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Abstract

In this project, an analysis is made to try to determine whether the phenomenon known

as the hot hand, exists in golf. Data from a particular golf tournament in 2012 is studied

in order to try to find out whether this proposition seems true. For this tournament, the

scores for each golfer are split into the number of strokes and the number of putts required

to complete the course. The key idea in this project is the substitution of the number of

putts with the expected number of putts. The rationale is that putting is a highly stochastic

element of golf and that the randomness conceals evidence of the hot hand. This expected

value will be based on the distance to the pin once the ball is on the green. This distance to

the pin is obtained from the ShotLink website. New scores for all golfers are calculated and

consist of the sum of the number of strokes plus the expected number of putts in order to

complete a course. The association between said scores in the first round and similar scores

in the second round is calculated. The results seem to point to the conclusion that there is

no hot hand in golf.
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2i − Ḡi. . . . . . . . . . . . . . . . . . . . . . 18

viii



Chapter 1

Introduction

The hot hand belief in sports is the idea held by many fans, athletes and coaches that

current performance and future success depends on how an athlete has been performing in

the past. It is thought that players who have been performing well will have a tendency

to keep performing well, whereas players who have passed through a bad stage will have

a tendency to keep performing poorly. The hot hand is in conflict with the assumption of

independence which is common in many sports modelling scenarios.

The hot hand phenomenon has been discussed in many sports. The work by Bar-Eli

et. al. (2006) is an attempt to provide a review of the hot hand in the 1985-2005 period.

In particular they provide a list of previous studies and they classify them as supportive

or non-supportive of the hot hand. Actually one of the studies was classified by them as

inconclusive. They claim that out of the studies they considered, there are few whose results

support the hot hand belief compared to those which are non-supportive.

However, they realized that most of the so called supportive studies provide weak and

fairly limited evidence in favor of the hot hand, due to what they refer to as an unrealistic

model, questionable data and other issues such as setting questionable definititons of hot

and cold players.

The sports covered in the studies considered by Bar-Eli et. al. (2006) are baseball, bas-

ketball, bowling, golf, darts, tennis, volleyball, pocket billiards and horseshoe pitching. A

quick look at one of the tables they provide, shows that baseball and basketball seem to be

1



CHAPTER 1. INTRODUCTION 2

the two most analyzed sports regarding the hot hand.

Avugos et. al. (2013) conducted a meta-analysis of the hot hand. They considered

around 250 papers studying this phenomenon from 1985 to 2012. Only 22 of those publi-

cations met the authors’ criteria in order to be considered to be part of the meta-analysis.

The conclusion of this meta-study is that no hot hand effect exists in sports.

Tversky and Gilovich (1989a, 1989b) have devoted several papers to the study of the

hot hand phenomenon. It is interesting that they also seem to concentrate mostly on the

hot hand in baseball and basketball. In Gilovich et. al. (1985), the authors mention that

basketball players, as well as fans, believe that a player’s chance of hitting a shot are greater

following a make than following a miss on the previous shot. Analyzing shooting records of

the Philadelphia 76ers gave no evidence of a positive correlation between the outcomes of

succesive shots. They also analyzed free-throw records of the Boston Celtics and performed

a controlled shooting experiment with Cornell’s varisity teams. They didn’t find evidence

of hot hand in either of these data sets. They attribute the belief in the hot hand on a

misconception of chance, where any streak (even small ones) is regarded by the public as

clear evidence in favor of this belief.

In 1989, a small debate arose around the hot hand effect in Chance magazine. In Tversky

and Gilovich (1989a), the authors expose much of the same data sets, results, conclusions

and explanations as in the 1985 work by Gilovich et. al.(̇1985). Also in Chance, Larkey et.

al. (1989) question the conclusions and explanations of Tversky and Gilovich (1989a) and

claim that the hot hand does exist. A further rebuttal by Tversky and Gilovich (1989b)

came in the same Chance volume, where the authors provide an explanation on why the

conclusions by Larkey et. al. (1989) are wrong and that their data actually shows no evi-

dence in favor of the hot hand.

