+ b− 2t) I
(
t ∈ (a, b), t̃ ∈ [b− λ, a+ λ]

)
,

Qλ(t, t̃) =
1
2

(
2t̃t− t2 − t̃2 + λ2

)
I
(
t̃ ∈ [max(t− λ, a+ λ),min(t+ λ, b− λ)]

)
+1

2

(
(a+ t̃+ λ)t− t2 − (t̃+ λ)a

)
I
(
t̃ ∈ [max(t− λ, a),min(a+ λ, b− λ))

)
+1

2

(
(b+ t̃− λ)t− t2 − (t̃− λ)b

)
I
(
t̃ ∈ (max(a+ λ, b− λ),min(t+ λ, b)]

)
+1

2

(
(a+ b)t− t2 − ab

)
I
(
t̃ ∈ [b− λ, a+ λ]

)
.

Below we derive the closed form convolutions required for function estimation under a

diagonal kernel.

αRR(t, t̃) = 1
6x
(
6tt̃− 3(t+ t̃)x+ 2x2

) ∣∣min(t+λ,t̃+λ,b−λ)

max(t−λ,t̃−λ,a+λ)

+1
4

(
(a− 2t+ λ)(a− 2t̃+ λ)x+ (a− t− t̃+ λ)x2 + 1

3x
3
) ∣∣min(a+λ,b−λ)

max(t−λ,t̃−λ,a)

+1
4

(
(b− 2t− λ)(b− 2t̃− λ)x+ (b− t− t̃− λ)x2 + 1

3x
3
) ∣∣min(t+λ,t̃+λ,b)

max(a+λ,b−λ)

+1
4 (a+ b− 2t)(a+ b− 2t̃)x

∣∣a+λ

b−λ
, t, t̃ ∈ [a, b],

αRQ(t, t̃) = 1
24x

(
(−6t̃2 + 6λ2 + 8t̃x− 3x2)x+ 4t(3t̃2 − 3λ2 − 3t̃x+ x2)

) ∣∣min{t+λ,t̃+λ,b−λ}
max{t−λ,t̃−λ,a+λ}

+1
4 (a− t̃)

(
(t̃− λ)(a− 2t+ λ)x+ 1

2 (−a+ 2t+ t̃− 2λ)x2 − 1
3x

3
) ∣∣min(a+λ,b−λ)

max(t−λ,t̃−λ,a)

+1
4 (b− t̃)

(
(b− 2t− λ)(t̃+ λ)x+ 1

2 (−b+ 2t+ t̃+ 2λ)x2 − 1
3x

3
) ∣∣min(t+λ,t̃+λ,b)

max(a+λ,b−λ)

−1
4 (a+ b− 2t)(a− t̃)(b− t̃)x

∣∣a+λ

b−λ
, t, t̃ ∈ [a, b],

αQQ(t, t̃) = 1
4

(
−(t2 − λ2)(−t̃2 + λ2)x− (t+ t̃)(tt̃− λ2)x2 + 1

3 (t
2 + 4tt̃+ t̃2 − 2λ2)x3
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Figure 6.3: Top row: contour plots of diagonal kernel (left), and its integrated version
(right). Bottom row: contour plots of derivative covariance (left) and state covariance
(right). Functions are evaluated over t, t̃ ∈ [0, 1], with (α, λ) = (1, 0.1).

−1
2 (t+ t̃)x4 + 1

5x
5
)
I
(
t, t̃ ∈ (x− λ, x+ λ)

)∣∣b−λ

a+λ

+ 1
24x(a− t)(a− t̃)(−6(t− λ)(−t̃+ λ)− 3(t+ t̃− 2λ)x+ 2x2) I

(
t, t̃ ∈ (a, x+ λ)

)∣∣min(a+λ,b−λ)

a−λ

+ 1
24 (b− t)(b− t̃)(6(t+ λ)(t̃+ λ)− 3(t+ t̃+ 2λ)x+ 2x2) I

(
t, t̃ ∈ (x− λ, b)

)∣∣b+λ

max(a+λ,b−λ)

+1
4x(a− t)(b− t)(a− t̃)(b− t̃)

∣∣a+λ

b−λ
, t, t̃ ∈ [a, b].

Here again, we have RR(t, t),QQ(t, t) < ∞, so that Rλ and Qλ are square integrable.

Contour plots of the resulting diagonal covariance function Cf
0 (t, t̃) = RR(t, t̃) and its inte-

grated version C0(t, t̃) = QQ(t, t̃), as well as kernels Rλ, Qλ are shown in Figure 6.3 on the

domain D = [0, 1] with prior precision α = 1 and length-scale λ = 0.1.