Other examples of papers on the hot hand in basketball are the works by Forthofer

(1991), Wardrop (1995), Wardrop (1999), Vergin (2000), Koehler and Conley (2003). The

hot hand has also been investigated in other sports. Some of these papers give evidence

against the existence of the hot hand, some provide weak evidence in favor of it and some

are inconclusive. In general, the evidence seems to suggest that the hot hand doesn’t exist
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and that for most sports this belief is due to a misunderstanding of random sequences on

the part of sports fans and professional players. Whenever a member of the general public

sees a short streak of wins or losses (scored or missed shots, etc.), it appears unusual. The

most simple explanation available to them is given by a hot or a cold hand.

1.1 Hot hand in golf

As with other sports, the hot hand has been studied in golf and its existence has also been

dismissed by most studies. Some examples of these studies are those by Gilden and Wilson

(1995), Clark (2003a), Clark (2003b) and Clark (2005). In his 2005 paper, Clark investi-

gated the hot hand in golf by analyzing contingency tables. He found that golfers were as

likely to score a birdie or better following a par or worse hole than when following a birdie

or better hole. He remarked that his results were consistent with those found for individual

players in baseball and basketball. His previous papers from 2003 had found some significant

streakiness in players’ sequence of scores but concluded that the streakiness was due to the

difficulty of golf courses.

In the paper by Gilden and Wilson (1995), two putting experiments were conducted

with volunteers. The volunteers practiced putting with different difficulty levels. The most

relevant conclusion the authors obtained was that outcome sequences are streakiest when

the difficulty of the task is commensurate with the ability of the performer.

In golf, there are various distinct skills which contribute to performance. For example,

driving, wedge play and putting are all distinct skills. Whereas there are good putters and

bad putters, we believe that the luck component in putting is greater than in the other skills.

For example, a 20-foot putt which goes close to the hole is skill. Whether it goes in or not is

luck. The luck element is due to many uncontrollable features of the green including, spike

marks, the setting of the pin, imperfections due to worms, etc. If there is ”too much” luck in

a game, then the luck (or random component) can overshadow evidence of a hot hand effect.

In this project, we try to determine if the hot hand in golf exists once the luck element

is removed from the number of shots required to complete the golf course.



Chapter 2

Data Collection

The data used in this project is obtained from the ShotLink website. ShotLink is a system

that collects data related to golf tournaments and supports three tours: PGA, Champions

and Nationwide. The 2012 Honda Classic tournament, part of which we analyze is part

of the PGA tour. The ShotLink system collects data through a group of volunteers who

operate laser devices that can measure with a precision of 2 inches, the position of the ball

on the course.

2.1 Data set

The data set used in this project consists of the results of the first two rounds of the 2012

Honda Classic golf tournament. These first two rounds are used because only those players

who made the cut are able to play in the last rounds (third and fourth). There were initially

144 players participating but one of them only played the first round. Additionally, 23 other

players competed who do not regularly play on the PGA tour. This means that there is

no measure of their overall performance for 2012 available to us. We have removed these

players from the study since we later require covariates based on PGA tour participation.

Therefore, 120 observations are used to conduct the analysis based on the first two rounds

of this tournament.

For each of the players, information used in this project is the number of strokes and

the number of putts required for each of rounds 1 and 2 and for each of the 18 holes on the

course. Also, the distance from the current position of the ball to the pin is utilized, as well

4



CHAPTER 2. DATA COLLECTION 5

as whether the ball is already on the green or not.

Table 2.1 shows for a few players, the type of data collected and used in this project.

The numbers under columns G1 and G2 represent the score obtained by each golfer in

rounds 1 and 2, respectively. Numbers under columns P1 and P2 represent the number of

putts for each of rounds 1 and 2. For each round we can express the score for each golfer

as Gi = Si + Pi, i = 1, 2, where Si represents the number of strokes in round i and can

be obtained from Gi and Pi. Again, our intuition is that a golf score Gi consists of two

components, strokes Si and putts Pi where Pi is more variable than Si.

Player G1 G2 P1 P2

Michael Bradley 73 72 29 28
Bob Estes 73 78 31 28
Davis Love III 71 72 32 27
Jeff Maggert 73 73 26 30
Billy Mayfair 70 71 30 29
Rocco Mediate 69 69 32 31
Tom Pernice Jr. 69 69 28 29
Stephen Ames 69 62 27 26
Chris DiMarco 71 70 31 25
Ernie Els 73 69 29 24

Table 2.1: Score and putts in rounds 1 and 2 for some of the golfers in the 2012 Honda
Classic.



Chapter 3

Methodology and Analysis

For each of the 120 golfers who participated in the 2012 Honda Classic and for whom an

average score on the 2012 PGA tour exists, the score for each of the first two rounds is

analyzed. Since we think the luck element is more prominent in putting than in other golf

skills, we split the score for each of the first two rounds into the number of strokes and the

number of putts needed for each golfer to complete the course.

For golfer i in the first round and using notation previously introduced, this can be

expressed as G1i = S1i +P1i, where S1i and P1i are the sums of strokes and putts over all 18

holes, S1i =
∑18

j=1 S
(j)
1i and P1i =

∑18
j=1 P

(j)
1i , and where the superscript (j)=1,...,18 indexes

the hole. We expect the number of putts P1i to vary from golfer to golfer, mainly because

of the luck element rather than because of the inherent skill of the golfer.

Since we think the value P1i is the result of an activity with an important component of

randomness, we substitute it with its expected value P ∗
1i in order to analyze a golfer’s score

which reflects more closely their true skill. The value P ∗
1i is calculated as the sum over all 18

holes, of the expected number of putts required to get the ball into the hole once it reaches

the green, P ∗
1i =

∑18
j=1 P

∗(j)
1i .

The data from ShotLink provides the distance (in inches) to the pin at the beginning

of each hole and after each stroke or putt. For a particular player and hole, the expected

number of putts P
∗(j)
1i is calculated based on this distance once the ball is on the green. The

further the ball is from the pin, the bigger this expected number of putts will be. When the

6



CHAPTER 3. METHODOLOGY AND ANALYSIS 7

distance to the pin approaches 0 inches, the expected number of putts required to reach the

hole should approach 1.

Once P ∗
1 and P ∗

2 have been calculated for each golfer, a new score for each of them and

for each round can be obtained. For round 1, we define this new score as G∗
1 = S1+P ∗

1 . This

new score reflects more accurately the skill of each golfer and reduces the luck component

attached to putting.

In order to calculate P ∗
1 and P ∗

2 for each player, we need to calculate some probabilities.

In golf tournaments on the level of those in the PGA tour, once a golfer has reached the

green, he usually requires at most three putts to reach the hole. This means that in order

to calculate the expected number of putts, we can (for practical purposes) neglect the prob-

ability that a golfer needs more than three putts, since this probability is essentially zero.

In fact, the information provided by the PGA tour website (pgatour.com), only shows

the percentage of times that a golfer requires either one or two putts (3-putt avoidance) once

the ball is on the green. These percentages are provided for different distance intervals: less

than 5 feet, 5 feet or more but less than 10 feet, 10 feet or more but less than 15 feet, 15

feet or more but less than 20 feet, 20 feet or more but less than 25 feet, and 25 feet or more.

Another useful type of information gives the percentage of holes achieved in one putt.

This information is also given for the same distances as for the three-putt avoidance. To-

gether with the three-putt avoidance, the probabilities of needing one, two or three putts

can be derived. At a particular distance, the probability that a golfer requires exactly two

putts can be obtained by subtraction from the information on the PGA tour website.