Chapter 7

Sequential Design for Probabilistic

Mesh Selection

For many DE systems, such as those with fast-changing derivatives, small local errors in

the solution approximation can propagate into large deviations from the true solution along

the domain. We have seen that for a numerical or probabilistic DE solution approximation

to be acceptable, it must converge in some sense to the true solution defined by the DE.

Rates of convergence depend on many factors, such as the smoothness of the true function,

and given these, are typically directly related to the size, N , of the discrete grid subdividing

the domain. As N cannot be made arbitrarily large due to computational limitations, its

choice presents a trade-off between accuracy of the estimated solution and computational

resources. Therefore, given N , a natural question is how we can arrange the grid on the

domain in such a way that the resulting approximation is as good as possible?

Most commercially available numerical DE solvers select the step length of the dis-

cretization grid sequentially. Below we discuss how this is done, and relate this method to

a sequential design problem in the probabilistic setting.

7.1 Preliminaries

We propose to adaptively select the step length in each dimension for use in the probabilis-

tic solution by optimizing a measure theoretic criterion. We then examine the modelling

requirements for incorporating a variable step length into the probabilistic solvers presented
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in Chapter 4.

7.2 Numerical step length selection

Local truncation error bounds for numerical methods at a given step n are usually pro-

portional to the distance between the estimated solutions evaluated at subsequent knot

locations, |ũ(sn) − ũ(sn−1)|. This quantity is related to the linearized first derivative so

that, when the derivative changes quickly, local truncation error increases proportionally.

Controlling the local error by choice of the step length sn − sn−1 is called adaptive step size

selection in the numerical analysis literature. In the simplest cases, this is accomplished by

evaluating the local truncation error at each step and halving the step size if this exceeds an

error tolerance that is pre-specified by the user (the process may be repeated several times

per step until an appropriate local truncation error is achieved).

7.2.1 Kullback-Leibler divergence criterion

The relative entropy or Kullback-Leibler (KL) entropy (Kullback and Leibler, 1951) is a

non-symmetric metric for the divergence between two probability distributions.

Definition 18 (Kullback and Leibler (1951)). Let µi, i = 1, 2 be two probability measures

defined on the same measure space (H,A), and absolutely continuous with respect to µ0.

Also let fi = dµi/dµ0, i = 1, 2 represent the corresponding densities. The Kullback-Leibler

divergence is given by,

D
(
f1||f2

)
=

∫
log

(
f1(u)

f2(u)

)
dµ1(u) =

∫
f1(u) log

(
f1(u)

f2(u)

)
dµ0(u).

For example, the KL divergence between two K-variate Gaussian probability distribu-

tions, µi = NK(mi, Ci), i = 1, 2, defined on (RK ,B) is given by,

D
(
f1||f2

)
=

∫
1

2

(
log

(
|C2|
|C1|

)
+ (u−m2)

TC−1
2 (u−m2)− (u−m1)

TC−1
1 (u−m1)

)
dµ1

=
1

2

(
log

(
|C2|
|C1|

)
+

∫
(u−m2)

TC−1
2 (u−m2)dµ1 −

∫
(u−m1)

TC−1
1 (u−m1)dµ1

)
=

1

2

(
log

(
|C2|
|C1|

)
+ (m1 −m2)

TC−1
2 (m1 −m2) + tr

(
C−1
2 C1

)
−K

)
, (7.1)



CHAPTER 7. PROBABILISTIC MESH SELECTION 84

where we have used properties of expectations with respect to a multivariate Gaussian

measure. Note that the divergence between the two distributions is directly proportional to

the scaled distance between the means, inversely proportional to the number of dimensions,

K, and depends nonlinearly on C−1
2 C1. In particular, the direct dependence on scaled

distance between the means is reminiscent of the form of the local truncation error objective

function used for numerical step size selection.

7.3 Probabilistic sequential step length selection

Consider an ordered partition s = [s1, · · · , sn] ∈ [a, sn]
N , s1 = a, sn < b, of the one-

dimensional interval [a, sn]. In this section we derive the KL divergence criterion between

the latest estimated probabilistic solution state un(t,θ) constructed using derivative real-

izations at s1, . . . , sn, and the corresponding solution un+1(t,θ) obtained by placing one

additional knot at a new location s∗ ∈ (sn,min{sn + ε, b}], ε > 0.