Let X represent the number of putts needed once the ball is on the green. Then the

expected number of putts from a given distance δ can be calculated as

1× P [X = 1] + 2× P [X = 2] + 3× P [X = 3].

For a specific player i and a specific hole j in round 1, the previous equation provides the

expected number of putts P
∗(j)
1i (δ) from that given distance. Since we only have information
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available about the probabilities of requiring 1, 2 or 3 putts from specific distances, we need

to estimate these probabilities at other distances.

In order to estimate P
∗(j)
1i (δ) for δ > 0, we fix P

∗(j)
1i (2.5) as 1×P [X = 1|δ < 5]+2×P [X =

2|δ < 5] + 3× P [X = 3|δ < 5].

We also fix P
∗(j)
1i (δ = 5m+ 2.5) = 1×P [X = 1|5m < δ < 5(m+ 1)] + 2×P [X = 2|5m <

δ < 5(m+ 1)] + 3× P [X = 3|5m < δ < 5(m+ 1)], for m = 1, 2, 3, 4.

Even though we can set up another equation using the information available for dis-

tances greater than 25 feet, we don’t do so for reasons that will become clear later.

We can also fix the value of P
∗(j)
1i (0) = 1 because the closer the ball is to the pin, the

expected number of putts required to make a hole approaches 1. Estimating the number

of putts via the distance of the putt is in the spirit of Broadie (2008), an idea also used by

Fearing et. al. (2011).

We also need to fix P
∗(j)
1i at another distance so that we can then fit an equation to all

these points in order to get estimated expected values for the whole range of distances. In

order to fix this last point, we look at information specifically from the 2012 Honda Classic

tournament and not from the PGA tour website for the whole 2012 year, as we did for the

other 6 points. For this tournament, in round one, the longest distance from which a putt

was made on a first-on-the-green opportunity is 87.6 feet. In round 2, this distance is 98.0

feet. We use 100 feet as the longest distance since it is a convenient value which is very

close to the longest distance from which an initial putt was made in the data set.

We now explain why the 7th point is based on information from only one tournament

and not from all 2012 PGA tournaments. Besides providing information for smaller ranges

of distances like 5 feet to 10 feet, the PGA tour website provides information for all putts

made from distances greater than 25 feet. Since we know putts can be attempted from

distances near 100 feet, combined information for all putts from as close as 25 feet or as far

as 100 feet may not be precise enough for fitting an equation.
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The information from the 2012 Honda Classic tournament can provide a way in which

we can fix the 7th point more precisely. It is worth mentioning that more than 70% of the

roughly 2,000 putts attempted in each round were attempted from distances of 25 feet or

less away from the pin. Less than 5% of the putts were made from distances longer than 50

feet.

So we want to fix P
∗(j)
1i (100) at some sensible value. Table 3.1 shows data for different

distances in feet with the frequencies for 1, 2, 3 and 4 putts in round 1. The distance ranges

were fixed from the Honda 2012 Classic tournament so that each range contains around 100

values. This is done in order to have enough observations with which probabilities can be

estimated in a frequentist way. We can see that for all first putts that were made in round

1 from distances greater than 57 feet, golfers required 1 putt on 1 occasion, golfers required

2 putts on 79 occasions, golfers required 3 putts on 19 occasions, and golfers required 4

putts on 1 occasion. The one 4-putt required, confirms the fact that the probability of more

than 3 putts once the ball is on the green is negligible. With the values in Table 3.1 we can

calculate expected putts for the various ranges in the table. We observe that these expected

values are very close and that they never exceed 2.2.

δ 1 putt 2 putts 3 putts 4 putts Expected putts

[57.0, 100.0) 1 79 19 1 2.20
[46.9, 57.0) 5 87 8 0 2.03
[35.4, 46.9) 3 88 9 0 2.06
[31.4, 35.4) 6 88 6 0 2.00
[28.3, 31.4) 9 89 2 0 1.93

Table 3.1: Frequencies of putts from certain distances (feet) in round 1.

In Table 3.2 we find similar values as for Table 3.1 but for round 2 of the tournament.

The conclusions that can be drawn are very similar to the ones observed in Table 3.1. The

expected number of putts is never above 2.08.

The information in both Tables 3.1 and 3.2 suggests that we fix P
∗(j)
1i (100) = 2.14 be-

cause 2.14 is the average of 2.20 and 2.08. We can display this value together with the other
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δ 1 putt 2 putts 3 putts Expected number of putts

[57, 100) 1 79 19 2.08
[46.9, 57) 5 87 8 2.03

[35.4, 46.9) 3 88 9 2.04
[31.4, 35.4) 6 88 6 2.00
[28.3, 31.4) 9 89 2 1.92

Table 3.2: Frequencies of putts from certain distances (feet) in round 2.

6 values we had fixed for P
∗(j)
1i (δ). Table 3.3 shows the expected number of putts for the 7

distances previously mentioned. We observe that the expected number of putts near the pin

is nearly 1.0 and that it is rare (only at large distances) for the expected number of putts

for a PGA golfer to exceed 2.0.

δ Expected number of putts

0.0 1
2.5 1.04
7.5 1.45

12.5 1.71
17.5 1.83
22.5 1.91

100.0 2.14

Table 3.3: Estimated number of putts required to score from various distances (feet).

Having fixed P
∗(j)
1i (δ) for δ = 0.0, 2.5, 7.5, 12.5, 17.5, 22.5, 100.0, we can estimate P

∗(j)
1i (δ)

for other values by fitting a curve to the 7 values already determined.

Two ways of doing this are described. In the first approach, a quadratic model is fit to

the first 6 pairs of data in the previous table and then a line is fitted between the 6th and

7th pairs. One of the reasons why it is preferable to use the data from Table 3.3 rather than

that from Tables 3.1 and 3.2 is that the former table uses information from all year 2012

for 6 of the 7 points and not only information from the 2012 Honda Classic.
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The resulting equation is P
∗(j)
1i (δ) = 1 + 0.0686δ − 0.00121δ2 for 0 < δ < 22.5 and

P
∗(j)
1i (δ) = 1.929 + 0.211

77.5 (δ − 22.5) for 22.5 < δ < 100. In Figure 3.1 we investigate the fit of

the quadratic part relative to the knots in Table 3.3. We observe that the fit is very good,

with only the pair (2.5, 1.04) not being accurately described by this curve. However, we

have to mention that it makes sense that the expected putts at a distance of 2.5 feet is still

close to 1, since it is still most likely that at short distances a professional golfer will only

need one putt to make a hole.

Figure 3.1: Quadratic fit followed by linear fit to the pairs of points in Table 3.1.

With these equations we can calculate the expected number of putts for every hole and

for every round and player. We can also calculate P ∗
ki, the expected number of putts for

player i in round k. Table 3.4 shows some of these expected P ∗
1i values along with the

corresponding actual number of putts P1i for 10 golfers who participated at the 2012 Honda

Classic tournament. We observe that there is considerable discrepancy in the two columns,

and the discrepancies are argued to be largely a function of luck.

Table 3.5 shows some of the actual scores G1i and expected scores G∗
1i = S1i + P ∗

1i for

10 different players. We observe differences in the two values by as many as 6.2 strokes, a
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Player Actual putts P1i Expected putts P ∗
1i

Michael Bradley 32 30.4
Bob Estes 29 31.0
Davis Love III 27 26.9
Jeff Maggert 33 31.6
Billy Mayfair 29 29.0
Rocco Mediate 30 27.2
Tom Pernice Jr. 24 25.5
Stephen Ames 29 29.2
Chris DiMarco 32 30.4
Ernie Els 30 30.5

Table 3.4: Actual putts and expected putts for 10 golfers in the 2012 Honda Classic
(quadratic interpolation followed by linear interpolation).

very meaningful difference in a round of golf. Again, the intuition is that the expected score

G∗
1i is a better measure of skill than G1i, which is conjectured to have a large component of

luck due to putting.