7.3.1 KL divergence between current and step-ahead estimated solution

Finite-dimensional evaluations of both un(·,θ) and un+1(·,θ) are jointly Gaussian with

mean vector and covariance matrix defined in (3.13) and (3.15). Therefore, we can obtain

the integrated KL divergence from (7.1):∫ b

a
D (un+1(t) ||un(t)) dλ(t)

=

∫ b

a

1

2

[
Cn+1(t, t)

Cn(t, t)
+

{mn(t)−mn+1(t)}2

Cn(t, t)
− 1− log

Cn+1(t, t)

Cn(t, t)

]
dt.

Calculating this criterion becomes effectively computationally infeasible, due to the inversion

of the matrix RR([s1:n; s
∗], [s1:n; s

∗])+Λ required to evaluatemn+1(t) and Cn+1(t, t) for every

proposed value of s∗ ∈ (sn,min{sn+ε, b}], ε > 0 at each step. However, this inversion can be

easily avoided by using the recursive formulation from Lemma 4.1.1 to rewrite the criterion

as,∫ b

a
D (un+1(t) ||un(t)) dλ(t)

=

∫ b

a

1

2

[
Cn(t, t)− C2

n(t, s
∗)/2Cf

n(s∗, s∗)

Cn(t, t)
+

{(mf
n(s∗)− fθ(s

∗))
∫ t
a C

f
n(x, s∗)dx/2Cf

n(s∗, s∗)}2

Cn(t, t)
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−1− log
Cn(t, t)− C2

n(t, s
∗)/2Cf

n(s∗, s∗)

Cn(t, t)

]
dt

=

∫ b

a

1

2

{fθ(s∗)−mf
n(s∗)}2

(∫ t
a C

f
n(x, s∗)dx

)2
4Cf2

n (s∗, s∗)Cn(t, t)
− C2

n(t, s
∗)

2Cf
n(s∗, s∗)Cn(t, t)

− log

{
1− C2

n(t, s
∗)

2Cf
n(s∗, s∗)Cn(t, t)

}]
dt, (7.2)

where now the expression is written solely in terms of the nth estimated derivative mean

mf
n, state covariance Cn, and cross-covariance

∫ t
a C

f
n(x, ·)dx, which were already obtained

at the nth iteration. It is important to note the integrand of criterion (7.2) is always non-

negative and equal to zero iff un+1(t) = un(t) almost everywhere (this holds in general for

the KL divergence, see for example Cover and Thomas, 2006).

To our knowledge, the integral (7.2) cannot be evaluated in closed form. Thus, somewhat

ironically, we must resort to numerical integration to evaluate this criterion. However, we

note that this is a rather straightforward one-dimensional integration problem relative to

the one of solving the DE itself, and is not sensitive to properties of the solution trajectory.

Therefore, in practice we approximate the integral numerically with respect to t using the

trapezoidal rule.

7.3.2 Implementation

Using the KL divergence to inform the step size requires a number of practical considerations.

We suggest first specifying the maximum computationally feasible number of equidistant

mesh points N∗ for solving the DE, and allocating these to a temporary equidistant fixed

design over [a, b] with step size h∗ = (b − a)/N∗. We may now define solver step sizes in

terms of these smallest unit steps. In particular, we fix an integer G > 1 so that h∗G is

the maximum allowable step length for the problem. The length-scale is typically defined

in terms of step sizes, so we must be careful to specify a length-scale that is at least twice

the maximum step size h∗G. In this way, information from nearby derivative realizations is

included even when taking the largest allowed steps1.

The algorithm must begin by iterating through the first G unit steps of length h∗.

At iteration n > G we may begin to adjust the step size. Define the candidate nodes

1for this purpose, adaptive selection of length-scales would be a useful extension.
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s∗g = sn + gh∗ for g = 1 . . . , G. We will choose the node s∗g that maximizes the discrep-

ancy between the posterior solution derivatives un =
[
u(·,θ) |θ, f1:n,ua,Ψn

]
, and un+1 =[

u(·,θ) |θ, [f1:n; fθ(s∗g)],ua,Ψn

]
, the latter being computed using one additional derivative

realization, i.e. f1:n+1 = [f1:n; fθ(s
∗
g)]. Thus the next node is selected as,

sn+1 = argmax
s∗g

max
p

∫ b

a
D
(
u
(p)
n+1(t) ||u

(p)
n (t)

)
dλ(t).