Player Actual score in round 1 Expected score in round 1

Michael Bradley 70 68.4
Bob Estes 67 69.0
Davis Love III 64 63.9
Jeff Maggert 71 69.6
Billy Mayfair 72 72.0
Rocco Mediate 69 66.2
Tom Pernice Jr. 67 68.5
Stephen Ames 75 75.2
Chris DiMarco 72 70.4
Ernie Els 70 70.5

Table 3.5: Actual score and expected score for 10 golfers in round 1 of the 2012 Honda
Classic (quadratic interpolation followed by linear interpolation).

A second way in which we can estimate P
∗(j)
1i (δ) is by linear interpolation between the

7 pairs of points in Table 3.3. This type of interpolation will produce the following linear

equations, valid on specific ranges of distances.
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P
∗(j)
ki (δ) = 1 + 0.037

2.5 δ, 0 < δ ≤ 2.5

P
∗(j)
ki (δ) = 1.037 + 0.413

5 (δ − 2.5), 2.5 < δ ≤ 7.5

P
∗(j)
ki (δ) = 1.450 + 0.261

5 (δ − 7.5), 7.5 < δ ≤ 12.5

P
∗(j)
ki (δ) = 1.711 + 0.123

5 (δ − 12.5), 12.5 < δ ≤ 17.5

P
∗(j)
ki (δ) = 1.834 + 0.079

5 (δ − 17.5), 17.5 < δ ≤ 22.5

P
∗(j)
1i (δ) = 1.913 + 0.227

77.5 (δ − 22.5), 22.5 < δ ≤ 100

The resulting interpolation is shown in Figure 3.2. This obviously provides a better fit

to the data in Table 3.3 but the lack of smoothness in the interpolation is not appealing

and is its main drawback.

Figure 3.2: Linear interpolation to the pairs of points in Table 3.3.
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Table 3.6 is similar to Table 3.4, the putts and expected putts based on the first 10

players in the data set. Table 3.7 is similar to Table 3.5, the score G1i and expected score

G∗
1i based on the first 10 players in the data set. We observe that for all Tables 3.4, 3.5,

3.6 and 3.7, the expected values are sometimes higher than the actual ones and sometimes

smaller than the actual ones.

Player Actual putts P1i Expected putts P ∗
1i

Michael Bradley 32 30.2
Bob Estes 29 30.8
Davis Love III 27 26.6
Jeff Maggert 33 31.3
Billy Mayfair 29 28.5
Rocco Mediate 30 26.9
Tom Pernice Jr. 24 25.0
Stephen Ames 29 29.0
Chris DiMarco 32 30.0
Ernie Els 30 30.2

Table 3.6: Actual putts and expected putts for 10 golfers in the 2012 Honda Classic (linear
interpolation).

Player Actual score G1i Expected score G∗
1i

Michael Bradley 70 68.2
Bob Estes 67 68.8
Davis Love III 64 63.6
Jeff Maggert 71 69.3
Billy Mayfair 72 71.5
Rocco Mediate 69 65.9
Tom Pernice Jr. 67 68.0
Stephen Ames 75 75.0
Chris DiMarco 72 70.0
Ernie Els 70 70.2

Table 3.7: Actual score and expected score for 10 golfers in round 1 of the 2012 Honda
Classic (linear interpolation).

For the remainder of the project, we will use the results obtained by fitting the quadratic
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equation to the first 6 pairs of points in Table 3.3 and a linear equation between the 6th and

7th points, in order to calculate P ∗
ki and G∗

ki. Once P
∗(j)
ki has been calculated for both rounds

(k=1,2), all holes (j=1,...,18) and all players (i=1,...,120), the calculation of the expected

score G∗
ki can be obtained for any player i.

Once we have calculated the expected putts, the actual scores and the expected scores,

we want to assess whether there is association between G∗
1i and G∗

2i, for example. If there is

an association between these two quantities, we can interpret it as an indication of a ”hot

hand” or a ”cold hand” effect.

At this point we want to establish the intuition that adding noise (i.e., random putting

P ) to a skilled activity such as shotmaking (S) decreases correlation.

Proposition: Assume that Cov(S1, P1) = Cov(S2, P1) = Cov(S1, P2) = Cov(S2, P2) =

Cov(P1, P2) = 0 and Cov(S1, S2) > 0, then Corr(S1 + P1, S2 + P2) ≤ Corr(S1, S2).

Proof:

Corr(S1 + P1, S2 + P2)

=
Cov(S1 + P1, S2 + P2)√
V ar(S1 + P1)V ar(S2 + P2)

=
Cov(S1, S2) + Cov(S1, P2) + Cov(P1, S2) + Cov(P1, P2)√

(V ar(S1) + V ar(P1) + 2Cov(S1, P1))(V ar(S2) + V ar(P2) + 2Cov(S2, P2)

=
Cov(S1, S2)√

(V ar(S1) + V ar(P1))(V ar(S2) + V ar(P2))

≤ Cov(S1, S2)√
V ar(S1)V ar(S2)

= Corr(S1, S2).

One way in which we can detect association between G∗
1i and G∗

2i is by calculating the

correlation between G∗
1i and G∗

2i across the 120 golfers. However, spurious correlation may

be observed as a result of some golfers being better than others and not as a result of cor-

related G∗
1i and G∗

2i values.
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In order to avoid the appearance of this spurious correlation, we subtract a measure of

inherent skill possessed by each golfer. The intent is that the adjusted G∗
k1, ..., G

∗
k120 forms

a sample from a population and that the adjusted Gk1, ..., Gk120 forms a sample from a

population. The PGA website publishes information on the average score for golfers in a

year. For a particular player, this is calculated as the average of all their scores in all PGA

tournaments in which they participated throughout a particular year.

For the year 2012, the average scores for all 120 of the golfers in our data set were avail-

able. Let’s represent this average score for player i as Ḡi. Once these averages are obtained

we can calculate the correlation between G∗
1i − Ḡi and G∗

2i − Ḡi. We are also interested in

the correlation between G1i− Ḡi and G2i− Ḡi. If the former correlation is greater than the

latter, this is evidence of the hot hand being more detectable via pure shotmaking.

In Table 3.8, we provide the top 5 Ḡi values and the bottom 5 Ḡi values from the 2012

Honda Classic. We observe that from the PGA golfers who participated in the 2012 Honda

Classic, the best in 2012 had an average score which is around 70 and even a bit lower than

this. From those golfers who participated in the same tournament, the worst had scores

higher than 72. We can see that there seems to be a gap of more than 2 shots in the average

scores between the best and the worst golfers.

Player Ḡi

Tom Gillis 69.63
Greg Chalmers 69.78
Brendon De Jonge 70.10
Jim Furyk 70.17
David Hearn 70.22

Jimmy Walker 72.04
John Rollins 72.08
Stuart Appleby 72.20
Jason Bohn 72.34
Blake Adams 72.66

Table 3.8: The top 5 and bottom 5 Ḡi values representing inherent skill amongst players.
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In Figure 3.3, we provide a scatterplot of G1i − Ḡi versus G2i − Ḡi over all 120 golfers.

In the scatterplot we observe a cloud of points that is essentially random and with no clear

pattern. Most of the points gather inside an imaginary circle, except for some in the right-

most part of the graph. This shows that there really doesn’t seem to be an association

between G1i − Ḡi and G2i − Ḡi. In other words, there does not seem to be evidence of the

hot hand effect given traditional golfing measures.

Figure 3.3: Scatterplot of G1i − Ḡi versus G2i − Ḡi.