Due to the recursion employed in the derivation of the criterion, the computational cost

of step size selection is negligible relative to the rest of the algorithm. Thus, we recommend

to adaptively select step sizes whenever possible. A computational issue arises when dealing

with chaotic systems. After the onset of chaotic dynamics, the sample paths begin to differ

substantially from one another, and have different associated optimal mesh designs. In

theory, optimizing the design for each draw is certainly feasible. In reality this requirement

introduces large computational costs associated with matrix operations, since covariances

can no longer be recycled as suggested in Section 4.1.3. In comparison multiple draws from

the probabilistic solution can be obtained almost instantaneously when the mesh is identical

for each draw, as was shown.

Figure 7.1 shows a single realization of the probabilistic solution for the Lorenz system

before the onset of chaos, obtained using adaptive step sizes with a maximum possible mesh

size of N∗ = 2000 and selection region defined by G = 4. The actual grid size obtained

adaptively was only N = 740, as in practice the smallest step size was rarely selected by

the algorithm.
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Figure 7.1: Realizations of the states (top, solid lines) and derivatives (middle, solid lines)
of a single draw from the probabilistic solution of the Lorenz system on the interval [0, 5].
State and derivative realizations obtained at each step are shown as dots. The mesh was
selected adaptively, and the resulting step lengths are shown in the lower panel in dark blue.
Light blue dotted lines represent the possible step lengths {gh∗}g=1 ...,4.



Chapter 8

Conclusion

This thesis describes a new probabilistic formalism for studying the structure of solution

uncertainty for general systems of differential equations. Rather than providing a single

deterministic solution that approximately satisfies the model dynamics, our approach pro-

vides a probability statement over the space of suitably regular functions. This allows the

explicit study of the error structure and propagation of functional uncertainty through the

statistical inference process, which had been until now an open problem.

Specifically, we develop a Bayesian probability model first suggested in Skilling (1991)

for the unknown deterministic solution of general intractable differential equation problems

given a finite discretization mesh defined on the domain of integration. We show how such

a model can (i) provide a probability statement about the dynamics of the unknown DE

solution given a finite number of derivative evaluations, or (ii) define a level of uncertainty

in a hierarchical model for any unknown model parameters. This allows us to characterize

the systematic model uncertainty introduced into the inference problem by discretization

and to further distinguish it from other sources of uncertainty.

8.1 Impact and Recommendations

The framework described in this thesis is a first step in a promising new avenue for research.

Broadly, our work has potential for impact in three areas: uncertainty quantification for

inverse problems, analysis of computer experiments, and the study of differential equation

dynamics.

Uncertainty quantification is the study of the impact and propagation of variability
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through complex dynamical systems. However, until now a coherent probabilistic frame-

work for characterizing uncertainty resulting from discretization of infinite-dimensional DE

solutions has been unavailable (DeVolder et al., 2002). This thesis demonstrates that such

an approach is feasible and can be incorporated naturally into the inverse problem.

Large-scale models are often encoded in computer simulators, consisting of complex

systems of differential equations and numerical algorithms to solve them approximately

given unknown parameters or initial values of interest. Currently numerical uncertainty

in the model is largely ignored, although it is incorporated heuristically through a covari-

ance nugget when constructing the emulator (see, for example, Gramacy and Lee, 2012).

Adopting our probabilistic approach on a large scale will have practical implications in

this research area by allowing relaxation of the error-free assumption used for computer

codes, resulting in more realistic and flexible emulators. We particularly recommend such

an approach for models of turbulent systems, such as those found in local weather models

or hydrodynamics. The inherent sensitivity of such models to perturbations highlights the

need to characterize the impact of numerical uncertainty.

Further potential applications of the probabilistic approach include the extension to

Stochastic Differential Equation (SDE) systems, for which closed form solutions are typically

unavailable, and existing inference methods are largely simulation-based. In this context,

probabilistic solutions could be useful in determining a set of probable sample paths. We

demonstrated that our approach provides a functional probabilistic alternative to numerical

solution and error analysis, which is particularly useful for systems that are sensitive to

perturbations. This approach can be further extended to integration on complex domains,

via finite element methods (FEMs). Indeed, we believe that a probabilistic approach has

the potential to provide a general framework for error analysis of FEMs. Other useful

extensions of our methodology include the area of numerical bifurcation analysis, used to

study behaviours of analytically intractable systems over different regimes. Not only would

fully probabilistic solutions yield credible intervals on estimated bifurcation boundaries, but

they would also detect possible multiplicity of solutions when systems are ill-conditioned.
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