Careful observers may notice that several of the points in Figure 3.3 lie surprisingly on

several straight lines which are all parallel to each other and with positive slopes. This is

a result of the few different values of the actual scores G1i and G2i obtained by golfers on

both rounds. Actually, the differences G2i − Ḡi − (G1i − Ḡi) = G2i −G1i, which represent

the intercepts of the lines, take only 21 different values. The fact that 120 points have to

lie on only those 21 lines makes it clear that several of the lines will necessarily have many

points lying on them.
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On the other hand, parallel lines with negative slopes cannot be easily detected by the

eye in Figure 3.3 because the intercepts of these lines are given by the possible values of

G2i − Ḡi + (G1i − Ḡi) = G2i +G1i − 2× Ḡi, which are 111 different ones. As a result, very

few of these lines will be containing 2 or more points.

In Figure 3.4, we provide a scatterplot of G∗
1i− Ḡi versus G∗

2i− Ḡi. This scatterplot still

shows almost complete randomness, although a bit less than in Figure 3.3. Again, we do

not see an association between the first and second round expected scores once the average

score in 2012 is subtracted from each player. In this figure it is also not possible to see the

parallel lines pattern displayed by the points in Figure 3.3 because the possible values of

G2i −G1i and G2i +G1i − 2× Ḡi are all different, so each point lies on only one line, be it

with a positive or a negative slope.

Figure 3.4: Scatterplot of G∗
1i − Ḡi versus G∗

2i − Ḡi.

The graphical displays in Figure 3.3 and Figure 3.4 are supplemented with corresponding

numerical statistics. Unfortunately none of the mentioned correlations was significant. For
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example, the correlation between G∗
1i − Ḡi and G∗

2i − Ḡi is -0.029, which is not statistically

significant at a level of 0.05. The p-value is 0.75. The correlation between G1i − Ḡi and

G2i − Ḡi is -0.052, which is also not statistically significant. The p-value is 0.57. Also, the

sign of the correlations is negative, the opposite of what we were hoping to discover.



Chapter 4

Discussion

The hot hand effect is in the mind of many sports players and fans around the world, who

take its existence as natural. It has been shown in several studies conducted for several

sports that the hot hand effect does not exist and that it seems to be created in the imagi-

nation of players and fans due to a lack of proper understanding of chance and variability.

In golf, the hot hand phenomenon hasn’t been conclusively proven either. However, it

was our hope that in studying golf and by removing an element of randomness from the

game, we would be able to detect a hot hand effect. We claimed that a random or luck

component in the game is mostly present in the task of putting. We removed this luck

component by taking into account the expected number of putts based on the distance from

the pin, instead of the actual putts that occurred in the 2012 Honda Classic tournament.

By calculating the expected putts at certain distances from the pin, we proposed fitted

equations that provide the expected number of putts for any given distance up to 100 feet.

We then used these estimated values to obtain new scores for the players who participated

in the tournament. We saw that the fit used to calculate the expected putts didn’t have

much influence as long as sensible equations are fitted. These scores are only based on the

number of strokes and the expected putts. We further centered these scores based on the

ability of each player.

Unfortunately, we were not able to detect any hot hand effect based on our results. It

seems that even after removing one of the golf elements where more luck is involved, there

20
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is no hot hand in golf.

Given that no hot hand effect was found in this project, it may be possible to explore

other possibilities. Maybe analyzing a different tournament, or data from many tournaments

may produce different results. Analyzing more than 2 rounds can be another possibility.

Maybe the hot hand effect cannot be seen from round to round but from hole to hole.

In any case, what is true is the faith that people in sports place in the hot hand. For

example, while this project is being concluded, the Masters 2013 tournament will be taking

place and the pundits have indicated as favorites to win the tournament, those players who

have been playing well recently.

Even if the data used for this project doesn’t support the existence of a hot hand effect,

according to my understanding of golf and other sports, I think that a hot hand effect may

be possible and that maybe a different way of analyzing this or other data may provide

evidence of such effect.
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